Ionic Liquid Electrolytes for Electrochemical Energy Storage Devices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acidic Ionic Liquids
ACIDIC IONIC LIQUIDS REFERENCES ACIDIC IONIC LIQUIDS 1-(4-sulfobutyl)-3-methylimidazolium trifluoromethanesulfonate, 98% ImSF1705c [(CH2)4SO3HMlm][CF3SO3] 1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate, 98% ImSF1213c [(CH2)4SO3HMlm][HSO4] 1-(4-sulfobutyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 98% ImSF1808c [(CH2)4SO3HMlm][N(CF3SO2)2] Experimental aspect : Hydrophilic Liquid at room temperature Brønsted acids Stable with water and oxygen Non-corrosive Easily recyclable Solubility : SOLVENT MISCIBILITY Water Miscible Hexane immiscible Ester immiscible Applications : These ionic liquids are used as acid catalysts in the following reactions : Esterification, Oxidation, Alkylation, Beckmann Rearrangement, Cyclotrimerisation… Esterification of ethanol by acetic acid1: Catalyzed by a Brønsted acidic ionic liquid CH3COOC2H5 + OH 2 Ethyl acetate H SO 2 4 Conversion = 60.3% Selectivity = 98.2% CH 3COOH + C 2H5OH 60°C, 4 h Acetic acid Ethanol [(CH2)H4SO3HMIm] [HSO4] CH3COOC2H5 + OH 2 Ethyl acetate Conversion = 92.8% Selectivity = 100% The 1-(4-sulfobutyl)-3-methylimidazoliumhydrogensulfate is a more effective catalyst than a conventional catalyst (sulphuric acid H2SO4). The ester formed is extracted by a simple separation and the acidic ionic liquid may then be recycled without any loss of activity (at the 5th recycling, Conversion=88.5% and Selectivity=100%). Cyclotrimerization of aldehydes2: Catalyzed by an acidic ionic liquid with no addition of any organic solvent [(CH2)4SO3HMIm] [CF3SO3] O O 3 O 25°C, 1 h O 2, 4, 6-triisopropyl-1, 3, 5-trioxane Isobutyraldehyde Conversion = 93% Selectivity = 100% The Isobutyraldehyde (60 mol) is catalyzed by the 1-(4-sulfobutyl)-3-methylimidazolium trifluoromethanesulfonate (1 mol) in only one hour at room temperature. The product from the reaction is isolated by liquid-liquid extraction with hexane ant the acidic ionic liquid is easily recycled without any loss of activity (at the 5th recycling, Conversion=93% and Selectivity=100%). -
Ionic Liquids
Vol. 5 No. 6 Enabling Technologies Ionic Liquids BASIL™ BASIONICS™ Ionic Liquids for Catalysis Ionic Liquids for Electrochemical Applications Enzymatic Reactions in Ionic Liquids Task-Specific Ionic Liquids CYPHOS® Phosphonium Ionic Liquids Imidazolium-Based Ionic Liquids Pyridinium-Based Ionic Liquids Pyrrolidinium-Based Ionic Liquids Ammonium-Based Ionic Liquids Phosphonium-Based Ionic Liquids sigma-aldrich.com/chemicalsynthesis 2 Introduction Sigma-Aldrich is proud to offer a new series of ChemFiles—called The strong ionic (Coulomb-) interaction within these substances results Enabling Technologies—to our Chemistry customers. Each piece will in a negligible vapor pressure (unless decomposition occurs), a non- highlight enabling products or technologies for chemical synthesis, drug flammable substance, and in a high thermally, mechanically as well discovery, and other areas of chemistry. as electrochemically stable product. In addition to this very interesting Ionic Liquids have experienced a comet-like boost in the last few years. combination of properties, they offer other favorable properties: for In this edition of ChemFiles, we highlight some current applications example, very appealing solvent properties and immiscibility with water of this fascinating class of new materials. We present over 50 new or organic solvents that result in biphasic systems. additions to our portfolio of 130+ Ionic Liquids, ranging from well- The choice of the cation has a strong impact on the properties of known imidazolium and pyridinium derivatives to ammonium, the Ionic Liquid and will often define the stability. The chemistry and pyrrolidinium, phosphonium, and sulfonium derivatives. At Sigma- functionality of the Ionic Liquid is, in general, controlled by the choice Aldrich, we are committed to being your preferred supplier for Ionic of the anion. -
Recent Advanced Applications of Ion-Gel in Ionic-Gated Transistor ✉ ✉ Depeng Wang1, Shufang Zhao1, Ruiyang Yin1, Linlin Li1, Zheng Lou 1 and Guozhen Shen 1
www.nature.com/npjflexelectron REVIEW ARTICLE OPEN Recent advanced applications of ion-gel in ionic-gated transistor ✉ ✉ Depeng Wang1, Shufang Zhao1, Ruiyang Yin1, Linlin Li1, Zheng Lou 1 and Guozhen Shen 1 Diversified regulation of electrons have received much attention to realize a multi-functional transistor, and it is crucial to have a considerable control over the charge carriers in transistors. Ionic gel, as the dielectric material in transistors, facilitates a large capacitance, and high induced-carrier concentrations. This review presents the recent progress in ionic-gated transistors (IGTs) that have good mechanical stability as well as high physical and chemical stability. We first briefly introduce the various applications of IGTs in sensors, neuromorphic transistors, organic transistor circuits, and health detection. Finally, the future perspectives of IGTs are discussed and some possible solutions to the challenges are also proposed. npj Flexible Electronics (2021) 5:13 ; https://doi.org/10.1038/s41528-021-00110-2 INTRODUCTION As a kind of electrolyte, ionic gel not only has good physical/ In the past decade, with the rapid development of the Internet of chemical stability, but also has the characteristics of flexibility, Things and consumer electronics, human demand for high lightweight, and transparency. Therefore, in the field of wearable 1234567890():,; performance, portability, and wear-ability pushed the upgrade of electronic devices, IGT has demonstrated unquestionable adapt- transistor integration density. However, due to the tunneling ability, portability, and functionality. These characteristics have effect and other problems, this trend of continuing to use Moore’s aroused the research enthusiasm for the application of ionic-gel to Law will inevitably slow down. -
Ionic Liquids for CO2 Capture and Reduction
Journal of C Carbon Research Editorial Ionic Liquids for CO2 Capture and Reduction Małgorzata E. Zakrzewska 1,2 1 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; [email protected] 2 LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; [email protected] As pointed out in the description of this thematic issue of C, with the current at- mospheric levels of carbon dioxide being above 400 ppm, there is a growing interest in recycling this greenhouse gas in the form of valuable compounds. The abundance of carbon dioxide is undoubtedly one of the biggest issues of our times, but it can also be a remarkable opportunity for the production of carbon-based fuels, materials and chemicals. Many efforts are being made globally, in both academia and industry, to increase the small contribution of Carbon Capture and Utilization (CCU) technologies to long-term climate mitigation. The reduction of CO2 to energetic compounds, such as carbon monoxide, formic acid, methanol, methane and other hydrocarbons, is of key importance for decreasing our dependency on fossil fuels. Ionic liquids consist of ionic species, a bulky organic cation weakly coordinated to either an organic or an inorganic anion. It is this weak coordination and asymmetry of ions that results in a reduction in the lattice energy and crystalline structure of ionic liquid, lowering its melting point. What makes these innovative fluids even more special, is that their structure can be easily tailored by changing cation/anion combinations and/or by attaching functional groups. -
Three-Dimensional Polymer Networks for Solid-State Electrochemical Energy Storage
Journal Pre-proofs Review Three-dimensional polymer networks for solid-state electrochemical energy storage Zhong Xu, Xiang Chu, Yihan Wang, Haitao Zhang, Weiqing Yang PII: S1385-8947(19)32963-8 DOI: https://doi.org/10.1016/j.cej.2019.123548 Reference: CEJ 123548 To appear in: Chemical Engineering Journal Received Date: 15 May 2019 Revised Date: 12 November 2019 Accepted Date: 18 November 2019 Please cite this article as: Z. Xu, X. Chu, Y. Wang, H. Zhang, W. Yang, Three-dimensional polymer networks for solid-state electrochemical energy storage, Chemical Engineering Journal (2019), doi: https://doi.org/10.1016/j.cej. 2019.123548 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Published by Elsevier B.V. Three-dimensional polymer networks for solid-state electrochemical energy storage Zhong Xua†, Xiang Chua†, Yihan Wanga, Haitao Zhang*, a, Weiqing Yang*, a, b aKey Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China. bState Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. -
Controllable Selective Exfoliation of High-Quality Graphene Nanosheets and Nanodots by Ionic Liquid Assisted Grindingw
Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grindingw Nai Gui Shang,*a Pagona Papakonstantinou,*a Surbhi Sharma,a Gennady Lubarsky,a Meixian Li,b David W. McNeill,c Aidan J. Quinn,d Wuzong Zhoue and Ross Blackleye Received 18th November 2011, Accepted 22nd December 2011 DOI: 10.1039/c2cc17185f Bulk quantities of graphene nanosheets and nanodots have quantum dots can effectively tune the band gap of graphene been selectively fabricated by mechanical grinding exfoliation and facilitate the lateral scaling of graphene in nanoelectronic of natural graphite in a small quantity of ionic liquids. The devices. In this context it has become urgent to develop resulting graphene sheets and dots are solvent free with low effective routes for tailoring the graphene structures.8,9 levels of naturally absorbed oxygen, inherited from the starting To date, three main methods such as chemical vapour graphite. The sheets are only two to five layers thick. The deposition (CVD),10 micromechanical cleavage and chemical graphene nanodots have diameters in the range of 9–29 nm exfoliation11 have been used to fabricate graphene sheets. and heights in the range of 1–16 nm, which can be controlled by Compared to other techniques, chemical exfoliation, which changing the processing time. involves the direct exfoliation of various solid starting materials, such as graphite oxide, expanded graphite and natural Recently graphene has received extensive attention since it has graphite,12–15 is advantageous in terms of simplicity, low cost demonstrated many unique electrical, thermal and mechanical and high volume production. However, currently explored 1–5 properties that have never been found in other materials. -
Preparation of Lactic Acid from Glucose in Ionic Liquid Solvent System
J. Cent. South Univ. Technol. (2010) 17: 45−49 DOI: 10.1007/s11771−010−0009−3 Preparation of lactic acid from glucose in ionic liquid solvent system HUANG Jia-ruo(黄嘉若), LI Wen-sheng(李文生), ZHOU Xiao-ping(周小平) College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China © Central South University Press and Springer-Verlag Berlin Heidelberg 2010 Abstract: A new reaction system was designed to economically convert glucose to lactic acid environment-friendly. Hydrophobic ionic liquids were chosen as solvent that can promote the decomposition reaction of glucose, and the catalytic performance of the solid bases was evaluated. Both the reaction temperature and time can affect the yield of lactic acid. A high yield (97%) of lactic acid was achieved under the optimal reaction condition. The 1H NMR spectra and HPLC-MS were used to identify the formation of the lactic acid and variations of ionic liquid. It is found that ionic-liquids have a unique solvent effect for glucose and bases. Water can be used as solvent to extract calcium lactate. This shows a great potential of hydrophobic ionic liquids in the solid bases catalyzed reaction that is limited by the weak solubility of solid bases in organic and water solution. Key words: glucose; lactic acid; ionic liquid; solid base; catalysis 100 ℃. However, in order to obtain lactic acid with a 1 Introduction high yield of 57%, the excess amount of sodium hydroxide must be used. Excessive sodium hydroxide A sustainable future for the chemical industry leads to a number of problems. It is particularly difficult requires feedbacks based on the renewable rather than to separate sodium lactate from sodium hydroxide. -
Application of Ionic Liquids for Batteries and Supercapacitors
materials Review Application of Ionic Liquids for Batteries and Supercapacitors Apurba Ray and Bilge Saruhan * German Aerospace Center (DLR), Department of High-Temperature and Functional Coatings, Institute of Materials Research, 51147 Cologne, Germany; [email protected] * Correspondence: [email protected] Abstract: Nowadays, the rapid development and demand of high-performance, lightweight, low cost, portable/wearable electronic devices in electrical vehicles, aerospace, medical systems, etc., strongly motivates researchers towards advanced electrochemical energy storage (EES) devices and technologies. The electrolyte is also one of the most significant components of EES devices, such as batteries and supercapacitors. In addition to rapid ion transport and the stable electrochemical performance of electrolytes, great efforts are required to overcome safety issues due to flammability, leakage and thermal instability. A lot of research has already been completed on solid polymer electrolytes, but they are still lagging for practical application. Over the past few decades, ionic liquids (ILs) as electrolytes have been of considerable interest in Li-ion batteries and supercapacitor applications and could be an important way to make breakthroughs for the next-generation EES systems. The high ionic conductivity, low melting point (lower than 100 ◦C), wide electrochemical potential window (up to 5–6 V vs. Li+/Li), good thermal stability, non-flammability, low volatility due to cation–anion combinations and the promising self-healing ability of ILs make them superior as “green” solvents for industrial EES applications. In this short review, we try to provide an overview of the recent research on ILs electrolytes, their advantages and challenges for next-generation Li-ion battery and supercapacitor applications. -
Upscaling Organic Electronic Devices
Upscaling Organic Electronic Devices Abdellah Malti Link¨opingstudies in science and technology. Dissertation No. 1711 2015 « All rights reversed. Printed by LiU-Tryck, Link¨oping,Sweden, 2015 ISBN 978-91-7685-929-2 ISSN 0345-7524 “Dissent is the native activity of the scientist [...]. To me, being an intellectual doesn’t mean knowing about intellectual issues, it means taking pleasure in them.” — Jacob Bronowski (1908-1974) Dedication To Humanity. The known-universe’s best hope to understand Itself, Relentless challenger of entropy, Champion of Truth and Freedom; Lest We fall prey to the perilous comforts of relativism. Abstract Conventional electronics based on silicon, germanium, or com- pounds of gallium require prohibitively expensive investments. A state-of-the-art microprocessor fabrication facility can cost up to $15 billion while using environmentally hazardous processes. In that context, the discovery of solution-processable conducting (and semiconducting) polymers stirred up expectations of ubiquitous electronics because it enables the mass-production of devices using well established high-volume printing techniques. In essence, this thesis attempts to study the characteristics and applications of thin conducting polymer films (<200 nm), and scale them up to thick-films (>100 µm). First, thin-films of organic ma- terials were combined with an electric double layer capacitor to decrease the operating voltage of organic field effect transistors. In addition, ionic current-rectifying diodes membranes were inte- grated inside electrochromic displays to increase the device’s bista- bility and obviate the need for an expensive addressing backplane. This work also shows that it is possible to forgo the substrate and produce a self-standing electrochromic device by compositing the same water-processable material with nanofibrillated cellulose (plus a whitening pigment and high-boiling point solvents). -
Synthesis of Graphene Nanosheets Through Spontaneous Sodiation Process
Journal of C Carbon Research Article Synthesis of Graphene Nanosheets through Spontaneous Sodiation Process Deepak-George Thomas †, Emrah Kavak †, Niloofar Hashemi, Reza Montazami ID and Nicole N. Hashemi * ID Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; [email protected] (D.-G.T.); [email protected] (E.K.); [email protected] (N.H.); [email protected] (R.M.) * Correspondence: [email protected] † These authors contributed equally to this work. Received: 11 June 2018; Accepted: 6 July 2018; Published: 23 July 2018 Abstract: Graphene is one of the emerging materials in the nanotechnology industry due to its potential applications in diverse areas. We report the fabrication of graphene nanosheets by spontaneous electrochemical reaction using solvated ion intercalation into graphite. The current literature focuses on the fabrication of graphene using lithium metal. Our procedure uses sodium metal, which results in a reduction of costs. Using various characterization techniques, we confirmed the fabrication of graphene nanosheets. We obtained an intensity ratio (ID/IG) of 0.32 using Raman spectroscopy, interlayer spacing of 0.39 nm and our XPS results indicate that our fabricated compound is relatively oxidation free. Keywords: graphene nanosheets; sodiation process; synthesis; Raman spectroscopy 1. Introduction Graphene nanosheets (GNS) consist of single-, bi- or, a few, but fewer than ten, sp2-hybridized layers of carbon atoms that are in the form of six-membered rings [1–4]. Graphitic forms such as 0D fullerene, 1D CNT (Carbon Nano Tubes) and 3D graphite originate from graphene nanosheets [4]. Graphene is made up of hexagonal networks composed of sp2 carbon atoms and the adjoining carbon atoms are bonded using strong covalent bonds [5]. -
Graphene Based Room Temperature Flexible Nanocomposites From
www.nature.com/scientificreports OPEN Graphene based room temperature fexible nanocomposites from permanently cross-linked networks Received: 2 November 2017 Nishar Hameed1, Ludovic F. Dumée2, Francois-Marie Allioux2, Mojdeh Reghat1, Jefrey S. Accepted: 25 January 2018 Church3, Minoo Naebe2, Kevin Magniez2, Jyotishkumar Parameswaranpillai4 & Bronwyn L. Fox1 Published: xx xx xxxx Graphene based room temperature fexible nanocomposites were prepared using epoxy thermosets for the frst time. Flexible behavior was induced into the epoxy thermosets by introducing charge transfer complexes between functional groups within cross linked epoxy and room temperature ionic liquid ions. The graphene nanoplatelets were found to be highly dispersed in the epoxy matrix due to ionic liquid cation–π interactions. It was observed that incorporation of small amounts of graphene into the epoxy matrix signifcantly enhanced the mechanical properties of the epoxy. In particular, a 0.6 wt% addition increased the tensile strength and Young’s modulus by 125% and 21% respectively. The electrical resistance of nanocomposites was found to be increased with graphene loading indicating the level of self-organization between the ILs and the graphene sheets in the matrix of the composite. The graphene nanocomposites were fexible and behave like ductile thermoplastics at room temperature. This study demonstrates the use of ionic liquid as a compatible agent to induce fexibility in inherently brittle thermoset materials and improve the dispersion of graphene to create high performance nanocomposite materials. Tere has recently been great interest in making fexible/bendable electronics such as rollup displays and wearable devices with graphene based polymer composites typically being used as a fexible substrate1,2. -
Ionic Liquids-Designer Solvents for Green Chemistry
International Journal of Basic Sciences and Applied Computing (IJBSAC) ISSN: 2394-367X, Volume-1 Issue-1, August 2014 Ionic Liquids-Designer Solvents for Green Chemistry Sadhana Vishwakarma Abstract - Ionic liquids, as green solvents have been studied widely Many solvents used in large volumes for many decades have now a days due to their appealing properties such as negligible been found to create serious toxic or otherwise hazardous vapour pressure, large liquid range, high thermal stability, high properties. Halogenated solvents such as carbon tetrachloride, ionic conductivity, large electrochemical window, and ability to perchloroethylene, and chloroform, for example, have been solvate compounds of widely varying polarity. Utilizing ionic liquids is one of the goals of green chemistry because they create a implicated as probable and/or suspect carcinogens, while cleaner and more sustainable chemistry and are receiving other classes of solvents have demonstrated increasing interest as environmental friendly solvents for many neurotoxicological effects. The search for an unconventional synthetic and catalytic processes. Ionic liquids have been solvent is an important step in making an analysis and investigated for a wide range of synthetic applications, they have separation process “greener” and environmentally friendlier. fascinated considerable interest for used as non-volatile solvent It appears that alternative solvents like ionic liquids (ILs) and based electrolytes in the field of organic synthesis, catalysis, supercritical fluids have one extra aspect which makes them electrochemistry, solar cells, fuel cells, etc., as they possess many even more attractive for researchers—tunability. The ability benefits than volatile organic solvents. to fine-tune the properties of the solvent medium will allow Index Terms— Green chemistry, applications, classification, this to be chosen to replace specific solvents in a variety of ionic liquids, properties.