Sorghum Value Chain Analysis in Ghana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KAMUT® Brand Khorasan Wheat Whole Grain US Senator For
The Ancient Grain for Modern Life—Our mission is to promote organic agriculture and support organic farmers, to increase diversity of crops and diets and to protect the heritage of a high quality, delicious an- January 2013 cient grain for the benefit of this and future generations. Eat the Whole Thing: KAMUT® Brand Khorasan Wheat Whole Grain UPCOMING Whole grains are an important and tasty way of including complex carbohydrates in a healthy EVENTS diet. Depending on your age, health, weight, and activity level, the USDA recommends that Americans consume at least three portions, from 1.5 ounces (young children) to 8 ounces (older 20 – 22 January boys and young adult men) of grains a day, and that more than half of those grains should be 2013* - National As- whole grains. The US Food and Drug Administration (FDA) defines “whole grain to include cere- sociation for the Spe- al grains that consist of the intact, ground, cracked or flaked fruit of the grains whose principal cialty Food Trade, components -- the starchy endosperm, germ and bran -- are present in the same relative propor- Fancy Food Show, San tions as they exist in the intact grain.” Francisco, CA, USA Each part of the grain is healthful, but consuming them “whole” provides all of the benefits work- ing together. The FDA recognizes that whole grains provide energy and provide reduced risk for 25 January 2013 – disease including bowl disorders, cancer, heart disease and high cholesterol, stroke, high blood Annual KAMUT® Grower’s Dinner, Re- pressure, obesity and Type 2 diabetes. gina, SK, Canada In order to help you find good whole grain products, a lot of packaging includes the helpful term “whole grain” on the front or even better includes Whole Grains Council stamps. -
Genetic Improvement of Sorghum in the Semi-Arid Tropics
Genetic improvement of sorghum in the semi-arid tropics Belum VS Reddy, A Ashok Kumar and P Sanjana Reddy International Crops Research Institute for the Semi-Arid Tropics Patancheru 502 324. Andhra Pradesh. India Introduction Sorghum [Sorghum bicolor (L.) Moench] – a major cereal of the world after wheat, rice, maize and barley, is a staple food for millions of the poorest and most food- insecure people in the Semi-Arid Tropics (SAT) of Africa and Asia. Being a C4 species with higher photosynthetic ability, and greater nitrogen and water-use effi ciency, sorghum is genetically suited to hot and dry agro-ecologies where it is diffi cult to grow other food crops. These are also the areas subjected to frequent droughts. In many of these agro-ecologies, sorghum is truly a dual-purpose crop; both grain and stover are highly valued products. In Africa, sorghum is predominantly grown for food purposes, while in USA, Australia, China, etc, it is grown for livestock feed and animal fodder purposes. Unlike in other parts of the world, sorghum is grown both in rainy and postrainy seasons in India. While the rainy season sorghum grain is used both for human consumption and livestock feed, postrainy season produce is used primarily for human consumption in India. Thus sorghum is the key for the sustenance of human and livestock populations in SAT areas of the world. Production constraints The yield and quality of sorghum is affected by a wide array of biotic (pests and diseases) and abiotic stresses (drought and problematic soils). These are shoot fl -
Updating Barley and Rye Management in Kentucky, Year 2
UPDATING BARLEY AND RYE MANAGEMENT IN KENTUCKY, YEAR 2 Chad Lee, Carrie Knott, James Dollarhide, Kathleen Russell and Katherine McLachlan, University of Kentucky, Department of Plant & Soil Sciences PH: (859) 257-7874; E-mail: [email protected] The boom in distilleries and growing public received 30 lb N/A in the fall, consistent with our interest in locally grown foods has combined to recommendations when following excellent corn generate much interest in barley and rye for yields. For the nitrogen rate studies, all small Kentucky. These crops have not been studied grains were seeded at 1.25 million per acre. In extensively since intensive wheat management 2015-2016, the studies were conducted only at was developed in Kentucky. Spindletop Farm near Lexington, KY. For 2016- 2017, studies were conducted at Spindletop and In 2016-2017, we investigated seeding rates and at the Research and Education Center at nitrogen (N) rates on barley, malting barley and Princeton, KY. hybrid rye. Seeding rates were 0.5, 0.75, 1.0, 1.25 and 1.5 million seeds per acre. For the Six-Row Barley (Feed Barley) seeding rate studies, N rate was set at 90 lb N/A Seed Rates with 30 lb applied at Feekes 3 and 60 applied at Feekes 5. In the winter nitrogen rate study, rates Seed rates did not affect yield of feed barley at of 0, 30, 60, 90 and 120 lb N per acre were split- any tie. Yield averaged over 85 bushels per acre. applied at Feekes 3 and 5. In addition, all plots 6-Row Barley: Seed rate effect on yield at Lexington 2016, Lexington 2017 and Princeton 2017. -
Coverage for Specialty Types of Barley and Soybeans Beginning with the 2010 Crop Year
United States May 27, 2010 Department of Agriculture INFORMATIONAL MEMORANDUM: PM-10-005.1 Risk Management TO: All Approved Insurance Providers Agency All Risk Management Agency Field Offices Beacon Facility – All Other Interested Parties Mail Stop 0812 P.O. Box 419205 FROM: Tim B. Witt /s/ Tim B. Witt Kansas City, MO 64141-6205 Deputy Administrator SUBJECT: Coverage for Specialty Types of Barley and Soybeans Beginning with the 2010 Crop Year BACKGROUND: On February 1, 2010, the Risk Management Agency (RMA) issued PM-10-005 regarding insurance coverage for specialty types of barley and soybeans based on contract prices effective for the 2010 crop year. Some questions have arisen pertaining to type identification, prevented planting, replanting, and quality adjustment. RMA is providing the following guidance when insuring specialty types. ACTION: 1. Identifying Specialty Types: There are six possible types specified in the Special Provisions of Insurance (SPOI): All Others (AO), and the five specialty types shown below with the requirements for each: a. Large seeded food grade – Soybeans commonly used for tofu, soymilk, and miso having a minimum seed size of 20g/100 seeds. b. Small seeded food grade – Soybeans commonly used for sprouts having a minimum seed size of 10g/100 seeds, or for natto soybeans having a minimum seed size of 8g/100 seeds. c. Low linolenic acid – Soybeans commonly used to produce soybean oil with a linolenic acid level of three percent or less. d. Low saturated fat - Soybeans containing 50 percent less saturated fat than conventional soybeans and are used to produce soybean oil with eight percent or less total saturated fats. -
Wheat, Barley, Rye, GO! Students Get Active and Learn About Whole Grains in This Spirited Game Overview
Wheat, Barley, Rye, GO! Students get active and learn about whole grains in this spirited game Overview In this wacky version of "Rock, Paper, Scissors," students strategize and chase Description each other while learning about whole grains. Objective Students will identify a variety of whole grain foods they can eat for snack. Activity 1. Have the studends form a large circle. 2. Ask them to raise their hands if they eat whole grain foods for snack (e.g. crackers, bread, etc). Explain that grains are carbohydrates, the body’s main source of energy. Tell the class that whole grains are usually brown and are healthier than white grains because they have more vitamins and nutrients, which give the body more energy to run and play. 3. Then, ask them to share a few specific whole grain foods they eat. (If a student mentions a processed, "white" grain such as white bread, tell them it is okay to eat foods like white bread once in a while, but they should eat whole grains more often. Can they think of a whole grain food to replace the other?) 4. Divide the class into two groups and have them stand at opposite ends of the room. 5. Explain that they are going to play a familiar game "Rock, Paper, Scissors" with a twist. The name of the game is "Wheat, Barley, Rye." 6. Have the class create one full-body pose (as opposed to hand sign) for each grain. Have the students practice the movements as you call out the grains so they become familiar. -
A Study of Sorghum with Reference to the Content of HCN C.J
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Agricultural Experiment Station Technical Bulletins SDSU Agricultural Experiment Station 1939 A Study of Sorghum with Reference to the Content of HCN C.J. Franzke Leo F. Puhr A.N. Hume Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_tb Recommended Citation Franzke, C.J.; Puhr, Leo F.; and Hume, A.N., "A Study of Sorghum with Reference to the Content of HCN" (1939). Agricultural Experiment Station Technical Bulletins. 13. http://openprairie.sdstate.edu/agexperimentsta_tb/13 This Article is brought to you for free and open access by the SDSU Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Agricultural Experiment Station Technical Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. 'f :chnical Bulletin 1 April, 1939 ---------~ A Study of Sorghum With Reference to the Content ofHCN J C. J. Franzke, Leo F. Puhr and A. N. Hume Agronomy Department Agricultural Experiment Station SOUTH DAKOTA STATE COLLEGE of Agriculture and Mechanic Arts Brookings ----------~ / 11 0 .5 2&r # J- a General Summary Statements Part I The chemical method which was used in recovering HCN from sorghum plants is that of precipitating the substance with silver nitrate (AgN03 ) as approved by the Association of Official Agricultural Chemists. Attempted use of the aspiration method invariably recov ered lower amounts than the foregoing method. It was found impossible to recover any amount whatever of HCN from en silage by the foregoing method. -
Sorghum Seed Certification Standards (1988)
HYBRID SORGHUM SEED CERTIFICATION STANDARDS (1988) I. Application and Amplification of General Certification Standards A. The General Seed Certification Standards, as adopted by the association are basic and together with the following specific standards constitute the standards for certification of seed stock and commercial hybrid sorghum seed. B. The General Standards are amplified to apply specifically to hybrid sorghum seed 1. Section III. Eligibility Requirements for Certification of Crop Varieties a. The name under which hybrid shall be certified shall be the same as the designation given by the originator or the originating agency and must represent a specific combination that has been tested by a state or governmental agricultural experiment station or certifying agency. b. A commercial hybrid is one to be planted for any use except seed. c. Foundation seed stocks shall consist of male steriles, inbred lines, and/or hybrids to be used in the production of seed for commercial hybrids. 2. Section IV. Restrictions on number of Varieties If seed of more than one hybrid or seed stock is produced mechanical mixing and crossing must be avoided. 3. Section V. Classes and Sources of Certified Seed a. Only the class “certified” is recognized in seed of commercial sorghum hybrids. b. A commercial hybrid to be certified must be produced from foundation seed stocks approved by the agricultural experiment station and / or certifying agency. 23-1 II. Land Requirements No sorghum shall have been grown on the land the previous year or the requirement is waived if the previous crop was of the same variety and of a certified class equal or superior to that of the crop seeded. -
Modern Convenient Sorghum and Millet Food, Beverage and Animal Feed Products, and Their Technologies Sajid Alavi1, Saikat Datta Mazumdar2, John R.N
CHAPTER 10 Modern Convenient Sorghum and Millet Food, Beverage and Animal Feed Products, and Their Technologies Sajid Alavi1, Saikat Datta Mazumdar2, John R.N. Taylor3 1Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States; 2International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India; 3Department of Consumer and Food Sciences and Institute for Food, Nutrition and Well-being, University of Pretoria, Pretoria, South Africa 1. INTRODUCTION The use of “alternative grains,” also known as ancient grains, climate-smart grains, nutrigrains, or traditional grains, like sorghum and millets in modern food products, is becoming common across the world. This is taking place in order to address several socioeconomic trends, especially changing lifestyles (e.g., urbanization, working mothers, and single-parent families) and also consumer nutrition, health, and ethical concerns about obesity and type 2 diabetes, allergies, and environmental sustainability (Taylor and Awika, 2017). For example, sorghum and millets are increasingly being explored in gluten-free applications targeting consumers who suffer from celiac dis- ease and intolerances to wheat and related cereals. Another perceived advantage of sorghum and millets is their completely genetically modified organism (GMO)-free nature that can allow them to be used in specialty products such as organic foods and humanitarian aid for countries with GMO restrictions. This chapter is structured with the purpose of providing innovative -
FARM Energy Success Stories
New Farm INcome Farm energy Success Stories New Farm INcome · rur al ecoNomIc DevelopmeNt Energy IndependeNce · a CLEANER EnvIroNmeNt CongReSSIonaL SuppoRT foR THe faRm BILL’S CLean eneRgy pRogRamS “American farmers and rural businesses “Our insatiable appetite for energy, particularly are successfully using the Rural Energy for from outside our borders, represents one of our America Program to leverage billions of gravest security threats. The Farm Bill’s energy dollars in private investment for successful programs recognize our nation’s agriculture new renewable energy and energy efficiency and rural sector’s ability to confront these risks. projects. These new energy projects are good Solutions such as REAP improve our nation’s energy for rural economies, good for the environment equation and help strengthen our rural economies.” and good for our national energy security.” —Senator Tom Harkin (D-Iowa) —Senator Richard Lugar (R-Indiana) “Rural America possesses the resources and spirit “I strongly support the Rural Energy for America to lead our nation away from dependence on Program because it is one of the only federal programs foreign oil and non-renewable sources of energy. that comprehensively transforms a clean energy Building on the 2002 Farm Bill efforts, the development vision into action across agricultural 2008 Farm Bill is now expanding opportunities America. From the time when we created this for farmers, ranchers and small businesses to program in the 2002 Farm Bill to the nationally conserve energy and produce clean renewable successful program today, we have cemented our energy. Programs like the Rural Energy for commitment to transition rural and agricultural America Program provide the resources to America toward a future that treats energy as a transform practical ideas to save or produce strategic resource which must be conserved, protected energy into a reality. -
Consumer Demand for Simple, Healthy and Nutritious Foods Leads to Rise of Ancient Grains
PR Contact: Jillian Chertok, ADinfinitum, New York, NY. Email: [email protected] Tel: 212.693.2150 Ext: 311 FOR IMMEDIATE RELEASE Consumer Demand for Simple, Healthy and Nutritious Foods Leads to Rise of Ancient Grains Sales of ancient grains such as KAMUT® Brand khorasan wheat, quinoa, amaranth, teff, spelt and freekah have increased dramatically in recent years as more consumers, nutritionists and big brands recognize their benefits Big Sandy, MT, September 2015 – Consumers and nutrition experts have spoken – driven by their desire for non-GMO foods with simple ingredients that are high in nutrients, ancient grains are on the rise with no sign of slowing down. In fact, according to data from SPINS, a leading supplier of retail consumer analytics and insights, sales of ancient grains rose steeply in the 52 weeks ending July 13, 2014. All ancient grains, such as KAMUT®, amaranth, quinoa, spelt and freekah, will continue to grow through 2015 and will be a top nutritional trend, according to a recent survey of more than 500 registered dietitians from Today’s Dietitian and Pollock Communications. Unlike modern grains, ancient grains have survived intact for centuries and have more vitamins, minerals, fiber and proteins than modern grains, as well as more distinctive and flavorful taste. Due to their rise in popularity and demand, ancient grains are now more accessible than ever before, especially as well known brands, such as Kashi® and Kellogg’s, have started to incorporate them into their products. In August 2015, Kashi® released its Organic Promise® Cocoa Coconut with KAMUT® Khorasan Wheat Granola, which pairs ancient grains with superfoods, including oats and coconut. -
Grain Sorghum Production
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange SDSU Extension Fact Sheets SDSU Extension 1973 Grain Sorghum Production Elmer E. Sanderson Leon S. Wood Follow this and additional works at: https://openprairie.sdstate.edu/extension_fact Recommended Citation Sanderson, Elmer E. and Wood, Leon S., "Grain Sorghum Production" (1973). SDSU Extension Fact Sheets. 1314. https://openprairie.sdstate.edu/extension_fact/1314 This Fact Sheet is brought to you for free and open access by the SDSU Extension at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in SDSU Extension Fact Sheets by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. Historic, archived doculllent Do not assume content reflects current scientific knowledge, policies, or practices. SDSU ® Extension For current policies and practices, contact SDSU Extension Website: extension.sdstate.edu Phone: 605-688-4 792 Email: [email protected] SDSU Extension is an equal opportunity provider and employer in accordance with the nondiscrimination policies of South Dakota State University, the South Dakota Board of Regents and the United States Department of Agriculture. FS 308 Grain Sorghum Production Grain sorghum head ( open panicle) Cooperative Extension Service South Dakota State University United States Department of Agriculture 0~ .732. So 272 F 11 ot ll lll lll llli~l l'li~llrlll llmmlrm111~111111 11 3 1574 50091 6728 FS 308 Grain Sorghum Pro·duct:ion by Elmer E. Sanderson, Extension Agronomist-Crops Leon S. -
Cropping Miscanthus X Giganteus in Commercial Fields
Cropping Miscanthus x giganteus in commercial fields : from agro-environmental diagnostic to ex ante design and assessment of energy oriented cropping systems Claire Lesur To cite this version: Claire Lesur. Cropping Miscanthus x giganteus in commercial fields : from agro-environmental diag- nostic to ex ante design and assessment of energy oriented cropping systems. Agricultural sciences. AgroParisTech, 2012. English. NNT : 2012AGPT0084. tel-01124310 HAL Id: tel-01124310 https://pastel.archives-ouvertes.fr/tel-01124310 Submitted on 6 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°: 2009 ENAM XXXX Doctorat ParisTech T H È S E pour obtenir le grade de docteur délivré par L’Institut des Sciences et Industries du Vivant et de l’Environnement (AgroParisTech) Spécialité : Agronomie présentée et soutenue publiquement par Claire LESUR le 21 décembre 2012 Cultiver Miscanthus x giganteus en parcelles agricoles : du diagnostic agro-environnemental à la conception-évaluation ex ante de systèmes de culture à vocation énergétique Directeur de thèse : Marie-Hélène JEUFFROY Co-encadrement de la thèse : Chantal LOYCE Jury M. Eric JUSTES , Ingénieur de Recherche , UMR AGIR, INRA Toulouse Rapporteur M. Jacques WERY , Professeur , UMR System, Montpellier SupAgro Rapporteur M.