OSTST Abstracts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FEMA Flood Boundary
MAY 4, 2021 COUSHATTA TRIBE OF LOUISIANA TRIBAL HAZARD MITIGATION PLAN UPDATE PUBLIC REVIEW DRAFT MAY 2021 Prepared by BEVERLY O'DEA BRIDGEVIEW CONSULTING, LLC 915 N. Laurel Lane Tacoma, WA 98406 (253) 380-5736 Coushatta Tribe of Louisiana 2021 Hazard Mitigation Plan Update Prepared for Coushatta Tribe of Louisiana Coushatta Tribal Fire Department P.O. Box 818 Elton, LA 70532 Prepared by Bridgeview Consulting, LLC Beverly O’Dea 915 N. Laurel Lane Tacoma, WA 98406 (253) 380-5736 TABLE OF CONTENTS Executive Summary ......................................................................................................... xiii Plan Update ................................................................................................................................................. xiv Initial Response to the DMA for the Coushatta Tribe ........................................................................... xv The 2021 Coushatta Tribe of Louisiana Update—What has changed? ................................................. xv Plan Development Methodology ............................................................................................................... xvii Chapter 1. Introduction to Hazzard Mitigation Planning ............................................... 1-1 1.1 Authority .............................................................................................................................................. 1-1 1.2 Acknowledgements ............................................................................................................................. -
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
Texas Hurricane History
Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 21 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 24 The Great Galveston Hurricane (1900) 29 Hurricanes of the Early Twentieth Century 31 Corpus Christi’s Devastating Hurricane (1919) 38 San Antonio’s Great Flood – 1921 39 Hurricanes of the Late Twentieth Century 48 Hurricanes of the Early Twenty-First Century 68 Acknowledgments 74 Bibliography 75 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands. -
Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs. -
Eastern North Pacific Hurricane Season of 1995
1152 MONTHLY WEATHER REVIEW VOLUME 126 Eastern North Paci®c Hurricane Season of 1995 EDWARD N. RAPPAPORT,LIXION A. AVILA,MILES B. LAWRENCE,MAX MAYFIELD, AND RICHARD J. PASCH National Hurricane Center, Tropical Prediction Center, NWS/NOAA, Miami, Florida (Manuscript received 3 September 1996, in ®nal form 28 January 1997) ABSTRACT The 1995 eastern North Paci®c hurricane season is reviewed. The activity comprised 11 tropical cyclones, consisting of seven hurricanes, three tropical storms, and one tropical depression. Hurricane Ismael caused a large loss of life in the southern Gulf of California. 1. Introduction gion. This pattern is also consistent with fewer than normal storms forming in the Paci®c and enhanced ac- The western hemisphere was a scene of stark contrasts tivity over the western Caribbean region (cf. Lawrence in tropical cyclone activity during 1995. More tropical et al. 1998). cyclones formed in the Atlantic hurricane basin than in In contrast to these atmospheric features, anomalies the eastern North Paci®c Ocean for the ®rst time in 26 of sea surface temperature (not shown) were small and years (cf. Lawrence et al. 1998). In fact, while the At- thought to be insigni®cant. In fact, when atmospheric lantic produced 19 tropical storms, its second largest conditions were conducive for development, the warm total during the past 125 years, the total of 10 tropical eastern Paci®c waters allowed three of the 10 tropical storms in the eastern North Paci®c Ocean ranks as the storms to strengthen to category 4 status on the Saf®r± second fewest in the 30-yr period of routine satellite Simpson hurricane scale (1-min wind speeds exceeding surveillance (1977 had 8 storms) and is 6 fewer than about 58 m s21). -
The Gulf Stream (Western Boundary Current)
Classic CZCS Scenes Chapter 6: The Gulf Stream (Western Boundary Current) The Caribbean Sea and the Gulf of Mexico are the source of what is likely the most well- known current in the oceans—the Gulf Stream. The warm waters of the Gulf Stream can be observed using several different types of remote sensors, including sensors of ocean color (CZCS), sea surface temperature, and altimetry. Images of the Gulf Stream taken by the CZCS, one of which is shown here, are both striking and familiar. CZCS image of the Gulf Stream and northeastern coast of the United States. Several large Gulf Stream warm core rings are visible in this image, as are higher productivity areas near the Chesapeake and Delaware Bays. To the northeast, part of the Grand Banks region near Nova Scotia is visible. Despite the high productivity of this region, overfishing caused the total collapse of the Grand Banks cod fishery in the early 1990s. The Gulf Stream is a western boundary current, indicating that if flows along the west side of a major ocean basin (in this case the North Atlantic Ocean). The corresponding current in the Pacific Ocean is called the Kuroshio, which flows north to about the center of the Japanese archipelago and then turns eastward into the central Pacific basin. In the Southern Hemisphere, the most noteworthy western boundary current is the Agulhas Current in the Indian Ocean. Note that the Agulhas flows southward instead of northward like the Gulf Stream and the Kuroshio. Western boundary currents result from the interaction of ocean basin topography, the general direction of the prevailing winds, and the general motion of oceanic waters induced by Earth's rotation. -
HURRICANE COSME (EP032013) 23 – 27 June 2013
NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE COSME (EP032013) 23 – 27 June 2013 Eric Blake National Hurricane Center 10 September 2013 COSME NEAR SOCORRO ISLAND (25 JUN 1740 UTC) – NASA Cosme was a large category 1 hurricane (on the Saffir-Simpson Hurricane Wind Scale) that brought tropical storm conditions to Socorro and Clarion Islands, but stayed offshore of southwestern Mexico. Hurricane COSME 2 Hurricane COSME 23 – 27 JUNE 2013 SYNOPTIC HISTORY Cosme can be traced back to the same tropical wave that spawned Tropical Storm Barry in the Gulf of Mexico. The southern end of the wave moved very slowly across the eastern Pacific due to enhanced southwesterly flow associated with an active ITCZ. A broad low pressure area formed from the wave on 21 June several hundred miles south of Acapulco, Mexico. The large system was not well organized initially, probably due to northwesterly shear from an upper-level trough over the western Caribbean Sea. The shear gradually relaxed during the next two days while an upper-level high built eastward across the low. Convection increased near the ill-defined center and within large banding features early on 23 June, likely aided by the passage of an eastward-moving atmospheric Kelvin wave through the area. Visible satellite images and microwave data suggest the center became well defined by 1200 UTC 23 June, marking the formation of a tropical depression about 435 n mi south of Manzanillo, Mexico. The system became a tropical storm 12 h later. The “best track” chart of Cosme’s path is given in Fig. 1, with the wind and pressure histories shown in Figs. -
Physical Oceanography - UNAM, Mexico Lecture 3: the Wind-Driven Oceanic Circulation
Physical Oceanography - UNAM, Mexico Lecture 3: The Wind-Driven Oceanic Circulation Robin Waldman October 17th 2018 A first taste... Many large-scale circulation features are wind-forced ! Outline The Ekman currents and Sverdrup balance The western intensification of gyres The Southern Ocean circulation The Tropical circulation Outline The Ekman currents and Sverdrup balance The western intensification of gyres The Southern Ocean circulation The Tropical circulation Ekman currents Introduction : I First quantitative theory relating the winds and ocean circulation. I Can be deduced by applying a dimensional analysis to the horizontal momentum equations within the surface layer. The resulting balance is geostrophic plus Ekman : I geostrophic : Coriolis and pressure force I Ekman : Coriolis and vertical turbulent momentum fluxes modelled as diffusivities. Ekman currents Ekman’s hypotheses : I The ocean is infinitely large and wide, so that interactions with topography can be neglected ; ¶uh I It has reached a steady state, so that the Eulerian derivative ¶t = 0 ; I It is homogeneous horizontally, so that (uh:r)uh = 0, ¶uh rh:(khurh)uh = 0 and by continuity w = 0 hence w ¶z = 0 ; I Its density is constant, which has the same consequence as the Boussinesq hypotheses for the horizontal momentum equations ; I The vertical eddy diffusivity kzu is constant. ¶ 2u f k × u = k E E zu ¶z2 that is : k ¶ 2v u = zu E E f ¶z2 k ¶ 2u v = − zu E E f ¶z2 Ekman currents Ekman balance : k ¶ 2v u = zu E E f ¶z2 k ¶ 2u v = − zu E E f ¶z2 Ekman currents Ekman balance : ¶ 2u f k × u = k E E zu ¶z2 that is : Ekman currents Ekman balance : ¶ 2u f k × u = k E E zu ¶z2 that is : k ¶ 2v u = zu E E f ¶z2 k ¶ 2u v = − zu E E f ¶z2 ¶uh τ = r0kzu ¶z 0 with τ the surface wind stress. -
Texas Hurricane History
Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 19 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 22 The Great Galveston Hurricane (1900) 27 Hurricanes of the Early Twentieth Century 29 Corpus Christi’s Devastating Hurricane (1919) 35 San Antonio’s Great Flood – 1921 37 Hurricanes of the Late Twentieth Century 45 Hurricanes of the Early Twenty-First Century 65 Acknowledgments 71 Bibliography 72 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands. -
Responses of Eastern Boundary Current Ecosystems to Anthropogenic Climate Change
Responses of Eastern Boundary Current Ecosystems to Anthropogenic Climate Change 1900 2100 Ryan R. Rykaczewski University of South Carolina ryk @ sc.edu We are united by an interest in understanding ecosystem dynamics in the North Pacific Tokyo Columbia ~35,000 students (~300 students in Marine Sciences, with 13 faculty members) John Steven Julia me Riley Viki Connor Sarah Brian Tricia Q: What sorts of scientific topics do we study in my group? A: We want to understand why abundances of fish go up and down. Why is it that fish populations are so abundant (and lucrative to exploit!) during some years and absent during others? How do changes in large-scale physical processes influence… …the structure of the marine ecosystems—species composition and size distribution of the plankton, inter and intra-specific interactions, trophic transfer efficiency… …and affect the world’s marine fish stocks? Variability in eastern boundary current upwelling systems California Canary Current Current Humboldt Benguela Current Current Variability in eastern boundary current upwelling systems oceanic high continental pressure low pressure understand the dynamics of Long-term goal: upwelling ecosystems Upwelling systems: - support highly productive food webs and sustain fisheries critical to the world’s food supply. - may play a role in large-scale climate processes. Major genera include Sardinops and Engraulis inhabiting each of the four major eastern boundary currents. The Kuroshio stands out as the non- eastern boundary current with major stocks of sardine (Sardinops melanostictis) and anchovy (Engraulis japonicas). Many hypotheses relate fisheries fluctuations to physics What drives past changes Landings in the US state of California in fish abundance? Overfishing? Environmental variability? How? Why? Warm Conditions Cold Conditions Soutar and Isaacs (1969); Baumgartner et al. -
Tidally Modified Western Boundary Current Drives Interbasin Exchange
www.nature.com/scientificreports OPEN Tidally modifed western boundary current drives interbasin exchange between the Sea of Okhotsk and the North Pacifc Hung‑Wei Shu1,2*, Humio Mitsudera1, Kaihe Yamazaki2,3, Tomohiro Nakamura1, Takao Kawasaki4, Takuya Nakanowatari5, Hatsumi Nishikawa1,4 & Hideharu Sasaki6 The interbasin exchange between the Sea of Okhotsk and the North Pacifc governs the intermediate water ventilation and fertilization of the nutrient‑rich subpolar Pacifc, and thus has an enormous infuence on the North Pacifc. However, the mechanism of this exchange is puzzling; current studies have not explained how the western boundary current (WBC) of the subarctic North Pacifc intrudes only partially into the Sea of Okhotsk. High‑resolution models often exhibit unrealistically small exchanges, as the WBC overshoots passing by deep straits and does not induce exchange fows. Therefore, partial intrusion cannot be solely explained by large‑scale, wind‑driven circulation. Here, we demonstrate that tidal forcing is the missing mechanism that drives the exchange by steering the WBC pathway. Upstream of the deep straits, tidally‑generated topographically trapped waves over a bank lead to cross‑slope upwelling. This upwelling enhances bottom pressure, thereby steering the WBC pathway toward the deep straits. The upwelling is identifed as the source of joint‑efect‑of‑ baroclinicity‑and‑relief (JEBAR) in the potential vorticity equation, which is caused by tidal oscillation instead of tidally‑enhanced vertical mixing. The WBC then hits the island chain and induces exchange fows. This tidal control of WBC pathways is applicable on subpolar and polar regions globally. Te water exchange between the Sea of Okhotsk and the North Pacifc is an essential component of the over- turning circulation that ventilates the intermediate layer of the North Pacifc 1. -
Ocean-Gyre-4.Pdf
This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more × security, comfort and the best experience on this site. Encyclopedic Entry ocean gyre For the complete encyclopedic entry with media resources, visit: http://education.nationalgeographic.com/encyclopedia/ocean-gyre/ An ocean gyre is a large system of circular ocean currents formed by global wind patterns and forces created by Earth’s rotation. The movement of the world’s major ocean gyres helps drive the “ocean conveyor belt.” The ocean conveyor belt circulates ocean water around the entire planet. Also known as thermohaline circulation, the ocean conveyor belt is essential for regulating temperature, salinity and nutrient flow throughout the ocean. How a Gyre Forms Three forces cause the circulation of a gyre: global wind patterns, Earth’s rotation, and Earth’s landmasses. Wind drags on the ocean surface, causing water to move in the direction the wind is blowing. The Earth’s rotation deflects, or changes the direction of, these wind-driven currents. This deflection is a part of the Coriolis effect. The Coriolis effect shifts surface currents by angles of about 45 degrees. In the Northern Hemisphere, ocean currents are deflected to the right, in a clockwise motion. In the Southern Hemisphere, ocean currents are pushed to the left, in a counterclockwise motion. Beneath surface currents of the gyre, the Coriolis effect results in what is called an Ekman spiral. While surface currents are deflected by about 45 degrees, each deeper layer in the water column is deflected slightly less.