The Endocannabinoid System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Targeting the Endocannabinoid System to Reduce Nociception
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2011 Targeting the endocannabinoid system to reduce nociception Lamont Booker Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Pharmacology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2419 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Targeting the Endocannabinoid System to Reduce Nociception A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. By Lamont Booker Bachelor’s of Science, Fayetteville State University 2003 Master’s of Toxicology, North Carolina State University 2005 Director: Dr. Aron H. Lichtman, Professor, Pharmacology & Toxicology Virginia Commonwealth University Richmond, Virginia April 2011 Acknowledgements The author wishes to thank several people. I like to thank my advisor Dr. Aron Lichtman for taking a chance and allowing me to work under his guidance. He has been a great influence not only with project and research direction, but as an excellent example of what a mentor should be (always willing to listen, understanding the needs of each student/technician, and willing to provide a hand when available). Additionally, I like to thank all of my committee members (Drs. Galya Abdrakmanova, Francine Cabral, Sandra Welch, Mike Grotewiel) for your patience and willingness to participate as a member. Our term together has truly been memorable! I owe a special thanks to Sheryol Cox, and Dr. -
S41467-020-19780-Z.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-19780-z OPEN Endocannabinoid signaling regulates the reinforcing and psychostimulant effects of ketamine in mice Wei Xu1,3, Hongchun Li1,3, Liang Wang1, Jiamei Zhang1, Chunqi Liu1, Xuemei Wan1, Xiaochong Liu1, Yiming Hu1, ✉ Qiyao Fang1, Yuanyuan Xiao1, Qian Bu1, Hongbo Wang2, Jingwei Tian2, Yinglan Zhao1 & Xiaobo Cen 1 The abuse potential of ketamine limits its clinical application, but the precise mechanism remains largely unclear. Here we discovered that ketamine significantly remodels the 1234567890():,; endocannabinoid-related lipidome and activates 2-arachidonoylglycerol (2-AG) signaling in the dorsal striatum (caudate nucleus and putamen, CPu) of mice. Elevated 2-AG in the CPu is essential for the psychostimulant and reinforcing effects of ketamine, whereas blockade of the cannabinoid CB1 receptor, a predominant 2-AG receptor, attenuates ketamine-induced remodeling of neuronal dendrite structure and neurobehaviors. Ketamine represses the transcription of the monoacylglycerol lipase (MAGL) gene by promoting the expression of PRDM5, a negative transcription factor of the MAGL gene, leading to increased 2-AG pro- duction. Genetic overexpression of MAGL or silencing of PRDM5 expression in the CPu robustly reduces 2-AG production and ketamine effects. Collectively, endocannabinoid signaling plays a critical role in mediating the psychostimulant and reinforcing properties of ketamine. 1 National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041 Chengdu, People’s Republic of China. 2 Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005 Yantai, People’s Republic of China. -
Inhibition of Monoacylglycerol Lipase Reduces the Reinstatement Of
International Journal of Neuropsychopharmacology (2019) 22(2): 165–172 doi:10.1093/ijnp/pyy086 Advance Access Publication: November 27, 2018 Regular Research Article regular research article Inhibition of Monoacylglycerol Lipase Reduces the Reinstatement of Methamphetamine-Seeking and Anxiety-Like Behaviors in Methamphetamine Self-Administered Rats Yoko Nawata, Taku Yamaguchi, Ryo Fukumori, Tsuneyuki Yamamoto Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, Nagasaki, Japan Correspondence: Tsuneyuki Yamamoto, PhD, Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, 2825–7 Huis Ten Bosch Sasebo, Nagasaki 859–3298, Japan ([email protected]). Abstract Background: Methamphetamine is a highly addictive psychostimulant with reinforcing properties. Our laboratory previously found that Δ8-tetrahydrocannabinol, an exogenous cannabinoid, suppressed the reinstatement of methamphetamine- seeking behavior. The purpose of this study was to determine whether the elevation of endocannabinoids modulates the reinstatement of methamphetamine-seeking behavior and emotional changes in methamphetamine self-administered rats. Methods: Rats were tested for the reinstatement of methamphetamine-seeking behavior following methamphetamine self- administration and extinction. The elevated plus-maze test was performed in methamphetamine self-administered rats during withdrawal. We investigated the effects of JZL184 and URB597, 2 inhibitors of endocannabinoid hydrolysis, on the reinstatement of methamphetamine-seeking and anxiety-like behaviors. Results: JZL184 (32 and 40 mg/kg, i.p.), an inhibitor of monoacylglycerol lipase, significantly attenuated both the cue- and stress-induced reinstatement of methamphetamine-seeking behavior. Furthermore, URB597 (3.2 and 10 mg/kg, i.p.), an inhibitor of fatty acid amide hydrolase, attenuated only cue-induced reinstatement. AM251, a cannabinoid CB1 receptor antagonist, antagonized the attenuation of cue-induced reinstatement by JZL184 but not URB597. -
A Dissertation Entitled Uncovering Cannabinoid Signaling in C. Elegans
A Dissertation Entitled Uncovering Cannabinoid Signaling in C. elegans: A New Platform to Study the Effects of Medicinal Cannabis By Mitchell Duane Oakes Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biology ________________________________________ Dr. Richard Komuniecki, Committee Chair _______________________________________ Dr. Bruce Bamber, Committee Member ________________________________________ Dr. Patricia Komuniecki, Committee Member ________________________________________ Dr. Robert Steven, Committee Member ________________________________________ Dr. Ajith Karunarathne, Committee Member ________________________________________ Dr. Jianyang Du, Committee Member ________________________________________ Dr. Amanda Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo August 2018 Copyright 2018, Mitchell Duane Oakes This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Uncovering Cannabinoid Signaling in C. elegans: A New Platform to Study the Effects of Medical Cannabis By Mitchell Duane Oakes Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biology The University of Toledo August 2018 Cannabis or marijuana, a popular recreational drug, alters sensory perception and exerts a range of medicinal benefits. The present study demonstrates that C. elegans exposed to -
Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System
International Journal of Molecular Sciences Review Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System Ana Lago-Fernandez , Sara Zarzo-Arias, Nadine Jagerovic * and Paula Morales * Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; [email protected] (A.L.-F.); [email protected] (S.Z.-A.) * Correspondence: [email protected] (N.J.); [email protected] (P.M.); Tel.: +34-91-562-2900 (P.M.) Abstract: Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders. Citation: Lago-Fernandez, A.; Zarzo-Arias, S.; Jagerovic, N.; Keywords: PPAR; cannabinoids; CB1R; CB2R; FAAH; multitarget; endocannabinoid system Morales, P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. -
Cannabinoid Interventions for PTSD: Where to Next?
Accepted Manuscript Cannabinoid interventions for PTSD: Where to next? Luke Ney, Allison Matthews, Raimondo Bruno, Kim Felmingham PII: S0278-5846(19)30034-X DOI: https://doi.org/10.1016/j.pnpbp.2019.03.017 Reference: PNP 9622 To appear in: Progress in Neuropsychopharmacology & Biological Psychiatry Received date: 14 January 2019 Revised date: 20 March 2019 Accepted date: 29 March 2019 Please cite this article as: L. Ney, A. Matthews, R. Bruno, et al., Cannabinoid interventions for PTSD: Where to next?, Progress in Neuropsychopharmacology & Biological Psychiatry, https://doi.org/10.1016/j.pnpbp.2019.03.017 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Cannabinoid interventions for PTSD: Where to next? Luke Ney1, Allison Matthews1, Raimondo Bruno1 and Kim Felmingham2 1School of Psychology, University of Tasmania, Australia 2School of Psychological Sciences, University of Melbourne, Australia ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT 2 Abstract Cannabinoids are a promising method for pharmacological treatment of post- traumatic stress disorder (PTSD). Despite considerable research devoted to the effect of cannabinoid modulation on PTSD symptomology, there is not a currently agreed way by which the cannabinoid system should be targeted in humans. In this review, we present an overview of recent research identifying neurological pathways by which different cannabinoid-based treatments may exert their effects on PTSD symptomology. -
Inhibition of Fatty Acid Amide Hydrolase (FAAH) by Macamides
Molecular Neurobiology (2019) 56:1770–1781 https://doi.org/10.1007/s12035-018-1115-8 Inhibition of Fatty Acid Amide Hydrolase (FAAH) by Macamides M. Alasmari1 & M. Bӧhlke1 & C. Kelley1 & T. Maher1 & A. Pino-Figueroa1 Received: 25 October 2017 /Accepted: 11 May 2018 /Published online: 20 June 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The pentane extract of the Peruvian plant, Lepidium meyenii (Maca), has been demonstrated to possess neuroprotective activity in previous in vitro and in vivo studies (Pino-Figueroa et al. in Ann N Y Acad Sci 1199:77–85, 2010; Pino-Figueroa et al. in Am J Neuroprot Neuroregener 3:87–92, 2011). This extract contains a number of macamides that may act on the endocannabinoid system (Pino-Figueroa et al. in Ann N Y Acad Sci 1199:77–85, 2010; Pino-Figueroa et al., 2011; Dini et al. in Food Chem 49:347–349, 1994). The aim of this study was to characterize the inhibitory activity of four of these maccamides (N- benzylstearamide, N-benzyloleamide, N-benzyloctadeca-9Z,12Z-dienamide, and N-benzyloctadeca-9Z,12Z,15Z-trienamide) on fatty acid amide hydrolase (FAAH), an enzyme that is responsible for endocannabinoid degradation in the nervous system (Kumar et al. in Anaesthesia 56:1059–1068, 2001). The four compounds were tested at concentrations between 1 and 100 μM, utilizing an FAAH inhibitor screening assay. The results demonstrated concentration-dependent FAAH inhibitory activities for the four macamides tested. N-Benzyloctadeca-9Z,12Z-dienamide demonstrated the highest FAAH inhibitory activ- ity whereas N-benzylstearamide had the lowest inhibitory activity. -
Positive Allosteric Modulators (Pams) in Mouse Models of Overt Cannabimimetic Activity, Subjective Drug Effects, and Neuropathic Pain
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2021 Investigating Cannabinoid Type-1 Receptor (CB1R) Positive Allosteric Modulators (PAMs) in Mouse Models of Overt Cannabimimetic Activity, Subjective Drug Effects, and Neuropathic Pain Jayden Elmer Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Behavioral Neurobiology Commons, Behavior and Behavior Mechanisms Commons, Medicinal and Pharmaceutical Chemistry Commons, Nervous System Diseases Commons, and the Pharmacology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/6777 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. 2021 Investigating Cannabinoid Type-1 Receptor (CB1R) Positive Allosteric Modulators (PAMs) in Mouse Models of Overt Cannabimimetic Activity, Subjective Drug Effects and Neuropathic Pain Jayden A. Elmer Investigating Cannabinoid Type-1 Receptor (CB1R) Positive Allosteric Modulators (PAMs) in Mouse Models of Overt Cannabimimetic Activity, Subjective Drug Effects and Neuropathic Pain A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University By Jayden Aric Elmer Bachelor of Science, University of Virginia, 2018 Director: Dr. Aron Lichtman, Professor, Department of Pharmacology & Toxicology; Associate Dean of Research and Graduate Studies, School of Pharmacy Virginia Commonwealth University Richmond, Virginia July 2021 Acknowledgements I would first like to extend my gratitude towards the CERT program at VCU. The CERT program opened the doors for me to get involved in graduate research. -
The Endocannabinoid System: Critical for the Neurotrophic Action of Psychotropic Drugs
Biomedical Reviews 2010; 21: 31-46. © Bul garian Society for Cell Biology ISSN 1314-1929 THE ENDOCANNABINOID SYSTEM: CRITICAL FOR THE NEUROTROPHIC ACTION OF PSYCHOTROPIC DRUGS Parichehr Hassanzadeh Research Center for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran There is growing evidence that neurotrophins besides their well-established actions in regulating the survival, differentiation, and maintenance of the functions of specific populations of neurons, act as the potential mediators of antidepressant responses. Previous studies on the regulation of nerve growth factor (NGF) levels by psychotropic medications are limited in scope and the underlying mechanism(s) remain elusive. In this review, the latest findings on the effects of pharmacologically heterogeneous groups of psychotropic drugs on NGF contents in the brain regions involved in the modulation of emotions are summarized. Moreover, the therapeutic potentials of the endocannabinoid system which is linked to depression and/or antidepressant effects and appears to interact with neurotrophin signalling, are reviewed. New findings demonstrate that endocannabinoid system is involved in the mechanisms of action of certain psychotropic medications including neurokinin receptor antagonists and that these are mediated via the upregulation of brain regional levels of NGF. This provides a better understanding of the pathophysi- ological mechanisms underlying neuropsychiatric disorders, leading to novel drug designs. Biomed Rev 2010; 21: 31-46. Key words: endocannabinoids, NGF, psychotropics, brain INTRODUCTION glucocorticoid activity are involved in the pathophysiology Depression is a serious and widespread mental disorder with of depression (2-4). However, the monoamine-based anti- high relapse rate which is characterized by an array of dis- depressants do not fulfil the expectations in terms of onset turbances in emotional behavior, memory, neurovegetative of action, efficacy, and tolerability. -
Pharmacological Enhancement of Cannabinoid CB1 Receptor Activity Elicits an Antidepressant-Like Response in the Rat Forced Swim Test
European Neuropsychopharmacology 15 (2005) 593 – 599 www.elsevier.com/locate/euroneuro Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test Matthew N. Hill, Boris B. Gorzalka* Department of Psychology, University of British Columbia, Vancouver, 2136 West Mall, Canada V6T 1Z4 Received 15 October 2004; received in revised form 1 February 2005; accepted 22 March 2005 Abstract These experiments aimed to assess whether enhanced activity at the cannabinoid CB1 receptor elicits antidepressant-like effects. To examine this we administered 1 and 5 mg/kg doses of the endocannabinoid uptake inhibitor AM404; 5 and 25 Ag/kg doses of HU-210, a potent CB1 receptor agonist; 1, 2.5 and 5 mg/kg of oleamide, which elicits cannabinoidergic actions; 1 and 5 mg/kg doses of AM 251, a selective CB1 receptor antagonist, as well as 10 mg/kg desipramine (a positive antidepressant control) and measured the duration of immobility, during a 5-min test session of the rat Porsolt forced swim test. Results demonstrated that administration of desipramine reduced immobility duration by about 50% and that all of AM404, oleamide and HU-210 administration induced comparable decreases in immobility that were blocked by pretreatment with AM 251. Administration of the antagonist AM 251 alone had no effect on immobility at either dose. These data suggest that enhancement of CB1 receptor signaling results in antidepressant effects in the forced swim test similar to that seen following conventional antidepressant administration. D 2005 Elsevier B.V. and ECNP. All rights reserved. Keywords: Cannabinoid; Antidepressant; Forced swim test; Oleamide; Rat 1. -
Influence of the CB1 Cannabinoid Receptors on the Activity of the Monoaminergic System in the Behavioural Tests in Mice
Accepted Manuscript Title: Influence of the CB1 cannabinoid receptors on the activity of the monoaminergic system in the behavioural tests in mice Authors: Ewa Poleszak, Sylwia Wosko,´ Karolina Sławinska,´ Elzbieta˙ Wyska, Aleksandra Szopa, Urszula Doboszewska, Piotr Wlaz,´ Aleksandra Wlaz,´ Jarosław Dudka, Jarosław Szponar, Anna Serefko PII: S0361-9230(19)30298-9 DOI: https://doi.org/10.1016/j.brainresbull.2019.05.021 Reference: BRB 9698 To appear in: Brain Research Bulletin Received date: 16 April 2019 Revised date: 28 May 2019 Accepted date: 29 May 2019 Please cite this article as: Poleszak E, Wosko´ S, Sławinska´ K, Wyska E, Szopa A, Doboszewska U, WlazP,Wla´ z´ A, Dudka J, Szponar J, Serefko A, Influence of the CB1 cannabinoid receptors on the activity of the monoaminergic system in the behavioural tests in mice, Brain Research Bulletin (2019), https://doi.org/10.1016/j.brainresbull.2019.05.021 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Influence of the CB1 cannabinoid receptors on the activity of the monoaminergic system in the behavioural tests in mice Ewa Poleszak 1,*, Sylwia Wośko 1, Karolina Sławińska 1, Elżbieta Wyska -
Distinct Roles of the Endocannabinoids Anandamide and 2-Arachidonoylglycerol in Social Behavior and Emotionality at Different Developmental Ages in Rats
European Neuropsychopharmacology (2015) 25, 1362–1374 www.elsevier.com/locate/euroneuro Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats Antonia Manducaa, Maria Morenab,c, Patrizia Campolongob, Michela Servadioa, Maura Palmeryb, Luigia Trabaced, Matthew N. Hillc, Louk J.M.J. Vanderschurene,f, Vincenzo Cuomob, Viviana Trezzaa,n aDepartment of Science, Section of Biomedical Sciences and Technologies, University “Roma Tre”, Rome, Italy bDepartment of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy cHotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada dDepartment of Clinical and Experimental Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy eDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands fDepartment of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands Received 30 November 2014; received in revised form 25 February 2015; accepted 1 April 2015 KEYWORDS Abstract Endocannabinoid sys- To date, our understanding of the relative contribution and potential overlapping roles of the tem; endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of Social behavior; brain function and behavior is still limited. To address this issue, we investigated the effects of Endocannabinoids; systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by Emotional behavior; inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and Rodents; adult rats. JZL195 JZL195, administered at the dose of 0.01 mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals.