Review Monounsaturated Oils Do Not All Have the Same Effect on Plasma Cholesterol

Total Page:16

File Type:pdf, Size:1020Kb

Review Monounsaturated Oils Do Not All Have the Same Effect on Plasma Cholesterol European Journal of Clinical Nutrition (1998) 52, 312±315 ß 1998 Stockton Press. All rights reserved 0954±3007/98 $12.00 http://www.stockton-press.co.uk/ejcn Review Monounsaturated oils do not all have the same effect on plasma cholesterol AS Truswell and N Choudhury Human Nutrition Unit, University of Sydney, Sydney, NSW 2006, Australia Evidence assembled here indicates that when olive oil forms a major part of dietary fat in controlled human experiments, total and LDL-cholesterols are somewhat higher than when the same amount of fat is one of the modern predominantly monounsaturated oils: low erucic rapeseed or high oleic sun¯ower oil. Oils rich in monounsaturated fatty acids thus do not all have the same effect on plasma cholesterol. This phenomenon is explicable by consideration of the content of other fatty acids and the non-saponi®able fractions of the different monounsaturated oils. It helps to explain the discrepancy that has existed between the classic experiments (using olive oil), which found monounsaturated oils `neutral', and some of the more recent experiments which found them more cholesterol-lowering than carbohydrates. Four published meta-analyses are reviewed. The three which included most of the published experiments show that monounsaturated fatty acids (MUFA) have less plasma cholesterol-lowering effect than polyunsaturated fatty acids. Descriptors: monounsaturated fatty acids; plasma cholesterol; LDL and HDL; olive oil; canola oil; high-oleic sun¯ower oil In the original human experiments on the effect of different (canola) and high-oleic sun¯ower and saf¯ower oils were fats and oils on plasma cholesterol (Ahrens et al, 1957; not then generally available. The rule that MUFAs have a Malmros & Wigand, 1957; Keys et al, 1957; Hegsted et al, neutral effect prevailed for 30 y and was re¯ected in 1965; Vergroesen & De Boer, 1971) and others all found authoritative dietary recommendations (for example, Amer- that oleic acid (18:1, o-9), the major monounsaturated fatty ican Heart Association, 1973; Joint Working Party, 1976). acid, had little or no plasma cholesterol-lowering effect But Mattson & Grundy (1985) reported that MUFA gave compared with linoleic acid (18:2, o-6), the predominant the same lowering of plasma LDL cholesterol as polyunsa- dietary polyunsaturated fatty acid, which gave consistently turated oil in metabolic ward experiments. Plasma total lower plasma cholesterols. Keys et al (1958) expressed the cholesterol was slightly lower on the polyunsaturated diet effect of oleic acid as neutral, not different in its effect on but this was because HDL cholesterol was a little lower. plasma cholesterol from an equivalent amount of carbo- The next year Grundy (1986) reported that MUFA oil was hydrate. They calculated that the coef®cient for monoun- not neutral compared to carbohydrate Ð plasma LDL and saturated fatty acids (MUFA) in the regression equation: total cholesterols were lower with MUFA oil compared to low-fat, high carbohydrate, and HDL cholesterol was D total cholesterol mg 100 ml higher. Grundy's MUFA rich oils were high-oleic saf¯ower 2:76 D sat 0:05 D mono 1:35 D poly 1:68 1 oil. This appeared to be another example of nutritionists was so small (and not statistically signi®cantly different changing their minds and advice. It was hard to understand from zero), that it is ignored in the usual form of Keys' how Keys and the other earlier investigators had all got it predictive equation (Keys et al, 1957; Anderson et al, wrong. One possible explanation is that Grundy et al (1986) 1957): used liquid formula diets (Hegsted & Nicolosi, 1990); D total cholesterol 2:74 D sat 1:31 D poly 2 another is that their mono and poly diets both had very high P/S ratios (3.0 and 7.5 respectively). They had how- In equations (1) and (2) D fat class is the change of fat class ever differentiated LDL, HDL and VLDL cholesterol. expressed as percent of total calorie intake. While their reports were being considered the oxidised All these researchers measured only total plasma LDL hypothesis for atherogenesis was proposed (Steinberg cholesterol and they used olive oil to represent predomi- et al, 1989) and the fact that in vitro MUFA are not liable to nantly MUFA oils, namely oils rich in 18:1 cis (Ahrens et autoxidation, but polyunsaturated fatty acids are (Pryor, al, 1957; Malmros & Wigand, 1957; Hegsted et al, 1965; 1994), added another reason for re-evaluation of the role of Vergroesen & De Boer, 1971; Keys et al, 1958). Olive oil MUFAs (Mattson, 1989). was the obvious oil to choose. Low erucic rapeseed oil In subsequent research some papers have supported Grundy's ®ndings (Wardlaw et al, 1991), others have not Correspondence: Prof AS Truswell. (Carmena et al, 1996; Dreon et al, 1990). Some experts Monounsaturated oils do not all have the same effect on plasma cholesterol AS Truswell and N Choudhury 313 Table 1 Regression equations for change of plasma total cholesterol acids were less in these). In the 63 papers reporting `solid (mmol/l) from meta-analyses food diets' blood total and LDL cholesterols were signi®- Satsa Monoa Polya Other cantly increased by saturated and decreased by polyunsa- turated fatty acids; MUFA produced no signi®cant effect Keys et al, 1957b 0.071 0.001 70.037 (Table 1). There was no signi®cant difference in the small Mensink & Katan, 1992 0.039 70.003 70.015 positive effects of MUFA and polyunsaturates on HDL Hegsted et al, 1993c 0.053 70.003 70.031 0.0007 DCd Clarke et al, 1997 0.052 0.005 70.026 cholesterol. These three meta-analyses all reach substantial agree- a Change of fatty acid group as percentage of total dietary energy. ment (Table 1). The fourth meta-analysis (Gardner & b Coef®cients converted for mmol/l from original mg/dl. Kraemer, 1995) comes to different conclusions but it only c Equation for combined metabolic ward studies (coef®cients for ®eld studies were quite similar). included 14 papers, a minority sample of all the published d Change of dietary cholesterol in mg/MJ. human experiments. Gardner & Kraemer's (1995) results indicated no signi®cant differences in total LDL or HDL expressed opinions such as `we now know that diets high in cholesterol when oils high in MUFA or polyunsaturated MUFA are as effective as those rich in polyunsaturated fatty acids were compared. They did not publish a regres- fatty acids (PUFA) in lowering serum cholesterol but, in sion equation. Surprisingly they do not appear to have been contrast to the effect of n-6 PUFA, MUFA do not lower aware of the meta-analysis by Mensink & Katan (1987) HDL' (Ulbricht & Southgate, 1991). Of®cial recommenda- three years earlier in the same journal. tions are more cautious. For COMA in the UK `Substitution A possibility mentioned in discussion by a few authors of saturates by monounsaturates reduces plasma levels of (Hegsted et al, 1993; Gardner & Kraemer, 1995) is that total and LDL cholesterol to about the same extent as average samples of speci®c plant oils rich in MUFA might substitution by carbohydrates .... There is only inconsis- differ somewhat in their effect on plasma cholesterol. tent evidence that monounsaturates per se actively reduce While investigating the possibility that palmitic acid LDL cholesterol' (Department of Health, 1994). (16:0), and hence palmolein, may be less cholesterol- In a situation like this meta-analysis might be helpful. raising than myristic and lauric acids and oils rich in Four have now been published. They differ considerably in these (Hayes et al, 1991) we happened to compare in design and selection of studies. Mensink & Katan (1992) turn, in three separate sets of human experiments (21± 42 selected 27 trials published between 1972 and 1992 invol- subjects per experiment) plasma total, LDL and HDL ving 682 subjects. Their selection criteria looked for good cholesterol on palmolein against three MUFA rich oils: dietary control, descriptions that allowed calculation of canola, olive and high-oleic sun¯ower oils. Palmolein intake of fatty acid classes and good design. They con- contains more saturated and less MUFA (Table 3). We cluded that all fatty acids increase HDL cholesterol but the found that total and LDL cholesterols were lower on canola effect diminishes with increasing degree of unsaturation. oil than on palmolein (Truswell et al, 1992) and on high- The regression equation for LDL cholesterol showed a oleic sun¯ower oil than on palmolein (Choudhury et al, signi®cant negative (namely, lowering) coef®cient for 1997) as predicted by the Keys et al (1957) equation, but polyunsaturates, not for MUFA (Table 1). they were not lower on olive oil than on palmolein Hegsted et al (1993) included the whole literature, (Choudhury et al, 1995). HDL cholesterols averaged including early papers that only reported total cholesterol, 0.10mmol/l higher on palmolein than on each of the with a few exceptions: formula diets or very short experi- three MUFA oils. The same results of these three compar- mental periods. They separately analysed 50 papers report- isons have been reported by others (Table 2): lower ing metabolic ward experiments and 37 ®eld study cholesterols on canola cf. palmolein (Sundram et al, experiments, and focused on serum total cholesterol. In 1995) and on high oleic sun¯ower oil cf. palmolein regression equations for both sets of data, saturates had (Denke & Grundy, 1992; Noakes et al, 1996; Cater et al, positive and polyunsaturates negative coef®cients but again 1997) likewise the same plasma cholesterols on olive oil as the coef®cient for MUFA was not statistically signi®cantly on palmolein (Ng et al, 1992). By deduction plasma different from zero (Table 1).
Recommended publications
  • Essential Wholesale & Labs Carrier Oils Chart
    Essential Wholesale & Labs Carrier Oils Chart This chart is based off of the virgin, unrefined versions of each carrier where applicable, depending on our website catalog. The information provided may vary depending on the carrier's source and processing and is meant for educational purposes only. Viscosity Absorbtion Comparible Subsitutions Carrier Oil/Butter Color (at room Odor Details/Attributes Rate (Based on Viscosity & Absorbotion Rate) temperature) Description: Stable vegetable butter with a neutral odor. High content of monounsaturated oleic acid and relatively high content of natural antioxidants. Offers good oxidative stability, excellent Almond Butter White to pale yellow Soft Solid Fat Neutral Odor Average cold weather stability, contains occlusive properties, and can act as a moistening agent. Aloe Butter, Illipe Butter Fatty Acid Compositon: Palmitic, Stearic, Oleic, and Linoleic Description: Made from Aloe Vera and Coconut Oil. Can be used as an emollient and contains antioxidant properties. It's high fluidiy gives it good spreadability, and it can quickly hydrate while Aloe Butter White Soft Semi-Solid Fat Neutral Odor Average being both cooling and soothing. Fatty Acid Almond Butter, Illipe Butter Compostion: Linoleic, Oleic, Palmitic, Stearic Description: Made from by combinging Aloe Vera Powder with quality soybean oil to create a Apricot Kernel Oil, Broccoli Seed Oil, Camellia Seed Oil, Evening Aloe Vera Oil Clear, off-white to yellow Free Flowing Liquid Oil Mild musky odor Fast soothing and nourishing carrier oil. Fatty Acid Primrose Oil, Grapeseed Oil, Meadowfoam Seed Oil, Safflower Compostion: Linoleic, Oleic, Palmitic, Stearic Oil, Strawberry Seed Oil Description: This oil is similar in weight to human sebum, making it extremely nouirshing to the skin.
    [Show full text]
  • Thermal Stability of Oleic Acid and Ethyl Linoleate
    Chapter 3.1 ____________________________________________________________________ Thermal Stability of Oleic Acid and Ethyl Linoleate The first part of this work consisted of studying the thermal stability of oleic acid, which was initially a candidate as a starting material for the dehydrogenation of fatty acids using heterogeneous catalysis. The results induced us to search another starting material and to study its properties. 3.1.1 Introduction Oil-derived products can be subjected to conditions that promote oxidation of their unsaturated components during storage and use. The materials arising during oxidation and subsequent degradation can seriously impair the quality and performance of such products [1, 2]. Thus, oxidative stability is an important issue to face before studying their catalytic reactivity. The fatty acid alkyl chain is susceptible to oxidation both at double bonds and adjacent allylic carbons. Free-radical and photooxidation at allylic carbons are responsible for deterioration of unsaturated oils and fats [2-6]. Both autoxidation and photooxidation produce hydroperoxides in allylic bonds. During this process, the position and geometry of the double bond may change. The hydroperoxide mixtures produced by autoxidation and photooxidation are not identical, indicating that different mechanisms are involved [4-6]. The autoxidation reaction occurs in the presence of oxygen. Autoxidation is a free-radical chain reaction, which involves the series of reactions that initiate, propagate and terminate the chain [3]. • initiation RH → R • + → • propagation R O2 ROO fast • • ROO + RH → ROOH + R rate determining • • termination R , ROO → stable products The initiator is a free radical, most probably produced by decomposition of hydroperoxides already present or produced by photooxidation.
    [Show full text]
  • Information About Oils the National Edible Oil Distributors’ Association
    Information About Oils The National Edible Oil Distributors’ Association Sunflower Oil Sunflower Oil - Information About Oils Introduction Nutritional Profile Whilst the vibrant strong sunflower is recognised Due to its nutritional profile, sunflower oil can bear worldwide for its beauty, it is also an important the following nutrition claims: source of food. Sunflower oil is a valued and Nutrition Claims High polyunsaturated fat (more healthy vegetable oil and sunflower seeds are en- than 45% of the fatty acids are from polyunsaturat- joyed as a healthy, tasty snack and nutritious ingre- ed fats, which represent more than 20% of the en- dient to many foods. ergy content) High unsaturated fat (more than 70% Sunflower oil is obtained from the seeds within the of the fatty acids are from unsaturated fats, which brown hub in the centre of the sunflower plant. represent more than 20% of the energy content) Each flower can develop up to 2000 sunflower High vitamin E (more than 30% of Recommended seeds. The oil is pale yellow in colour but contains Daily Allowances (RDA) of vitamin E set at 12 mg/day a level of natural waxes that give the oil a ‘cloudy’ Health claims – Positive EFSA opinion Linoleic acid appearance at cooler temperatures. These waxes (omega-6 fatty acids) contributes to the mainte- can be removed by a process commonly known as nance of normal blood cholesterol concentrations. winterisation. Essential fatty acids (omega-3 and omega-6 fatty The wild sunflower is native to North America but acids) are needed for the normal growth of children. commercialisation of the plant took place in Rus- Vitamin E protects lipids, proteins and DNA against sia.
    [Show full text]
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • Olive Oil Jars Left Behind By
    live oil jars left behind by the ancient Greeks are testament to our centuries- old use of cooking oil. Along with salt and pepper, oil Oremains one of the most important and versatile tools in your kitchen. It keeps food from sticking to pans, adds flavor and moisture, and conducts the heat that turns a humble stick of potato into a glorious french fry. Like butter and other fats, cooking oil also acts as a powerful solvent, unleashing fat-soluble nutrients and flavor compounds in everything from tomatoes and onions to spices and herbs. It’s why so many strike recipes begin with heating garlic in oil rather than, say, simmering it in water. The ancient Greeks didn’t tap many cooking oils. (Let’s see: olive oil, olive oil, or—ooh, this is exciting!—how about olive oil?) But you certainly can. From canola to safflower to grapeseed to walnut, each oil has its own unique flavor (or lack thereof), aroma, and optimal cooking temperature. Choosing the right kind for the task at hand can save you money, boost your health, and improve your cooking. OK, so you probably don’t stop to consider your cooking oil very often. But there’s a surprising amount to learn about What’s this? this liquid gold. BY VIRGINIAWILLIS Pumpkin seed oil suspended in corn oil—it looks like a homemade Lava Lamp! 84 allrecipes.com PHOTOS BY KATE SEARS WHERE TO store CANOLA OIL GRAPESEED OIL are more likely to exhibit the characteristic YOUR OIL flavor and aroma of their base nut or seed.
    [Show full text]
  • <I>Carthamus Tinctorius</I>
    Promoting the conservation and use of underutilized and neglected crops. 7. SafflowerSafflower Carthamus tinctorius L. Li Dajue and Hans-Henning Mündel netic t Ge Res lan ou P rc al e n s o I ti n a s t n i r t u e t t e n I IPGRI 2 Safflower. Carthamus tinctorius L. The International Plant Genetic Resources Institute (IPGRI) is an autonomous inter- national scientific organization operating under the aegis of the Consultative Group on International Agricultural Research (CGIAR). The international status of IPGRI is conferred under an Establishment Agreement which, by December 1995, had been signed by the Governments of Australia, Belgium, Benin, Bolivia, Burkina Faso, Cameroon, China, Chile, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Iran, Israel, Italy, Jordan, Kenya, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Ukraine and Uganda. IPGRI’s mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI works in partner- ship with other organizations, undertaking research, training and the provision of scientific and technical advice and information, and has a particularly strong programme link with the Food and Agriculture Organization of the United Nations. Financial support for the agreed research agenda of IPGRI is provided by the Gov- ernments of Australia, Austria, Belgium, Canada, China, Denmark, France, Ger- many, India, Italy, Japan, the Republic of Korea, Mexico, the Netherlands, Norway, Spain, Sweden, Switzerland, the UK and the USA, and by the Asian Development Bank, IDRC, UNDP and the World Bank.
    [Show full text]
  • Safflower Butter
    Avena Lab CERTIFICATE OF ANALYSIS Product Name Safflower Butter INCI Name Carthamus Tinctorius Seed Oil, Palmitic/Stearic Triglyceride, Beeswax CAS Number 8001-23-8, 67701-30-8, 8012-89-3 Lot Number ALB06200014 Manufacture Date 06/2020 Re-test Date 06/2022 Quality 100% Pure and Natural PROPERTIES SPECIFICATIONS RESULTS Appearance White to off-white butter CONFORMS Odour Characteristic CONFORMS Melting Point (°C) 29° - 42° CONFORMS Moisture (%) Maximum 0.2 0.02 Saponification Value 165 - 190 175 (mgKOH/g) Peroxide Value (meq O2/kg) Maximum 5.0 CONFORMS Iodine Value (g I2/100g) 40 - 74 64 Free Fatty Acids (% oleic) Less than 0.9 CONFORMS Acid Value (mgKOH/g) Less than 1.2 CONFORMS Soluble in cosmetic esters and fixed Solubility CONFORMS oils; Insoluble in water Disclaimer: This information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any other process. Such information is to be the best of the company’s knowledge and believed accurate and reliable as of the date indicated. However, no representation, warranty or guarantee of any kind, express or implied, is made as to its accuracy, reliability or completeness and we assume no responsibility for any loss, damage or expense, direct or consequential, arising out of use. It is the user’s responsibility to satisfy himself as to the suitableness & completeness of such information for his own particular use. Avena Lab MICROBIAL ANALYSIS SPECIFICATIONS STANDARDS RESULTS Aerobic Mesophilic Bacterial < 100
    [Show full text]
  • Safflower Production A870
    NDSUNDSU EXTENSION EXTENSION EXTENDINGEXTENDING KNOWLEDGE KNOWLEDGE CHANGING CHANGING LIVES LIVES A870 (Revised August 2019) Safflower Production Revised by Jerald Bergman, Agronomist Hans Kandel, Extension Agronomist Utilization and Description bad cholesterol, promote muscle health Agronomics and improve heart health. High-linoleic Safflower (Carthamus tinctorious L.) is an Safflower is a thistlelike plant with a strong safflower oil also is used as an ingredient in annual oilseed crop adapted primarily to central branch stem, a varying number of soaps, sunscreens, lotions, moisturizers and the cereal grain areas of the western Great branches and a taproot system. Each branch cosmetics for hydrating the skin and to help Plains. In North Dakota, safflower has been usually will have from one to five flower reduce inflammation and speed healing. grown in experimental test plots since 1928 heads containing 15 to 20 seeds per head. and on a commercial basis since 1957. High-linoleic oil is valued as a drying The seed oil content ranges from 30 to Acreage has been concentrated in the agent in paints and varnishes because of 50%, depending on variety grown and western part of the state. Safflower is its nonyellowing characteristic, and as a environmental conditions. Flower color well-adapted to western North Dakota and source of conjugated linoleic acid. The meal, is usually yellow or orange, although South Dakota, as well as eastern Montana. which is 24 to 36% protein, depending on some varieties have red or white flowers. the variety, is used as a protein supplement Safflower provides three principal for livestock and poultry feed. Plant height in North Dakota varies products: oil, meal and birdseed.
    [Show full text]
  • Six Features of RICE BRAN OIL 4
    Six Features of RICE BRAN OIL 4. Excellent 25 Oxidation Stability 20 1. Excellent Taste Palatability In AOM test, time-peroxide value Nutritionally, it has been recognized that RICE BRAN OIL easily drops itself from of 100 of oil at 98°C was the lowest foodstuff when cooked; hence it is most suitable edible oil for frying and deep-frying to 15 oxide safety level where the flavor (hours) provide crispy texture of fried foods with better palatability. of oil started to turn bad. Higher time-peroxide value means longer 10 The fatty acid composition including linoleic acid and oleic acid, especially 40~50% of maintenance of good flavor. As Time AOM oleic acid may be felt in good taste when it is use as salad oil. Meanwhile, soybean oil shown below, RICE BRAN OIL and which contains high content of unsaturated fatty acids may increase oxidation and Corn oil both exhibited a relatively 5 rancidity of oil. high stability against oxidation upon comparison with other edible 0 oils. RICE soybean canola oil corn oil rapeseed safflower BRAN OIL oil oil oil 2. Deep-fry without 30 5. Light Oil Viscosity, 30 Oily and Lingering Less Oil Absorbed 25 25 Upon deep-frying, moisture when Cooking oil) ) evaporates forming bubbles m 20 causing uneven food surface. RICE BRAN OIL is excellent for 20 After heating the oil for 21hour at frying due to its light viscosity and (mg/500g 15 180°C, 1cm3 of potato was less oil being absorbed during 15 thrown into the oil and extent of cooking.
    [Show full text]
  • Medicinal Use of Sunflower Oil and Present Status of Sunflower in Pakistan: a Review Study
    Sci., Tech. and Dev., 31 (2): 99-106, 2012 Medicinal Use of Sunflower Oil and Present Status of Sunflower in Pakistan: A Review Study MUHAMMAD ARSHAD AND MUHAMMAD AMJAD Oilseeds Research Program, National Agricultural Research Centre, Islamabad, Pakistan. Abstract Sunflower {Helianthus annus (L.)} contributes 30% in domestic edible oil crop and has become the most important oil crop. A case study was planned to examine and review the current status of its production in Pakistan and sunflower oil use in medicine and nutrition. This study deals with the medicinal values of its oil with regards to its benefits and side effects. Sunflower seeds contain 20-30% protein as well as iron, B vitamins, vitamin A, calcium, nitrogen and phosphorus. The constituents of the seeds are a volatile oil, carbonate of potash, tannin and excellent sources of the B vitamins (B1, B3 and B6) including niacin and pantothenate. Sunflower oil is high in the essential vitamin E and low in saturated fat. Two common types of sunflower oil are linoleic and high oleic. Linoleic oil has high levels of polyunsaturated fat. It is also known for having a clean taste and low levels of trans fat. High oleic sunflower oils are classified as having monounsaturated levels of 80% and above. The iron-rich sunflower seeds are, by weight, 47% fat and 20-30 % protein. The seeds have more than 48 calories/tablespoon. Sunflower seeds have more iron than any other food except for liver and egg yolk. Sunflower seeds are more commonly eaten as a healthy snack than as part of a meal.
    [Show full text]
  • Sweet Almond Oil Organic
    SWEET ALMOND OIL ORGANIC PRODUCT DATA SHEET SWEET ALMOND OIL ORGANIC is a Vegetable Oil obtained from the dried kernels of the almond tree. Almonds contain folic acid, alpha tocopherol and zinc, which are useful for the treatment of skin disorders. It has been used for centuries both medicinally and cosmetically as a muscle- relaxer, cleanser and moisturizer to name just a few of its applications. SWEET ALMOND OIL is high in mono and polyunsaturated fatty acids, minerals and glycosides. Fatty acids are necessary along with glycerol for the cell to function normally. SWEET ALMOND OIL ORGANIC also contains vitamins A, B1, B2, B6 with small amounts of Vitamin E and D. Due to the presence of Vitamin E the oil has antioxidant capability. Antioxidants protect vital cell structures by neutralizing free radicals. Topical vitamin E has shown to have a wide variety of skin benefits. Many studies have shown that it can help decrease the effects of psoriasis, erythema, and may help in reducing the risk of skin cancer. Vitamin E also helps in the reduction of scaring from wounds and on the appearance of stretch marks on the skin. TECHNICAL DATA Appearance: Pale yellow, oily liquid with minimum odour Acidity index: 1.0 mg KOH/g oil Peroxide value: 20.0 meq O2/Kg oil Specific gravity: 0.90 - 0.93 g/ml Updated: 01/2007 Approved: Dr. Blanca Martínez SWEET ALMOND OIL ORGANIC SWEET ALMOND OIL ORGANIC Fatty acids composition (Fatty Acid Fraction): Oleic acid 62.0 - 86.0 % Linoleic acid ( )7.0-30.0% Palmitic acid 4.0 - 9.0 % Stearic acid Max.
    [Show full text]
  • Effect of Sunlight on Quality and Stability of Dietary Oils and Fats
    Pak. J. Biochem. Mol. Biol. 2010; 43(3):123-125 Effect of sunlight on quality and stability of dietary oils and fats Muhammad Sohail1*, Taufiq Ahmed2, Saeed Akhtar3 and Yasser Durrani3 1Department of Food Science and Technology, NWFP Agricultural University, Peshawar, Pakistan 2Nuclear Institute for Food and Agricultural (NIFA), Tarnab, Peshawar, Pakistan 3Food Biochemistry Section, PCSIR Labs Complex, Peshawar, Pakistan Abstract: The present study was conducted to evaluate nine oil and fat samples i.e. animal fat (A.F), vanaspati ghee (V.G), sunflower oil (SFO), canola oil (Can.O), desi ghee (D.G), rapeseed oil (RPS), soybean oil (SBO), sea buckthorn seed oil (S.B.Seed) and sea buckthorn pulp oil (S.B.Pulp) for their quality and stability under sunlight condition. The quality of samples was determined in terms of peroxide value (POV), free fatty acid (FFA), beta-carotene content and colour (O.D) at the start of five weeks experiment followed by weekly analysis. The maximum POV increase was found for V.G (7040.48 %) and minimum increase was found for S.B.Seed oil (195.43 %). The maximum FFA increase was found in SFO (545.45 %) while the minimum increase was found in R.P.S (34.33%). The maximum decrease of beta-carotene was found in SFO (98.78 %) while the minimum decrease was found in desi ghee (62.91%). The maximum reduction in O.D was found for canola oil (84.91 %) whereas the minimum decrease was found in SFO (62.5%). Results indicated that light affected the dietary oils and fats very much therefore great care should be taken during their storage in order to avoid them from rancidity.
    [Show full text]