Journal of Machine Learning Research 11 (2010) 1145-1200 Submitted 11/08; Revised 11/09; Published 3/10 A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning Jin Yu
[email protected] School of Computer Science The University of Adelaide Adelaide SA 5005, Australia S.V.N. Vishwanathan
[email protected] Departments of Statistics and Computer Science Purdue University West Lafayette, IN 47907-2066 USA Simon Gunter¨ GUENTER
[email protected] DV Bern AG Nussbaumstrasse 21, CH-3000 Bern 22, Switzerland Nicol N. Schraudolph
[email protected] adaptive tools AG Canberra ACT 2602, Australia Editor: Sathiya Keerthi Abstract We extend the well-known BFGS quasi-Newton method and its memory-limited variant LBFGS to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: the local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We prove that under some technical conditions, the resulting subBFGS algorithm is globally convergent in objective function value. We apply its memory-limited variant (subLBFGS) to L2-regularized risk minimization with the binary hinge loss. To extend our algorithm to the multiclass and multilabel settings, we develop a new, efficient, exact line search algorithm. We prove its worst-case time complexity bounds, and show that our line search can also be used to extend a recently developed bundle method to the multiclass and multilabel settings. We also apply the direction-finding component of our algorithm to L1-regularized risk minimization with logistic loss.