Detailed Water Quality Report 2013 Reporting May 2012 Thru April 2013 Central Lake County Join Action Water Agency

Total Page:16

File Type:pdf, Size:1020Kb

Detailed Water Quality Report 2013 Reporting May 2012 Thru April 2013 Central Lake County Join Action Water Agency Detailed Water Quality Report 2013 Reporting May 2012 thru April 2013 Central Lake County Join Action Water Agency this issue Testing at CLCJAWA P.1 Table of Compounds Detected P.2 Regulated Compounds P.3 Unregulated Compounds P.4 Commitment to Quality P.5 NEW TESTING ON THE HORIZON The Environmental Protection Agency (EPA) is continually researching and studying possible contaminants that may be found in our Nation’s water sources and their effects on our health. The Unregulated Contaminant Monitor- ing Rule (UCMR) program was Taking Water To A Higher Standard developed in coordination with the Contaminant Candidate List (CCL). The CCL is a list of contaminants The Central Lake County Joint Action Water Agency (CLCJAWA) is required under that are not regulated by the state and federal law to monitor water quality. While we carefully do so, we go above and National Primary Drinking Water beyond by voluntarily monitoring for hundreds more compounds. This is done with automatic Regulations; are known or instrumentation every 10 seconds, manually by our certified lab analysts and independently by anticipated to occur at public water certified testing laboratories. systems; and may warrant regulation under the Safe Drinking Because we more frequently test for many more compounds, and because we use Water Act. Data collected through more sensitive test methods in many cases, we detect more compounds than others might UCMR support analysis and review report. These compounds are expected to be found in most drinking water originating from the of contaminant occurrence, guide Great Lakes. Public water supplies are required to issue a water quality report, termed the the CCL selection process, and Consumer Confidence Report or CCR, each year. The CCR is composed of mandated language support the determination of and lists only regulated contaminants in contrast with this “Detailed Water Quality Report” that whether to regulate a contaminant in the interest of protecting public lists both regulated and unregulated compounds that we detect. It should be noted that bottled health. Thirty possible contami- water companies are not required to issue water quality reports. nants are now being tested in The drinking water at CLCJAWA meets all drinking water standards. The compounds water systems throughout the detected in our drinking water do not exceed drinking water standards. We have set more United States but here at CLCJAWA stringent goals to assure a consistent water quality that is better than mandated drinking water we have been testing for over 20 of these contaminants for the last 10 standards. You may independently verify our performance by visiting the Illinois Environmental years prior. We will continue to Protection Agency (IEPA) “Drinking Water Watch” website at http://www.epa.state.il.us/water/ test rigorously all possible UCMR drinking-water-watch/. contaminants to ensure the safest water possible Compounds Detected At CLCJAWA All Drinking Water Regulations were Met this Year for Testing Completed from May 2012 thru April 2013 Untreated Treated Drinking Water WHAT ARE Unit of Lake Compound Date Tested MCL Drinking In Pipe To Measure Michigan Water Customer REGULATORY Water Barium ug/L 7/5/2012 2000 -- 19.7 -- COMPOUNDS Bromate ug/L quarterly 10 -- 2.4 - 3.7 -- Regulated com- Chlorine, free mg/L daily 4 -- 0.81 0.78 pounds have been Chlorine, total mg/L daily 4 -- 0.94 -- shown to impact Combined Radium 226/228 pCi/L 8/21/2012 5 -- 0.88 -- health when they Fluoride mg/L monthly 4 -- 0.8 - 1.0 -- exceed regulations. Nitrate as (N03) calculated mg/L 4/8/2013 10 -- 0.43 -- The maximum level Sodium (Na) mg/L 7/5/2012 None -- 8 -- allowed in water is Sulfate mg/L 7/5/2012 250 -- 25 -- set by the Environ- Regulated Compounds Detected Compounds Regulated Total Haloacetic Acids (THAA-5) ug/L quarterly 60 -- -- 1.8 - 10.4 mental Protection Total Trihalomethanes (TTHM-4) ug/L quarterly 80 -- -- 5.2 - 11.5 Agency (EPA). It is Assimilable Organic Carbon ug/L 5/7/2012 NR 73 84 -- set at a level that Bromodichloromethane ug/L quarterly NR -- -- 1.7 - 6.1 assures the tap Bromoform ug/L quarterly NR -- -- 1.2 - 1.3 water is safe to Chloroacetic Acid ug/L quarterly NR -- -- 2.2 consume over a Chloroform ug/L quarterly NR -- -- 1.3 - 5.8 lifetime. Unregu- Chromium, Hexavalent ug/L quarterly UCMR 0.20 - 0.29 0.10 - 0.26 -- Cotinine ug/L 5/7/2012 NR 0.002 0.001 -- lated compounds Dibromoacetic Acid ug/L quarterly NR -- -- 1.4 - 2.4 are those that the Dibromochloromethane ug/L quarterly NR -- -- 2.1 - 5.0 EPA does not be- Dichloroacetic Acid ug/L quarterly NR -- -- 1.8 - 4.0 lieve pose a health Perfluorooctane Sulfonate (PFOS) ng/L 3/11/2013 UCMR 2.4 2.1 -- threat in drinking Perfluorooctanoic Acid (PFOA) ng/L 3/11/2013 UCMR 2.7 2.7 -- water or are still Progesterone ng/L 5/7/2012 NR 0.1 ND -- being evaluated. Unregulated Compounds Detected Compounds Unregulated Sulfamethoxazole ug/L 5/7/2012 NR 0.001 ND -- Total Organic Carbon mg/L monthly NR 1.1 - 2.1 1.1 - 1.5 -- We are regulated Trans-Testosterone ng/L 5/7/2012 UCMR 0.2 ND -- by the Illinois Envi- Trichloroacetic Acid ug/L quarterly NR -- -- 1.76 ronmental Agency Alkalinity mg/L monthly NR 105 - 127 91 -- (IEPA) as are all Conductivity uS/cm weekly NR 299 307 -- drinking water Hardness mg/L monthly NR 126 125 -- plants in Illinois. pH None daily 6.5-8.5 8.3 7.8 7.8 The IEPA lists Water Chemistry Water Turbidity NTU hourly 5 13.2 0.02 0.02 about 100 com- MCL is the maximum contaminant level allowed by state regulations. pounds that we Units of Measure include mg/l or milligrams per liter, which is the same as parts per million or PPM. must test for on an annual basis in our water. Micrograms per liter is noted as ug/l and is equal to part per billion (PPB). These compounds are the regulated com- NR depicts compounds that are not regulated by the Federal or State Government. pounds. We also voluntarily test our water for ND depicts compounds that were not detected during the testing process. more than 350 additional compounds that are — indicts no reportable data. unregulated. We do this to better understand UCMR are compounds that are unregulated at this time but the Federal Government is conducting research to our water quality and the performance of our determine if they should be regulated and at what level. water treatment process. Page 3 of this report contains information regarding all compounds found in our water. For in depth information about all the compounds in this report please visit the Environmental Protection Agency website at www.epa.gov/ drink/contaminants/index.cfm Regulated Compounds Detected in our Water What Each Compound is and its Entry into our Water System NATURALLY OCCURRING TREATMENT RELATED COMPOUNDS DETECTED COMPOUNDS DETECTED Barium Chlorine Barium is present fairly consistently in Lake The Illinois EPA requires that public water Michigan water at concentrations of about 0.02 supplies chlorinate their water. They require a OPEN DOOR PHILOSOPHY mg/L or about 100 times less than the chlorine level between 0.2 and 4.0 mg/L. We AT CLCJAWA maximum allowed level in drinking water. The strive for a does of 1 mg/L or the equivalent of source is believed to be from erosion of natural one pound of chlorine per one million pounds deposits though barium is found in air, soil and of water. The term free chlorine indicates the Here at CLCJAWA we take water water throughout the world.11 chlorine we measured that is not chemically treatment very seriously and strive bound to anything. Total chlorine is the sum of Minerals to keep the public informed. From Sodium and sulfate are present primarily due to free chlorine and bound or combined chlorine. erosion of soils and rock. These minerals are Combined chlorine is the fraction of chlorine providing a detailed water quality not viewed as a health concern by the USEPA. that binds with other substances in the water report to opening up our doors for after it is added. Both forms are effective Nitrates public tours, we make our data and disinfectants. Nitrate is present in nearly all lakes and our facilities accessible to all. streams including Lake Michigan, whose CLCJAWA has been providing tours primary source is from rainfall and the break- Fluoride down of organic matter. It may also enter The Illinois Department of Public Health free of charge to all that enjoy our through runoff from agricultural sources. 2 We require that public water supplies add fluoride 17 water. detected 0.43 mg/L of nitrate in our tap water to their water. Fluoride levels between 0.8 and the maximum level allowed is 10 mg/L. and 1.2 mg/L are optimum for dental health. Tours need to be scheduled in ad- vance and include a brief presenta- Radiological Substance Bromate We detected radium 226 & 228. Their source tion about our Lake Michigan source Bromate is produced in water during ozone in Lake Michigan is most likely from decay of disinfection. Ozone is used in drinking and water, followed by a tour of the minerals in the lake and its watershed. Most bottled water production to kill germs and drinking water facilities. Additional drinking water sources contain these eliminate odors in water. During this process, radioactive compounds at levels which are not activities can be added such as ozone reacts with harmless bromide in the considered a public health concern.6 Every- water and forms bromate.
Recommended publications
  • Hexavalent Chromium Hexavalent
    Toxic Heavy Metals Series Toxic Heavy Metals Hexavalent ChromiumHexavalent This document will familiarize the reader with the toxic metal Hexavalent Chromium, OSHA standards, and methods for prevention and decontamination. Hygenall Corporation 6275 University Drive, STE 37-390 Huntsville, AL 35806 256.781.4486 [email protected] Toxic Metal Series Hexavalent Chromium Contents Introduction . 3 Worker Exposure and Health Consequences . 4 OSHA’s Hexavalent Chromium Standards . 4 Exposure Limits . 4 Exposure Monitoring and Determinations . 4 Scheduled Monitoring Option . 5 Regulated Areas . 6 Control Measures . 7 Requirements for Protective Work Clothing and Equipment . 8 Hygiene Areas and Practices . 9 Housekeeping . 10 Recommended Cleaning and Decontamination Products…11 Medical Surveillance . 12 Worker Training and Communication . 13 Recordkeeping . 14 Effective Dates . 14 Additional Information . 15 References . 16 2 | P a g e Hexavalent Chromium Toxic Metal Series INTRODUCTION This document is intended to give readers an overview of the provisions and requirements of the OSHA Hexavalent Chromium standards for general industry (29 CFR 1910.1026), shipyards (29 CFR 1915.1026), and construction (29 CFR 1926.1126). Hexavalent chromium (Cr(VI)) is a toxic form of the element chromium. Hexavalent chromium is rarely found in nature and is generally man-made. Cr(VI) is widely used in pigments, metal finishing electroplating), wood preservatives and fungicides, and in chemical synthesis as an ingredient and catalyst. Table 1 lists some selected Cr(VI) compounds with their synonyms and common uses. Hexavalent chromium may also be present in fumes generated during the production or welding of chrome alloys. Chromium metal is often alloyed with other metals or plated on metal and plastic substrates to improve corrosion resistance and provide protective coatings.
    [Show full text]
  • Chromium Compounds Hazard Summary
    Chromium Compounds Hazard Summary Chromium occurs in the environment primarily in two valence states, trivalent chromium (Cr III) and hexavalent chromium (Cr VI). Exposure may occur from natural or industrial sources of chromium. Chromium III is much less toxic than chromium (VI). The respiratory tract is also the major target organ for chromium (III) toxicity, similar to chromium (VI). Chromium (III) is an essential element in humans. The body can detoxify some amount of chromium (VI) to chromium (III). The respiratory tract is the major target organ for chromium (VI) toxicity, for acute (short-term) and chronic (long-term) inhalation exposures. Shortness of breath, coughing, and wheezing were reported from a case of acute exposure to chromium (VI), while perforations and ulcerations of the septum, bronchitis, decreased pulmonary function, pneumonia, and other respiratory effects have been noted from chronic exposure. Human studies have clearly established that inhaled chromium (VI) is a human carcinogen, resulting in an increased risk of lung cancer. Animal studies have shown chromium (VI) to cause lung tumors via inhalation exposure. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (7), which contains information on inhalation chronic toxicity and the RfC and oral chronic toxicity and the RfD, and the carcinogenic effects of chromium including the unit cancer risk for inhalation exposure, EPA's Toxicological Review of Trivalent Chromium and Toxicological Review of Hexavalent Chromium (3), and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Chromium. (1) Uses The metal chromium is used mainly for making steel and other alloys.
    [Show full text]
  • Beneficial Reuse and Waste Minimization of Hexavalent Chrome
    Hexavalent Chromium Treatment Technologies Research and Development Office Science and Technology Program Final Report ST-2018-9085-01 U.S. Department of the Interior Bureau of Reclamation Research and Development Office 10/1/2018 Mission Statements Protecting America's Great Outdoors and Powering Our Future The Department of the Interior protects and manages the Nation's natural resources and cultural heritage; provides scientific and other information about those resources; and honors its trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities. The following form is a Standard form 298, Report Documentation Page. This report was sponsored by the Bureau of Reclamations Research and Development office. For more detailed information about this Report documentation page please contact Miguel Arias-Paic at 303-445-2131. THIS TEXT WILL BE INVISIBLE. IT IS FOR 508 COMPLIANCE OF THE NEXT PAGE. Disclaimer Information in this report may not be used for advertising or promotional purposes. The data and findings should not be construed as an endorsement of any product or firm by the Bureau of Reclamation, Department of Interior, or Federal Government. The products evaluated in the report were evaluated for purposes specific to the Bureau of Reclamation mission. Reclamation gives no warranties or guarantees, expressed or implied, for the products evaluated in this report, including merchantability or fitness for a particular purpose. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 T1. REPORT DATE: T2. REPORT TYPE: T3. DATES COVERED SEPTEMBER 2018 RESEARCH T4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Hexavalent Chromium Treatment Technologies Z1759, X9085, FA280 5b.
    [Show full text]
  • Jason Lotter, MS, CIH
    Jason Lotter, MS, CIH Current Position Summary of Experience Supervising Health Mr. Jason Lotter is a Supervising Health Scientist with Cardno ChemRisk in Chicago. His Scientist principal areas of training and expertise include industrial hygiene, exposure and risk assessment, and occupational safety. He has been involved in researching, measuring, Discipline Areas and reconstructing exposures, and assessing risks to consumers, residents, and workers, > Industrial Hygiene from a variety of chemicals including formaldehyde, silica, diacetyl, coal dust, lead, > Exposure particulate matter, hexavalent chromium, asbestos, and metals. Mr. Lotter completed his Assessment master’s degree in Public Health Science, with an emphasis in industrial hygiene, from > Risk Assessment the University of Illinois at Chicago. For his master’s thesis, he evaluated groundwater > Occupational Safety arsenic in Guatemala and conducted a risk assessment related to arsenic exposure for local residents. Years' Experience 7 Years At ChemRisk, Mr. Lotter has conducted independent research on various topics and chemicals, and has presented his research at scientific conferences and published in the Joined Cardno peer-reviewed literature. He has also conducted indoor air modeling for formaldehyde, 2013 provided industrial hygiene and occupational safety support during refinery turnarounds, and has assisted in the completion of various exposure simulation studies. Education > MS, Public Health Mr. Lotter currently co-leads the Cardno ChemRisk Cleaning and Disinfectant Product Science, University initiative, focusing on peracetic acid and other antimicrobial chemicals. He is a member of of Illinois at Chicago, the American Industrial Hygiene Association (AIHA) and currently serves on the Board of 2012 Directors of the Chicago Local Section of AIHA. He has been as a Certified Industrial > BS, Civil Hygienist (CIH) since 2016.
    [Show full text]
  • Hexavalent and Total Chromium at Low Reporting Concentrations in Source-Water Aquifers and Surface Waters Used for Public Supply in Illinois, 2013
    Prepared in cooperation with the Illinois Environmental Protection Agency Hexavalent and Total Chromium at Low Reporting Concentrations in Source-Water Aquifers and Surface Waters Used for Public Supply in Illinois, 2013 Scientific Investigations Report 2015–5020 U.S. Department of the Interior U.S. Geological Survey Front cover and other images: Front cover shows collection of groundwater samples, Union-York Water District (intake 00251). This and other photography by Patrick Mills, U.S. Geological Survey. Hexavalent and Total Chromium at Low Reporting Concentrations in Source-Water Aquifers and Surface Waters Used for Public Supply in Illinois, 2013 By Patrick C. Mills and Richard P. Cobb Prepared in cooperation with the Illinois Environmental Protection Agency Scientific Investigations Report 2015–5020 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
    [Show full text]
  • Low-Level Hexavalent Chromium Treatment Options: Bench-Scale Evaluation
    Tailored Collaboration Low-Level Hexavalent Chromium Treatment Options: Bench-Scale Evaluation Subject Area: High-Quality Water Low-Level Hexavalent Chromium Treatment Options: Bench-Scale Evaluation ©2004 AwwaRF. All rights reserved. About the Awwa Research Foundation The Awwa Research Foundation (AwwaRF) is a member-supported, international, nonprofit organization that sponsors research to enable water utilities, public health agencies, and other professionals to provide safe and affordable drinking water to consumers. The Foundation's mission is to advance the science of water to improve the quality of life. To achieve this mission, the Foundation sponsors studies on all aspects of drinking water, including supply and resources, treatment, monitoring and analysis, distribution, management, and health effects. Funding for research is provided primarily by subscription payments from approximately 1,000 utilities, consulting firms, and manufacturers in North America and abroad. Additional funding comes from collaborative partnerships with other national and international organizations, allowing for resources to be leveraged, expertise to be shared, and broad-based knowledge to be developed and disseminated. Government funding serves as a third source of research dollars. From its headquarters in Denver, Colorado, the Foundation's staff directs and supports the efforts of more than 800 volunteers who serve on the board of trustees and various committees. These volunteers represent many facets of the water industry, and contribute their expertise to select and monitor research studies that benefit the entire drinking water community. The results of research are disseminated through a number of channels, including reports, the Web site, conferences, and periodicals. For subscribers, the Foundation serves as a cooperative program in which water suppliers unite to pool their resources.
    [Show full text]
  • Waste Discharge Requirements for Pacific Gas and Electric Company Groundwater Remediation Project
    CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LAHONTAN REGION BOARD ORDER NO. R6V-2014-0023 WASTE DISCHARGE REQUIREMENTS FOR PACIFIC GAS AND ELECTRIC COMPANY GROUNDWATER REMEDIATION PROJECT AGRICULTURAL TREATMENT UNITS WDID NO. 6B361403002 _________________________San Bernardino County______________________ The California Regional Water Quality Control Board, Lahontan Region (Water Board), finds: 1. Discharger Pacific Gas and Electric Company (PG&E) is the owner and operator of the natural gas compressor station in Hinkley where hexavalent chromium was discharged from historical waste water releases to groundwater. For the purposes of this Order, PG&E is referred to as the “Discharger.” This Water Board Order (Order) supersedes and rescinds the previous Order No. R6V-2004-0034 and amendments, and Investigative Order R6V-2011-0078. 2. Groundwater Contamination The compressor station began operating in 1952 and discharged untreated cooling tower water containing hexavalent chromium to unlined ponds until 1964. Wastewater then percolated through soil to the water table, approximately 80 feet below, creating a chromium plume in groundwater. Since 1991, PG&E has implemented various interim remediation projects to clean up chromium in groundwater at different locations within and outside of the plume boundaries. In August 2010, PG&E submitted a Feasibility Study in compliance with Cleanup and Abatement Order (CAO) R6V-2008-0002, evaluating options for comprehensive (Project Area-wide) cleanup of groundwater to background concentrations of chromium. -1- Order No. R6V-2014-0023 3. Project Area and Operable Units The Project Area regulated under this Order is approximately 50 square miles (32,159 acres) in size and includes all areas within the chromium plume boundaries containing more than the maximum background levels of 3.1 micrograms per liter (µg/L) hexavalent chromium or 3.2 µg/L total chromium (based on the Discharger's fourth quarter 2012 groundwater monitoring report) and approximately 1 mile beyond.
    [Show full text]
  • Hexavalent Chromium (Cr VI) in Drinking Water
    PUBLIC HEALTH GOALS FOR CHEMICALS IN DRINKING WATER HEXAVALENT CHROMIUM (Cr VI) July 2011 Governor of the State of California Edmund G. Brown Jr. Acting Secretary for Environmental Protection California Environmental Protection Agency Linda S. Adams Acting Director Office of Environmental Health Hazard Assessment George V. Alexeeff, Ph.D. Public Health Goal for Hexavalent Chromium (Cr VI) in Drinking Water Prepared by Pesticide and Environmental Toxicology Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency July 2011 PREFACE Drinking Water Public Health Goals Pesticide and Environmental Toxicology Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency This Public Health Goal (PHG) technical support document provides information on health effects from contaminants in drinking water. PHGs are developed for chemical contaminants based on the best available toxicological data in the scientific literature. These documents and the analyses contained in them provide estimates of the levels of contaminants in drinking water that would pose no significant health risk to individuals consuming the water on a daily basis over a lifetime. The California Safe Drinking Water Act of 1996 (Health and Safety Code, Section 116365) requires the Office of Environmental Health Hazard Assessment (OEHHA) to perform risk assessments and adopt PHGs for contaminants in drinking water based exclusively on public health considerations. The Act requires that PHGs be set in accordance with the following criteria: 1. PHGs for acutely toxic substances shall be set at levels at which no known or anticipated adverse effects on health will occur, with an adequate margin of safety. 2. PHGs for carcinogens or other substances that may cause chronic disease shall be based solely on health effects and shall be set at levels that OEHHA has determined do not pose any significant risk to health.
    [Show full text]
  • Massachusetts Chemical Fact Sheet
    Massachusetts Chemical Fact Sheet Hexavalent Chromium Table 1: HEXAVALENT CHROMIUM COMPOUNDS: Compounds SELECTED EXAMPLES* Compound Chemical Formula CAS # This fact sheet is part of a series of chemical fact sheets Ammonium chromate (NH ) Cr0 7788-98-9 developed by TURI to help Massachusetts companies, 4 2 4 community organizations and residents understand the Ammonium dichromate (NH4)2Cr2O7 7789-09-5 chemical’s use and health and environmental effects, as Barium chromate BaCrO4 10294-40-3 well as the availability of safer alternatives. tert-Butyl Chromate [(CH3)3CO]2CrO2 1189-85-1 Hexavalent chromium compounds are a toxic form of Calcium chromate CaCrO4 13765-19-0 chromium and are used in a variety of industrial processes Chromic acid H2CrO4 7738-94-5 and products. Chromium VI chloride CrCl6 14986-48-2 Hexavalent chromium compounds are human carcinogens, Chromic trioxide CrO3 1333-82-0 mutagens and developmental toxicants and are acutely Hexavalent chromium ion Cr6+ 18540-29-9 toxic. Non-hexavalent chromium compounds do not pose Lead chromate PbCrO4 7758-97-6 the same level of concern with regard to either chronic or Lead chromate oxide PbCrO4-PbO 8454-12-1 acute toxicity. Potassium chlorochromate KCrO3Cl 16037-50-6 Until 2011, all chromium compounds were treated as Potassium chromate K2CrO4 7789-00-6 a single category under TURA. Beginning with Potassium dichromate K Cr O 7778-50-9 reporting year 2012, hexavalent chromium 2 2 7 compounds are reportable under TURA as a Silver chromate Ag2CrO4 7784-01-2 separate category and are designated as a Higher Sodium chromate Na2CrO4 7775-11-3 Hazard Substance, which lowers the reporting Sodium dichromate 7789-12-0 threshold to 1,000 lb/year.
    [Show full text]
  • Chromium Fact Sheet, P-44593
    WISCONSIN DEPARTMENT OF HEALTH SERVICES P- 44593 (Rev. 06/2014) Division of Public Health dhs.wisconsin.gov CHROMIUM FACT SHEET WHAT IS CHROMIUM? Chromium is an element existing in several different forms. Metallic chromium is mined for use in steel and other metal products. Many chromium-containing compounds are used for plating, manufacturing paints and dyes, tanning leather and preserving wood. "Trivalent" chromium is naturally occurring and is essential for good health. The normal intake from eating foods that are high in natural chromium is 70-80 micrograms per day and is considered safe. The less-toxic forms of chromium are used to make flooring materials, video and audio recording tapes, stainless steel, chrome-plated items and copy machine toner. "Hexavalent" chromium can occur naturally, but can also be produced by certain industrial processes. It is the most toxic form of chromium, and has been shown to cause lung cancer when workers are exposed to high air levels for long time periods. HOW ARE PEOPLE EXPOSED TO CHROMIUM? Breathing: People can be exposed to chromium by breathing chromium dust or fumes. This is the route of exposure that is of greatest concern. Drinking/Eating: Most human exposure to chromium through drinking and eating comes in the form of trivalent chromium found in fresh vegetables, meats, fish, and poultry. Drinking water is not normally a major source of exposure. Plants can absorb chromium, which can then be passed to those who eat the plants. Touching: Contact with contaminated soils can result in exposure to chromium. Exposure can be reduced by thorough washing of exposed skin and clothing to remove soil residues.
    [Show full text]
  • FACT SHEET Hexavalent Chromium (Particulate Compounds)
    FACT SHEET Hexavalent Chromium (Particulate Compounds) CAS Number: Hexavalent chromium 18540-29-9 (Please see the hexavalent chromium development support document for a list of applicable hexavalent chromium compounds) This fact sheet provides a summary of the Development Support Document (DSD) created by the TCEQ Toxicology Division (TD) for the development of Regulatory Guidelines (ESLs, AMCVs and ReVs) for ambient air exposure to this chemical. For more detailed information, please see the DSD or contact the TD by phone (1-877-992-8370) or e-mail ([email protected]). What is hexavalent chromium? Chromium can occur naturally in the environment and is found in rocks, soil, animals, and plants. The most common forms of chromium are: chromium (0) or the metal chromium, chromium III or trivalent chromium, and chromium VI or hexavalent chromium. While the metal form of chromium is used for making steel, the hexavalent and trivalent forms of chromium are used for chrome plating, dyes and pigments, leather tanning, and wood preservation. How are hexavalent chromium compounds released into ambient air? Chromium is released into the atmosphere primarily by man-made processes such as industrial, commercial, and residential fuel combustion, and via the combustion of natural gas, oil, and coal. Metal industries, such as chrome plating and steel production, are also important man-made stationary point sources of chromium emissions to air. Other potentially small sources of chromium air emissions include cement-producing plants, the incineration of municipal refuse and sewage sludge, and emissions from chromium-based automotive catalytic converters. Emissions from cooling towers that previously used chromate chemicals as rust inhibitors may also be atmospheric sources of chromium.
    [Show full text]
  • Hexavalent Chromium
    Provided for Historical Reference Only HEXAVALENT CHROMIUM Method Number: ID-103 Matrix: Air OSHA Permissible Exposure Limits Chromic acid and chromates as 3 CrO3 (Final Rule Limit): 0.1 mg/m (Ceiling) Chromic acid and chromates as 3 CrO3 (Transitional Limit): 0.1 mg/m (Time Weighted Average) Collection Device: An air sample is collected on a 37-mm diameter polyvinyl chloride filter (5-µm pore size) using a calibrated personal sampling pump. Recommended Sampling Rate: 2 L/min Recommended Air Volume Range: 30 to 960 L Analytical Procedure: The chromium (VI) is extracted from the filter using a carbonate/bicarbonate buffer solution and then analyzed by differential pulse polarography. Detection Limits 3 Qualitative: 0.006 mg/m as CrO3 (30-L air sample) 3 Quantitative: 0.019 mg/m as CrO3 (30-L air sample) Precision and Accuracy Validation Range: 0.1 to 0.6 mg/m³ as CrO3 (30-L sample) CV1 Range: 0.012 to 0.019 Bias Range: +0.012 to +0.053 Overall Error Range: ±2.7 to ±8.7% Method Classification: Validated Method Chemist: James Ku Date (DateWITHDRAWN Revised): 1982 (February, 1990) Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources can be substituted. Branch of Inorganic Methods Development OSHA Technical Center Salt Lake City, Utah 1. Introduction 1 of 25 T-ID103-FV-01-9002-M Note: OSHA no longer uses or supports this method (June, 2021) Provided for Historical Reference Only This method describes the air sampling and subsequent analysis of workplace exposures to chromic acid and chromate compounds.
    [Show full text]