Review Monounsaturated Oils Do Not All Have the Same Effect on Plasma Cholesterol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Essential Wholesale & Labs Carrier Oils Chart
Essential Wholesale & Labs Carrier Oils Chart This chart is based off of the virgin, unrefined versions of each carrier where applicable, depending on our website catalog. The information provided may vary depending on the carrier's source and processing and is meant for educational purposes only. Viscosity Absorbtion Comparible Subsitutions Carrier Oil/Butter Color (at room Odor Details/Attributes Rate (Based on Viscosity & Absorbotion Rate) temperature) Description: Stable vegetable butter with a neutral odor. High content of monounsaturated oleic acid and relatively high content of natural antioxidants. Offers good oxidative stability, excellent Almond Butter White to pale yellow Soft Solid Fat Neutral Odor Average cold weather stability, contains occlusive properties, and can act as a moistening agent. Aloe Butter, Illipe Butter Fatty Acid Compositon: Palmitic, Stearic, Oleic, and Linoleic Description: Made from Aloe Vera and Coconut Oil. Can be used as an emollient and contains antioxidant properties. It's high fluidiy gives it good spreadability, and it can quickly hydrate while Aloe Butter White Soft Semi-Solid Fat Neutral Odor Average being both cooling and soothing. Fatty Acid Almond Butter, Illipe Butter Compostion: Linoleic, Oleic, Palmitic, Stearic Description: Made from by combinging Aloe Vera Powder with quality soybean oil to create a Apricot Kernel Oil, Broccoli Seed Oil, Camellia Seed Oil, Evening Aloe Vera Oil Clear, off-white to yellow Free Flowing Liquid Oil Mild musky odor Fast soothing and nourishing carrier oil. Fatty Acid Primrose Oil, Grapeseed Oil, Meadowfoam Seed Oil, Safflower Compostion: Linoleic, Oleic, Palmitic, Stearic Oil, Strawberry Seed Oil Description: This oil is similar in weight to human sebum, making it extremely nouirshing to the skin. -
Thermal Stability of Oleic Acid and Ethyl Linoleate
Chapter 3.1 ____________________________________________________________________ Thermal Stability of Oleic Acid and Ethyl Linoleate The first part of this work consisted of studying the thermal stability of oleic acid, which was initially a candidate as a starting material for the dehydrogenation of fatty acids using heterogeneous catalysis. The results induced us to search another starting material and to study its properties. 3.1.1 Introduction Oil-derived products can be subjected to conditions that promote oxidation of their unsaturated components during storage and use. The materials arising during oxidation and subsequent degradation can seriously impair the quality and performance of such products [1, 2]. Thus, oxidative stability is an important issue to face before studying their catalytic reactivity. The fatty acid alkyl chain is susceptible to oxidation both at double bonds and adjacent allylic carbons. Free-radical and photooxidation at allylic carbons are responsible for deterioration of unsaturated oils and fats [2-6]. Both autoxidation and photooxidation produce hydroperoxides in allylic bonds. During this process, the position and geometry of the double bond may change. The hydroperoxide mixtures produced by autoxidation and photooxidation are not identical, indicating that different mechanisms are involved [4-6]. The autoxidation reaction occurs in the presence of oxygen. Autoxidation is a free-radical chain reaction, which involves the series of reactions that initiate, propagate and terminate the chain [3]. • initiation RH → R • + → • propagation R O2 ROO fast • • ROO + RH → ROOH + R rate determining • • termination R , ROO → stable products The initiator is a free radical, most probably produced by decomposition of hydroperoxides already present or produced by photooxidation. -
Information About Oils the National Edible Oil Distributors’ Association
Information About Oils The National Edible Oil Distributors’ Association Sunflower Oil Sunflower Oil - Information About Oils Introduction Nutritional Profile Whilst the vibrant strong sunflower is recognised Due to its nutritional profile, sunflower oil can bear worldwide for its beauty, it is also an important the following nutrition claims: source of food. Sunflower oil is a valued and Nutrition Claims High polyunsaturated fat (more healthy vegetable oil and sunflower seeds are en- than 45% of the fatty acids are from polyunsaturat- joyed as a healthy, tasty snack and nutritious ingre- ed fats, which represent more than 20% of the en- dient to many foods. ergy content) High unsaturated fat (more than 70% Sunflower oil is obtained from the seeds within the of the fatty acids are from unsaturated fats, which brown hub in the centre of the sunflower plant. represent more than 20% of the energy content) Each flower can develop up to 2000 sunflower High vitamin E (more than 30% of Recommended seeds. The oil is pale yellow in colour but contains Daily Allowances (RDA) of vitamin E set at 12 mg/day a level of natural waxes that give the oil a ‘cloudy’ Health claims – Positive EFSA opinion Linoleic acid appearance at cooler temperatures. These waxes (omega-6 fatty acids) contributes to the mainte- can be removed by a process commonly known as nance of normal blood cholesterol concentrations. winterisation. Essential fatty acids (omega-3 and omega-6 fatty The wild sunflower is native to North America but acids) are needed for the normal growth of children. commercialisation of the plant took place in Rus- Vitamin E protects lipids, proteins and DNA against sia. -
Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. -
Olive Oil Jars Left Behind By
live oil jars left behind by the ancient Greeks are testament to our centuries- old use of cooking oil. Along with salt and pepper, oil Oremains one of the most important and versatile tools in your kitchen. It keeps food from sticking to pans, adds flavor and moisture, and conducts the heat that turns a humble stick of potato into a glorious french fry. Like butter and other fats, cooking oil also acts as a powerful solvent, unleashing fat-soluble nutrients and flavor compounds in everything from tomatoes and onions to spices and herbs. It’s why so many strike recipes begin with heating garlic in oil rather than, say, simmering it in water. The ancient Greeks didn’t tap many cooking oils. (Let’s see: olive oil, olive oil, or—ooh, this is exciting!—how about olive oil?) But you certainly can. From canola to safflower to grapeseed to walnut, each oil has its own unique flavor (or lack thereof), aroma, and optimal cooking temperature. Choosing the right kind for the task at hand can save you money, boost your health, and improve your cooking. OK, so you probably don’t stop to consider your cooking oil very often. But there’s a surprising amount to learn about What’s this? this liquid gold. BY VIRGINIAWILLIS Pumpkin seed oil suspended in corn oil—it looks like a homemade Lava Lamp! 84 allrecipes.com PHOTOS BY KATE SEARS WHERE TO store CANOLA OIL GRAPESEED OIL are more likely to exhibit the characteristic YOUR OIL flavor and aroma of their base nut or seed. -
<I>Carthamus Tinctorius</I>
Promoting the conservation and use of underutilized and neglected crops. 7. SafflowerSafflower Carthamus tinctorius L. Li Dajue and Hans-Henning Mündel netic t Ge Res lan ou P rc al e n s o I ti n a s t n i r t u e t t e n I IPGRI 2 Safflower. Carthamus tinctorius L. The International Plant Genetic Resources Institute (IPGRI) is an autonomous inter- national scientific organization operating under the aegis of the Consultative Group on International Agricultural Research (CGIAR). The international status of IPGRI is conferred under an Establishment Agreement which, by December 1995, had been signed by the Governments of Australia, Belgium, Benin, Bolivia, Burkina Faso, Cameroon, China, Chile, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Iran, Israel, Italy, Jordan, Kenya, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Ukraine and Uganda. IPGRI’s mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI works in partner- ship with other organizations, undertaking research, training and the provision of scientific and technical advice and information, and has a particularly strong programme link with the Food and Agriculture Organization of the United Nations. Financial support for the agreed research agenda of IPGRI is provided by the Gov- ernments of Australia, Austria, Belgium, Canada, China, Denmark, France, Ger- many, India, Italy, Japan, the Republic of Korea, Mexico, the Netherlands, Norway, Spain, Sweden, Switzerland, the UK and the USA, and by the Asian Development Bank, IDRC, UNDP and the World Bank. -
Safflower Butter
Avena Lab CERTIFICATE OF ANALYSIS Product Name Safflower Butter INCI Name Carthamus Tinctorius Seed Oil, Palmitic/Stearic Triglyceride, Beeswax CAS Number 8001-23-8, 67701-30-8, 8012-89-3 Lot Number ALB06200014 Manufacture Date 06/2020 Re-test Date 06/2022 Quality 100% Pure and Natural PROPERTIES SPECIFICATIONS RESULTS Appearance White to off-white butter CONFORMS Odour Characteristic CONFORMS Melting Point (°C) 29° - 42° CONFORMS Moisture (%) Maximum 0.2 0.02 Saponification Value 165 - 190 175 (mgKOH/g) Peroxide Value (meq O2/kg) Maximum 5.0 CONFORMS Iodine Value (g I2/100g) 40 - 74 64 Free Fatty Acids (% oleic) Less than 0.9 CONFORMS Acid Value (mgKOH/g) Less than 1.2 CONFORMS Soluble in cosmetic esters and fixed Solubility CONFORMS oils; Insoluble in water Disclaimer: This information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any other process. Such information is to be the best of the company’s knowledge and believed accurate and reliable as of the date indicated. However, no representation, warranty or guarantee of any kind, express or implied, is made as to its accuracy, reliability or completeness and we assume no responsibility for any loss, damage or expense, direct or consequential, arising out of use. It is the user’s responsibility to satisfy himself as to the suitableness & completeness of such information for his own particular use. Avena Lab MICROBIAL ANALYSIS SPECIFICATIONS STANDARDS RESULTS Aerobic Mesophilic Bacterial < 100 -
Safflower Production A870
NDSUNDSU EXTENSION EXTENSION EXTENDINGEXTENDING KNOWLEDGE KNOWLEDGE CHANGING CHANGING LIVES LIVES A870 (Revised August 2019) Safflower Production Revised by Jerald Bergman, Agronomist Hans Kandel, Extension Agronomist Utilization and Description bad cholesterol, promote muscle health Agronomics and improve heart health. High-linoleic Safflower (Carthamus tinctorious L.) is an Safflower is a thistlelike plant with a strong safflower oil also is used as an ingredient in annual oilseed crop adapted primarily to central branch stem, a varying number of soaps, sunscreens, lotions, moisturizers and the cereal grain areas of the western Great branches and a taproot system. Each branch cosmetics for hydrating the skin and to help Plains. In North Dakota, safflower has been usually will have from one to five flower reduce inflammation and speed healing. grown in experimental test plots since 1928 heads containing 15 to 20 seeds per head. and on a commercial basis since 1957. High-linoleic oil is valued as a drying The seed oil content ranges from 30 to Acreage has been concentrated in the agent in paints and varnishes because of 50%, depending on variety grown and western part of the state. Safflower is its nonyellowing characteristic, and as a environmental conditions. Flower color well-adapted to western North Dakota and source of conjugated linoleic acid. The meal, is usually yellow or orange, although South Dakota, as well as eastern Montana. which is 24 to 36% protein, depending on some varieties have red or white flowers. the variety, is used as a protein supplement Safflower provides three principal for livestock and poultry feed. Plant height in North Dakota varies products: oil, meal and birdseed. -
Six Features of RICE BRAN OIL 4
Six Features of RICE BRAN OIL 4. Excellent 25 Oxidation Stability 20 1. Excellent Taste Palatability In AOM test, time-peroxide value Nutritionally, it has been recognized that RICE BRAN OIL easily drops itself from of 100 of oil at 98°C was the lowest foodstuff when cooked; hence it is most suitable edible oil for frying and deep-frying to 15 oxide safety level where the flavor (hours) provide crispy texture of fried foods with better palatability. of oil started to turn bad. Higher time-peroxide value means longer 10 The fatty acid composition including linoleic acid and oleic acid, especially 40~50% of maintenance of good flavor. As Time AOM oleic acid may be felt in good taste when it is use as salad oil. Meanwhile, soybean oil shown below, RICE BRAN OIL and which contains high content of unsaturated fatty acids may increase oxidation and Corn oil both exhibited a relatively 5 rancidity of oil. high stability against oxidation upon comparison with other edible 0 oils. RICE soybean canola oil corn oil rapeseed safflower BRAN OIL oil oil oil 2. Deep-fry without 30 5. Light Oil Viscosity, 30 Oily and Lingering Less Oil Absorbed 25 25 Upon deep-frying, moisture when Cooking oil) ) evaporates forming bubbles m 20 causing uneven food surface. RICE BRAN OIL is excellent for 20 After heating the oil for 21hour at frying due to its light viscosity and (mg/500g 15 180°C, 1cm3 of potato was less oil being absorbed during 15 thrown into the oil and extent of cooking. -
Medicinal Use of Sunflower Oil and Present Status of Sunflower in Pakistan: a Review Study
Sci., Tech. and Dev., 31 (2): 99-106, 2012 Medicinal Use of Sunflower Oil and Present Status of Sunflower in Pakistan: A Review Study MUHAMMAD ARSHAD AND MUHAMMAD AMJAD Oilseeds Research Program, National Agricultural Research Centre, Islamabad, Pakistan. Abstract Sunflower {Helianthus annus (L.)} contributes 30% in domestic edible oil crop and has become the most important oil crop. A case study was planned to examine and review the current status of its production in Pakistan and sunflower oil use in medicine and nutrition. This study deals with the medicinal values of its oil with regards to its benefits and side effects. Sunflower seeds contain 20-30% protein as well as iron, B vitamins, vitamin A, calcium, nitrogen and phosphorus. The constituents of the seeds are a volatile oil, carbonate of potash, tannin and excellent sources of the B vitamins (B1, B3 and B6) including niacin and pantothenate. Sunflower oil is high in the essential vitamin E and low in saturated fat. Two common types of sunflower oil are linoleic and high oleic. Linoleic oil has high levels of polyunsaturated fat. It is also known for having a clean taste and low levels of trans fat. High oleic sunflower oils are classified as having monounsaturated levels of 80% and above. The iron-rich sunflower seeds are, by weight, 47% fat and 20-30 % protein. The seeds have more than 48 calories/tablespoon. Sunflower seeds have more iron than any other food except for liver and egg yolk. Sunflower seeds are more commonly eaten as a healthy snack than as part of a meal. -
Sweet Almond Oil Organic
SWEET ALMOND OIL ORGANIC PRODUCT DATA SHEET SWEET ALMOND OIL ORGANIC is a Vegetable Oil obtained from the dried kernels of the almond tree. Almonds contain folic acid, alpha tocopherol and zinc, which are useful for the treatment of skin disorders. It has been used for centuries both medicinally and cosmetically as a muscle- relaxer, cleanser and moisturizer to name just a few of its applications. SWEET ALMOND OIL is high in mono and polyunsaturated fatty acids, minerals and glycosides. Fatty acids are necessary along with glycerol for the cell to function normally. SWEET ALMOND OIL ORGANIC also contains vitamins A, B1, B2, B6 with small amounts of Vitamin E and D. Due to the presence of Vitamin E the oil has antioxidant capability. Antioxidants protect vital cell structures by neutralizing free radicals. Topical vitamin E has shown to have a wide variety of skin benefits. Many studies have shown that it can help decrease the effects of psoriasis, erythema, and may help in reducing the risk of skin cancer. Vitamin E also helps in the reduction of scaring from wounds and on the appearance of stretch marks on the skin. TECHNICAL DATA Appearance: Pale yellow, oily liquid with minimum odour Acidity index: 1.0 mg KOH/g oil Peroxide value: 20.0 meq O2/Kg oil Specific gravity: 0.90 - 0.93 g/ml Updated: 01/2007 Approved: Dr. Blanca Martínez SWEET ALMOND OIL ORGANIC SWEET ALMOND OIL ORGANIC Fatty acids composition (Fatty Acid Fraction): Oleic acid 62.0 - 86.0 % Linoleic acid ( )7.0-30.0% Palmitic acid 4.0 - 9.0 % Stearic acid Max. -
Effect of Sunlight on Quality and Stability of Dietary Oils and Fats
Pak. J. Biochem. Mol. Biol. 2010; 43(3):123-125 Effect of sunlight on quality and stability of dietary oils and fats Muhammad Sohail1*, Taufiq Ahmed2, Saeed Akhtar3 and Yasser Durrani3 1Department of Food Science and Technology, NWFP Agricultural University, Peshawar, Pakistan 2Nuclear Institute for Food and Agricultural (NIFA), Tarnab, Peshawar, Pakistan 3Food Biochemistry Section, PCSIR Labs Complex, Peshawar, Pakistan Abstract: The present study was conducted to evaluate nine oil and fat samples i.e. animal fat (A.F), vanaspati ghee (V.G), sunflower oil (SFO), canola oil (Can.O), desi ghee (D.G), rapeseed oil (RPS), soybean oil (SBO), sea buckthorn seed oil (S.B.Seed) and sea buckthorn pulp oil (S.B.Pulp) for their quality and stability under sunlight condition. The quality of samples was determined in terms of peroxide value (POV), free fatty acid (FFA), beta-carotene content and colour (O.D) at the start of five weeks experiment followed by weekly analysis. The maximum POV increase was found for V.G (7040.48 %) and minimum increase was found for S.B.Seed oil (195.43 %). The maximum FFA increase was found in SFO (545.45 %) while the minimum increase was found in R.P.S (34.33%). The maximum decrease of beta-carotene was found in SFO (98.78 %) while the minimum decrease was found in desi ghee (62.91%). The maximum reduction in O.D was found for canola oil (84.91 %) whereas the minimum decrease was found in SFO (62.5%). Results indicated that light affected the dietary oils and fats very much therefore great care should be taken during their storage in order to avoid them from rancidity.