Columbia Spotted Frog (Rana Luteiventris) in Southeastern Oregon: a Survey of Historical Localities, 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SONW Maintext
STATE of the NORTHWEST Revised 2000 Edition O THER N ORTHWEST E NVIRONMENT WATCH T ITLES Seven Wonders: Everyday Things for a Healthier Planet Green-Collar Jobs Tax Shift Over Our Heads: A Local Look at Global Climate Misplaced Blame: The Real Roots of Population Growth Stuff: The Secret Lives of Everyday Things The Car and the City This Place on Earth: Home and the Practice of Permanence Hazardous Handouts: Taxpayer Subsidies to Environmental Degradation State of the Northwest STATE of the NORTHWEST Revised 2000 Edition John C. Ryan RESEARCH ASSISTANCE BY Aaron Best Jocelyn Garovoy Joanna Lemly Amy Mayfield Meg O’Leary Aaron Tinker Paige Wilder NEW REPORT 9 N ORTHWEST E NVIRONMENT W ATCH ◆ S EATTLE N ORTHWEST E NVIRONMENT WATCH IS AN INDEPENDENT, not-for-profit research center in Seattle, Washington, with an affiliated charitable organization, NEW BC, in Victoria, British Columbia. Their joint mission: to foster a sustainable economy and way of life through- out the Pacific Northwest—the biological region stretching from south- ern Alaska to northern California and from the Pacific Ocean to the crest of the Rockies. Northwest Environment Watch is founded on the belief that if northwesterners cannot create an environmentally sound economy in their home place—the greenest corner of history’s richest civilization—then it probably cannot be done. If they can, they will set an example for the world. Copyright © 2000 Northwest Environment Watch Excerpts from this book may be printed in periodicals with written permission from Northwest Environment Watch. Library of Congress Catalog Card Number: 99-069862 ISBN 1-886093-10-5 Design: Cathy Schwartz Cover photo: Natalie Fobes, from Reaching Home: Pacific Salmon, Pacific People (Seattle: Alaska Northwest Books, 1994) Editing and composition: Ellen W. -
Species Assessment for the Northern Leopard Frog (Rana Pipiens)
SPECIES ASSESSMENT FOR THE NORTHERN LEOPARD FROG (RANA PIPIENS ) IN WYOMING prepared by 1 2 BRIAN E. SMITH AND DOUG KEINATH 1Department of Biology Black Hills State University1200 University Street Unit 9044, Spearfish, SD 5779 2 Zoology Program Manager, Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3013; [email protected] prepared for United States Department of the Interior Bureau of Land Management Wyoming State Office Cheyenne, Wyoming January 2004 Smith and Keinath – Rana pipiens January 2004 Table of Contents SUMMARY .......................................................................................................................................... 3 INTRODUCTION ................................................................................................................................. 3 NATURAL HISTORY ........................................................................................................................... 5 Morphological Description ...................................................................................................... 5 Taxonomy and Distribution ..................................................................................................... 6 Taxonomy .......................................................................................................................................6 Distribution and Abundance............................................................................................................7 -
Design and Methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015
National Water-Quality Assessment Project Design and Methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015 Open-File Report 2017–1103 U.S. Department of the Interior U.S. Geological Survey Cover: Background: Photograph showing U.S. Geological Survey Hydrologic Technician collecting an equal-width-increment (EWI) water sample on the South Fork Newaukum River, Washington. Photograph by R.W. Sheibley, U.S. Geological Survey, June 2015. Top inset: Photograph showing U.S. Geological Survey Ecologist scraping a rock using a circular template for the analysis of Algal biomass and community composition, June 2015. Photograph by U.S. Geological Survey. Bottom inset: Photograph showing juvenile coho salmon being measured during a fish survey for the Pacific Northwest Stream Quality Assessment, June 2015. Photograph by Peter van Metre, U.S. Geological Survey. Design and Methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015 By Richard W. Sheibley, Jennifer L. Morace, Celeste A. Journey, Peter C. Van Metre, Amanda H. Bell, Naomi Nakagaki, Daniel T. Button, and Sharon L. Qi National Water-Quality Assessment Project Open-File Report 2017–1103 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information pr oducts, including maps, imagery, and publications, visit https:/store.usgs.gov. -
Fish Ecology in Tropical Streams
Author's personal copy 5 Fish Ecology in Tropical Streams Kirk O. Winemiller, Angelo A. Agostinho, and Érica Pellegrini Caramaschi I. Introduction 107 II. Stream Habitats and Fish Faunas in the Tropics 109 III. Reproductive Strategies and Population Dynamics 124 IV. Feeding Strategies and Food-Web Structure 129 V. Conservation of Fish Biodiversity 136 VI. Management to Alleviate Human Impacts and Restore Degraded Streams 139 VII. Research Needs 139 References 140 This chapter emphasizes the ecological responses of fishes to spatial and temporal variation in tropical stream habitats. At the global scale, the Neotropics has the highest fish fauna richness, with estimates ranging as high as 8000 species. Larger drainage basins tend to be associated with greater local and regional species richness. Within longitudinal stream gradients, the number of species increases with declining elevation. Tropical stream fishes encompass highly diverse repro- ductive strategies ranging from egg scattering to mouth brooding and livebearing, with reproductive seasons ranging from a few days to the entire year. Relationships between life-history strategies and population dynamics in different environmental settings are reviewed briefly. Fishes in tropical streams exhibit diverse feeding behaviors, including specialized niches, such as fin and scale feeding, not normally observed in temperate stream fishes. Many tropical stream fishes have greater diet breadth while exploiting abundant resources during the wet season, and lower diet breadth during the dry season as a consequence of specialized feeding on a subset of resources. Niche complementarity with high overlap in habitat use is usually accompanied by low dietary overlap. Ecological specializations and strong associations between form and function in tropical stream fishes provide clear examples of evolutionary convergence. -
CHIRICAHUA LEOPARD FROG (Lithobates [Rana] Chiricahuensis)
CHIRICAHUA LEOPARD FROG (Lithobates [Rana] chiricahuensis) Chiricahua Leopard Frog from Sycamore Canyon, Coronado National Forest, Arizona Photograph by Jim Rorabaugh, USFWS CONSIDERATIONS FOR MAKING EFFECTS DETERMINATIONS AND RECOMMENDATIONS FOR REDUCING AND AVOIDING ADVERSE EFFECTS Developed by the Southwest Endangered Species Act Team, an affiliate of the Southwest Strategy Funded by U.S. Department of Defense Legacy Resource Management Program December 2008 (Updated August 31, 2009) ii ACKNOWLEDGMENTS This document was developed by members of the Southwest Endangered Species Act (SWESA) Team comprised of representatives from the U.S. Fish and Wildlife Service (USFWS), U.S. Bureau of Land Management (BLM), U.S. Bureau of Reclamation (BoR), Department of Defense (DoD), Natural Resources Conservation Service (NRCS), U.S. Forest Service (USFS), U.S. Army Corps of Engineers (USACE), National Park Service (NPS) and U.S. Bureau of Indian Affairs (BIA). Dr. Terry L. Myers gathered and synthesized much of the information for this document. The SWESA Team would especially like to thank Mr. Steve Sekscienski, U.S. Army Environmental Center, DoD, for obtaining the funds needed for this project, and Dr. Patricia Zenone, USFWS, New Mexico Ecological Services Field Office, for serving as the Contracting Officer’s Representative for this grant. Overall guidance, review, and editing of the document was provided by the CMED Subgroup of the SWESA Team, consisting of: Art Coykendall (BoR), John Nystedt (USFWS), Patricia Zenone (USFWS), Robert L. Palmer (DoD, U.S. Navy), Vicki Herren (BLM), Wade Eakle (USACE), and Ronnie Maes (USFS). The cooperation of many individuals facilitated this effort, including: USFWS: Jim Rorabaugh, Jennifer Graves, Debra Bills, Shaula Hedwall, Melissa Kreutzian, Marilyn Myers, Michelle Christman, Joel Lusk, Harold Namminga; USFS: Mike Rotonda, Susan Lee, Bryce Rickel, Linda WhiteTrifaro; USACE: Ron Fowler, Robert Dummer; BLM: Ted Cordery, Marikay Ramsey; BoR: Robert Clarkson; DoD, U.S. -
Evaluating the Effects of Vortex Rock Weir Stability on Physical Complexity Penitencia and Wildcat Creeks
Evaluating the Effects of Vortex Rock Weir Stability on Physical Complexity Penitencia and Wildcat Creeks Emily Corwin Katie Jagt Leigh Neary Completed for LA 227 River Restoration Fall 2007 Evaluating the effects of vortex rock weir stability on physical complexity Page i Evaluating the Effects of Vortex Rock Weir Stability on Physical Complexity Penitencia and Wildcat Creeks Emily Corwin Katie Jagt Leigh Neary Department of Civil and Department of Civil and Department of Civil and Environmental Engineering Environmental Engineering Environmental Engineering [email protected] [email protected] [email protected] Table of Contents Abstract……………………………………………………………………………………………………. 4 Introduction………………………………………………………………………………………………... 5 Methods…………………………………………………………………………………………………….6 Site Descriptions…………………………………………………………………………………………....9 Results…………………………………………………………………………………………………......11 Discussion…………………………………………………………………………………………………15 Conclusion………………………………………………………………………………………………...18 References…………………………………………………………………………………………………19 Appendix A: Variance Calculation Methods……………………………………………………………...20 Appendix B: Additional Figures and Tables………………………………………………………………21 List of Figures Figure 1. General configuration of vortex rock weirs…………………………..………………...……... .5 Figure 2. The four degrees of structural integrity; rating criteria for vortex rock weirs………..………....7 Figure 3. The six degrees of bed and bank degradation; erosion rating criteria…………………………...7 Figure 4. The control channel model schematic. ………………………………………………………… -
Platypus Predation Has Differential Effects on Aquatic Invertebrates In
www.nature.com/scientificreports OPEN Platypus predation has diferential efects on aquatic invertebrates in contrasting stream and lake ecosystems Tanya A. McLachlan‑Troup1*, Stewart C. Nicol 2 & Christopher R. Dickman 1 Predators can have strong impacts on prey populations, with cascading efects on lower trophic levels. Although such efects are well known in aquatic ecosystems, few studies have explored the infuence of predatory aquatic mammals, or whether the same predator has similar efects in contrasting systems. We investigated the efects of platypus (Monotremata: Ornithorhynchus anatinus) on its benthic invertebrate prey, and tested predictions that this voracious forager would more strongly afect invertebrates—and indirectly, epilithic algae—in a mesotrophic lake than in a dynamic stream ecosystem. Hypotheses were tested using novel manipulative experiments involving platypus‑ exclusion cages. Platypuses had strongly suppressive efects on invertebrate prey populations, especially detritivores and omnivores, but weaker or inconsistent efects on invertebrate taxon richness and composition. Contrary to expectation, predation efects were stronger in the stream than the lake; no efects were found on algae in either ecosystem due to weak efects of platypuses on herbivorous invertebrates. Platypuses did not cause redistribution of sediment via their foraging activities. Platypuses can clearly have both strong and subtle efects on aquatic food webs that may vary widely between ecosystems and locations, but further research is needed to replicate our experiments and understand the contextual drivers of this variation. Predation can strongly influence the size and dynamics of prey populations and the structure of prey communities1–3. Such infuences can arise if predators selectively depredate prey species from the array of prey taxa that is available (consumptive efects,e.g. -
Northern Leopard Frog Reintroduction
Northern Leopard Frog Reintroduction Year 3 (2001) Alberta Species at Risk Report No. 42 Northern Leopard Frog Reintroduction Year 3 (2001) Kris Kendell Alberta Species at Risk Report No. 42 February 2002 Project Partners: Publication No.: I/059 ISBN: 0-7785-2014-5 (Printed Edition) ISBN: 0-7785-2015-3 (On-line Edition) ISSN: 1496-7146 (Printed Edition) ISSN: 1496-7146 (On-line Edition) Illustration: Brian Huffman For copies of this report, contact: Information Centre – Publications Alberta Environment/Alberta Sustainable Resource Development Main Floor, Great West Life Building 9920 108 Street Edmonton, Alberta, Canada T5K 2M4 Telephone: (780) 422-2079 OR Information Service Alberta Environment/Alberta Sustainable Resource Development #100, 3115 12 Street NE Calgary, Alberta, Canada T2E 7J2 Telephone: (403) 297-3362 OR Visit our web site at: http://www3.gov.ab.ca/srd/fw/riskspecies/ This publication may be cited as: Kendell, K. 2002. Northern leopard frog reintroduction: Year 3 (2001). Alberta Sustainable Resource Development, Fish and Wildlife Division, Alberta Species at Risk Report No. 42, Edmonton, AB. 45 pp. ii DISCLAIMER The views and opinions expressed are those of the author and do not necessarily represent the policies or positions of the Department or the Alberta Government. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS.......................................................................................................... vii EXECUTIVE SUMMARY .........................................................................................................viii -
Managing Forests for Fish and Wildlife
Wildlife Habitat Management Institute Managing Forests for Fish and Wildlife December 2002 Fish and Wildlife Habitat Management Leaflet Number 18 Forested areas can be managed with a wide variety of objectives, ranging from allowing natural processes to dictate long-term condition without active management of any kind, to maximizing production of wood products on the shortest rotations possible. The primary purpose of this document is to show how fish and wildlife habitat management can be effectively integrated into the management of forestlands that are subject to periodic timber harvest activities. For forestlands that are not managed for production of timber or other forest products, many of the principles U.S. Forest Service, Southern Research Station in this leaflet also apply. Introduction Succession of Forest Vegetation Forests in North America provide a wide variety of In order to meet both timber production and wildlife important natural resource functions. Although management goals, landowners and managers need commercial forests may be best known for production to understand how forest vegetation responds following of pulp, lumber, and other wood products, they also timber management, or silvicultural prescriptions, or supply valuable fish and wildlife habitat, recreational other disturbances. Forest vegetation typically opportunities, water quality protection, and other progresses from one plant community to another over natural resource benefits. In approximately two-thirds time. This forest succession can be described in four of the forest land (land that is at least 10% tree- stages: covered) in the United States, harvest of wood products plays an integral role in how these lands are managed. Sustainable forest management applies Fish and Wildlife Air and Water biological, economic, and social principles to forest Wood Products Habitat Quality regeneration, management, and conservation to meet the specific goals of landowners or managers. -
Northern Leopard Frogs Range from the Northern United States and Canada to the More Northern Parts of the Southwestern United States
COLORADO PARKS & WILDLIFE Leopard Frogs ASSESSING HABITAT QUALITY FOR PRIORITY WILDLIFE SPECIES IN COLORADO WETLANDS Species Distribution Range Northern leopard frogs range from the northern United States and Canada to the more northern parts of the southwestern United States. With the exception of a few counties, they occur throughout Colorado. Plains leopard frogs have a much smaller distribution than northern leopard frogs, occurring through the Great Plains into southeastern Arizona and eastern Colorado. NORTHERN LEOPARD FROG © KEITH PENNER / PLAINS LEOPARD FROG © RENEE RONDEAU, CNHP RONDEAU, FROGRENEE © LEOPARD PLAINS / PENNER FROGKEITH © LEOPARD NORTHERN Two species of leopard frogs occur in Colorado. Northern leopard frogs (Lithobates pipiens; primary photo, brighter green) are more widespread than plains leopard frogs (L. blairi; inset). eral, plains leopard frogs breed in more Species Description ephemeral ponds, while northern leopard Identification frogs use semi-permanent ponds. Two leopard frogs are included in this Diet guild: northern leopard frog (Lithobates Adult leopard frogs eat primarily insects pipiens) and plains leopard frog (L. blairi). and other invertebrates, including They are roughly the same size (3–4 inches crustaceans, mollusks, and worms, as as adults). Northern leopard frogs can be well as small vertebrates, such as other green or brown and plains leopard frogs amphibians and snakes. Leopard frog are typically brown. Both species have two tadpoles are herbivorous, eating mostly light dorsolateral ridges along the back; in free-floating algae, but also consuming plains leopard frog there is a break in this some animal material. ridge near the rear legs. Conservation Status Preferred Habitats Northern leopard frog populations have Due to their complicated life history traits, declined throughout their range; they are leopard frogs occupy many habitats during listed in all western states and Canada different seasons and stages of develop- as sensitive, threatened, or endangered. -
Checklist of Amphibians, Reptiles, Birds and Mammals of New York
CHECKLIST OF AMPHIBIANS, REPTILES, BIRDS AND MAMMALS OF NEW YORK STATE Including Their Legal Status Eastern Milk Snake Moose Blue-spotted Salamander Common Loon New York State Artwork by Jean Gawalt Department of Environmental Conservation Division of Fish and Wildlife Page 1 of 30 February 2019 New York State Department of Environmental Conservation Division of Fish and Wildlife Wildlife Diversity Group 625 Broadway Albany, New York 12233-4754 This web version is based upon an original hard copy version of Checklist of the Amphibians, Reptiles, Birds and Mammals of New York, Including Their Protective Status which was first published in 1985 and revised and reprinted in 1987. This version has had substantial revision in content and form. First printing - 1985 Second printing (rev.) - 1987 Third revision - 2001 Fourth revision - 2003 Fifth revision - 2005 Sixth revision - December 2005 Seventh revision - November 2006 Eighth revision - September 2007 Ninth revision - April 2010 Tenth revision – February 2019 Page 2 of 30 Introduction The following list of amphibians (34 species), reptiles (38), birds (474) and mammals (93) indicates those vertebrate species believed to be part of the fauna of New York and the present legal status of these species in New York State. Common and scientific nomenclature is as according to: Crother (2008) for amphibians and reptiles; the American Ornithologists' Union (1983 and 2009) for birds; and Wilson and Reeder (2005) for mammals. Expected occurrence in New York State is based on: Conant and Collins (1991) for amphibians and reptiles; Levine (1998) and the New York State Ornithological Association (2009) for birds; and New York State Museum records for terrestrial mammals. -
Quick Guide to Calling Amphibians Reference: Maine’S Amphibians and Reptiles
Quick Guide to Calling Amphibians Reference: Maine’s Amphibians and Reptiles Spring Peeper (Pseudacris crucifer): One of Maine’s most widespread species and our smallest frog, measuring under an inch and a half, with a dark, imperfect cross or “X” pattern on the back. It has relatively smooth skin and is generally brown to gray with some yellow on the throat. A full chorus of these tiny frogs can be heard up to a half-mile away; each male makes a shrill, pure, high-pitched breeding call. Wood Frog (Rana sylvatica): The first frog to emerge in the spring, the wood frog can tolerate cold and even freezing temperatures for short periods of ©USGS NEARMI time. It has a dark mask over and below each eye ©USGS NEARMI and is otherwise dark red or tan. Wood frogs are widespread in Maine but limit their breeding generally to temporary or vernal pools. The wood frog’s call sounds like the quack of a duck. ©James Hardy ©James Hardy American Toad (Bufo americanus): Maine’s only toad, the American toad has dry, bumpy skin and is largely terrestrial, going in water only to breed and lay eggs. Its call is a high, musical trill that can last 30 seconds or more. Northern Leopard Frog (Rana pipiens): Apparent declines in the population make the northern leopard frog a species of “Special Concern” in the state of Maine. The leopard frog and its close cousin the pickerel frog are the only frogs in Maine with distinct spots. The leopard frog has two to three unevenly spaced rows of irregular oval spots on its back.