Allele-Specific Non-CG DNA Methylation Marks Domains Of

Total Page:16

File Type:pdf, Size:1020Kb

Allele-Specific Non-CG DNA Methylation Marks Domains Of Allele-specific non-CG DNA methylation marks domains PNAS PLUS of active chromatin in female mouse brain Christopher L. Keowna, Joel B. Berletchb, Rosa Castanonc, Joseph R. Neryc, Christine M. Distecheb,d, Joseph R. Eckerc,e, and Eran A. Mukamela,1 aDepartment of Cognitive Science, University of California, San Diego, CA 92037; bDepartment of Pathology, University of Washington, Seattle, WA 98195; cGenomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; dDepartment of Medicine, University of Washington, Seattle, WA 98195; and eHoward Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037 Edited by Paul D. Soloway, Cornell University, Ithaca, NY, and accepted by Editorial Board Member Andrew G. Clark December 20, 2016 (received for review July 21, 2016) DNA methylation at gene promoters in a CG context is associated correlated with high or low levels of DNA methylation at CG with transcriptional repression, including at genes silenced on the dinucleotides (mCG) in promoter regions, respectively (10). How- inactive X chromosome in females. Non-CG methylation (mCH) is a ever, different epigenetic profiles may be associated with XCI and distinct feature of the neuronal epigenome that is differentially escape from XCI in the brain because the DNA methylation distributed between males and females on the X chromosome. landscape of neurons is distinct from other cell types. In particular, However, little is known about differences in mCH on the active neurons accumulate methylation at millions of genomic cytosines in (Xa) and inactive (Xi) X chromosomes because stochastic CA and CT dinucleotides during postnatal brain development be- X-chromosome inactivation (XCI) confounds allele-specific epige- ginning at 1 wk of age in mice (6, 11). This non-CG methylation nomic profiling. We used whole-genome bisulfite sequencing in a correlates with reduced gene expression and inactivation of distal mouse model with nonrandom XCI to examine allele-specific DNA regulatory elements in a highly cell type-specific manner (12). Al- methylation in frontal cortex. Xi was largely devoid of mCH, though the functional relevance of non-CG methylation whereas Xa contained abundant mCH similar to the male X (mCH) is unclear, it is bound by the transcriptional repressor chromosome and the autosomes. In contrast to the repressive methyl-CpG binding protein 2 (MeCP2) as neurons mature, GENETICS association of DNA methylation at CG dinucleotides (mCG), mCH and is enriched at genes that are up-regulated in Rett syn- accumulates on Xi in domains with transcriptional activity, includ- drome (13, 14). ing the bodies of most genes that escape XCI and at the Mosaic XCI prevents discrimination of methylation on the X-inactivation center, validating this epigenetic mark as a signature active X chromosome (Xa) and Xi alleles by conventional of transcriptional activity. Escape genes showing CH hypermethy- methylome profiling. We reasoned that understanding the allele- lation were the only genes with CG-hypomethylated promoters on specific distribution of neuronal mCH in the context of X in- Xi, a well-known mark of active transcription. Finally, we found activation and imprinting could yield new insights into this extensive allele-specific mCH and mCG at autosomal imprinted unique aspect of the brain epigenome. Therefore, we profiled regions, some with a negative correlation between methylation allele-specific DNA methylation, as well as transcription, in in the two contexts, further supporting their distinct functions. mouse frontal cortex using a Xist mouse mutant hybrid in which Our findings show that neuronal mCH functions independently the paternal allele was deterministically inactivated in all cells of mCG and is a highly dynamic epigenomic correlate of allele- (8). To assign sequencing reads to alleles, we used female specific gene regulation. DNA methylation | X-chromosome inactivation | imprinting | Non-CG | Bcor Significance n diploid mammals, the equivalence of the two parental alleles Mammalian cells contain two copies of the genome inherited Iis violated by allele-specific epigenetic regulation in a small, from the two parents. Although most genes are expressed using but critical, subset of the genome. Genomic imprinting, or par- both, a small but critical part of the genome has different levels of ent-of-origin–dependent gene regulation (1), is critical for em- expression from each copy. These parts include the X chromosome in females and imprinted genes in both genders, which play key bryonic development and plays a role in neuronal differentiation roles in brain development and cognition. We measured gene (2). In females, epigenetic inactivation of one X chromosome expression and DNA methylation, an epigenetic modification of silences transcription of most genes to equalize gene expression the genome, in the brains of mice using a technique that allowed with males (3). Both imprinting and X-chromosome inactivation us to analyze the maternal and paternal copies of the genome (XCI) are critical to healthy brain development (4, 5). Despite separately. Our findings show that a brain-specific form of DNA the importance of allele-specific gene regulation in the brain, the methylation called non-CG methylation marks regions of active epigenetic mechanisms controlling these patterns are not com- transcription within the inactive X chromosome. pletely known, in part, due to the challenge of allele-specific epi- genomic profiling. In particular, DNA methylation patterns can Author contributions: C.L.K., C.M.D., J.R.E., and E.A.M. designed research; C.L.K., J.B.B., reflect allelic asymmetries in autosomal gene regulation (6), but R.C., J.R.N., C.M.D., and E.A.M. performed research; C.L.K., J.B.B., C.M.D., and E.A.M. contributed new reagents/analytic tools; C.L.K. and E.A.M. analyzed data; and C.L.K. their correlation with XCI has not been fully addressed. and E.A.M. wrote the paper. XCI has unique advantages as a case study for the investiga- The authors declare no conflict of interest. tion of allele-specific epigenomic regulation. The inactivated allele This article is a PNAS Direct Submission. P.D.S. is a Guest Editor invited by the Editorial is selected stochastically during early development and maintained Board. through subsequent cell divisions (7), yielding a mosaic pattern Freely available online through the PNAS open access option. of allelic expression in adult female tissues. Despite extensive Data deposition: The data reported in this paper have been deposited in the Gene Ex- inactivation of one X chromosome, some genes escape silencing pression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE83993). ∼ and are expressed from the inactive X chromosome (Xi): 3% of 1To whom correspondence should be addressed. Email: [email protected]. X-linked genes in mice (8) and 15% in humans (9). Analysis of This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. peripheral blood showed that XCI and escape from XCI are 1073/pnas.1611905114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1611905114 PNAS Early Edition | 1of9 Downloaded by guest on September 30, 2021 Iqsec2 Kdm5c A B Iqsec2 chrX: 152,069,000 - 152,335,000 Kantr Global mCG at promoters 25KB 75% C57/Spretus SNPs R1 69.7 69.0 Combined 50% R2 %mCG R1 25% 41.1 39.6 Xi 33.5 31.6 R2 31.4 mRNA 29.1 0 R1 Xa R2 Global mCG outside of promoters R1 2 1 75% Combined R2 85.2 85.6 85.5 85.3 84.9 84.9 75.6 75.7 R1 50% Xi %mCG R2 25% Xi hypo DMRs Xa hypo 0 mCG Methylation R1 Global mCH Xa 1.4% R2 Male X 1.26 1.24 1.23 1.0% 1.22 1.01 1.01 R1 Combined %mCH R2 0.4% R1 0.020 0 0.020 Xi R2R1 R2R1 R2R1 R2R1 R2 Maternal Paternal Xa Xi R1 Autosomes mCH Methylation Xa R2 Male X X Inactivation Center C Tsix Jpx Mir374c Cdx4 Chic1 Tsx Gm9159 Zcchc13 Xist Ftx chrX: 103,302,000 - 103,658,000 Mir374 25KB C57/Spretus SNPs R1 Combined R2 R1 Xi R2 mRNA R1 Xa R2 R1 1 23 Combined R2 R1 Xi R2 Xi Hypo DMRs Xa Hypo mCG Methylation R1 Xa R2 Male X R1 Combined R2 R1 Xi R2 R1 Xa mCH Methylation R2 Male X Fig. 1. Ultrasparse mCH on Xi correlates with escape domains. (A) Allele-specific mCG and mCH levels on autosomes and chromosome X. Browser view of methylation and expression for the Kdm5c locus (B) and the XIC (C). Ticks show the methylation level at individual cytosine positions (CG, green; CH, blue) on the forward (upward ticks) and reverse (downward ticks) strands. Combined tracks show both alleles, whereas the Xa and Xi tracks include only reads sorted using SNPs between C57 and spretus. Monoallelically expressed genes (Iqsec2 and Chic1) and intergenic regions harbor mCH on Xa only, whereas diallelically expressed escape genes (Kdm5c) and the Xi-expressed noncoding RNA Xist contain dense mCH on Xi. Male X data are from 6-wk-old frontal cortex (11). chrX, chromosome X; R1, replicate 1; R2, replicate 2. 2of9 | www.pnas.org/cgi/doi/10.1073/pnas.1611905114 Keown et al. Downloaded by guest on September 30, 2021 F1 mice from crosses between C57BL/6 Xist mutant and Mus mCH on Xi presents an opposite (positive) correlation with tran- PNAS PLUS spretus wild-type mice (8), and analyzed species-specific genetic scription: Xi is remarkably void of mCH except in the gene body of variants (∼42 million single-nucleotide polymorphisms (SNPs), the escape gene, Kdm5c, where mCH is enriched (3.09%) and including 1.95 million SNPs on the X chromosome). Our data re- more abundant than on Xa (0.26%; P = 0.001).
Recommended publications
  • Dynamics of Gene Silencing During X Inactivation Using Allele-Specific RNA-Seq Hendrik Marks1*, Hindrik H
    Marks et al. Genome Biology (2015) 16:149 DOI 10.1186/s13059-015-0698-x RESEARCH Open Access Dynamics of gene silencing during X inactivation using allele-specific RNA-seq Hendrik Marks1*, Hindrik H. D. Kerstens1, Tahsin Stefan Barakat3, Erik Splinter4, René A. M. Dirks1, Guido van Mierlo1, Onkar Joshi1, Shuang-Yin Wang1, Tomas Babak5, Cornelis A. Albers2, Tüzer Kalkan6, Austin Smith6, Alice Jouneau7, Wouter de Laat4, Joost Gribnau3 and Hendrik G. Stunnenberg1* Abstract Background: During early embryonic development, one of the two X chromosomes in mammalian female cells is inactivated to compensate for a potential imbalance in transcript levels with male cells, which contain a single X chromosome. Here, we use mouse female embryonic stem cells (ESCs) with non-random X chromosome inactivation (XCI) and polymorphic X chromosomes to study the dynamics of gene silencing over the inactive X chromosome by high-resolution allele-specific RNA-seq. Results: Induction of XCI by differentiation of female ESCs shows that genes proximal to the X-inactivation center are silenced earlier than distal genes, while lowly expressed genes show faster XCI dynamics than highly expressed genes. The active X chromosome shows a minor but significant increase in gene activity during differentiation, resulting in complete dosage compensation in differentiated cell types. Genes escaping XCI show little or no silencing during early propagation of XCI. Allele-specific RNA-seq of neural progenitor cells generated from the female ESCs identifies three regions distal to the X-inactivation center that escape XCI. These regions, which stably escape during propagation and maintenance of XCI, coincide with topologically associating domains (TADs) as present in the female ESCs.
    [Show full text]
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Lncrna Jpx Induces Xist Expression in Mice Using Both Trans and Cis Mechanisms
    RESEARCH ARTICLE LncRNA Jpx induces Xist expression in mice using both trans and cis mechanisms Sarah Carmona, Benjamin Lin, Tristan Chou, Katti Arroyo, Sha Sun* Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 Mammalian X chromosome dosage compensation balances X-linked gene products a1111111111 between sexes and is coordinated by the long noncoding RNA (lncRNA) Xist. Multiple cis and trans-acting factors modulate Xist expression; however, the primary competence factor responsible for activating Xist remains a subject of dispute. The lncRNA Jpx is a proposed competence factor, yet it remains unknown if Jpx is sufficient to activate Xist expression in OPEN ACCESS mice. Here, we utilize a novel transgenic mouse system to demonstrate a dose-dependent relationship between Jpx copy number and ensuing Jpx and Xist expression. By localizing Citation: Carmona S, Lin B, Chou T, Arroyo K, Sun S (2018) LncRNA Jpx induces Xist expression in transcripts of Jpx and Xist using RNA Fluorescence in situ Hybridization (FISH) in mouse mice using both trans and cis mechanisms. PLoS embryonic cells, we provide evidence of Jpx acting in both trans and cis to activate Xist. Our Genet 14(5): e1007378. https://doi.org/10.1371/ data contribute functional and mechanistic insight for lncRNA activity in mice, and argue that journal.pgen.1007378 Jpx is a competence factor for Xist activation in vivo. Editor: Gregory S. Barsh, Stanford University School of Medicine, UNITED STATES Received: November 20, 2017 Accepted: April 24, 2018 Author summary Published: May 7, 2018 Long noncoding RNA (lncRNA) have been identified in all eukaryotes but mechanisms Copyright: © 2018 Carmona et al.
    [Show full text]
  • Product Datasheet PBDC1 Antibody NBP1-82657
    Product Datasheet PBDC1 Antibody NBP1-82657 Unit Size: 0.1 ml Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles. Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NBP1-82657 Updated 6/7/2021 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NBP1-82657 Page 1 of 4 v.20.1 Updated 6/7/2021 NBP1-82657 PBDC1 Antibody Product Information Unit Size 0.1 ml Concentration Concentrations vary lot to lot. See vial label for concentration. If unlisted please contact technical services. Storage Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles. Clonality Polyclonal Preservative 0.02% Sodium Azide Isotype IgG Purity Immunogen affinity purified Buffer PBS (pH 7.2) and 40% Glycerol Product Description Host Rabbit Gene ID 51260 Gene Symbol PBDC1 Species Human Reactivity Notes Immunogen displays the following percentage of sequence identity for non- tested species: Mouse (83%), Rat (85%) Immunogen This antibody was developed against Recombinant Protein corresponding to amino acids: EVYYKLISSVDPQFLKLTKVDDQIYSEFRKNFETLRIDVLDPEELKSESAKEKWR PFCLKFNGIVEDFNYGTLLRLDCSQGYTEENTIFAPRIQFFAIEIARNREGYNKAV YISVQDKEGEKGVNNGGEKRADSGEEENTKNGGEK Product Application Details Applications Western Blot, Immunocytochemistry/Immunofluorescence, Immunohistochemistry, Immunohistochemistry-Paraffin Recommended Dilutions Western Blot 0.04 - 0.4 ug/ml,
    [Show full text]
  • Repetitive Elements in Humans
    International Journal of Molecular Sciences Review Repetitive Elements in Humans Thomas Liehr Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany; [email protected] Abstract: Repetitive DNA in humans is still widely considered to be meaningless, and variations within this part of the genome are generally considered to be harmless to the carrier. In contrast, for euchromatic variation, one becomes more careful in classifying inter-individual differences as meaningless and rather tends to see them as possible influencers of the so-called ‘genetic background’, being able to at least potentially influence disease susceptibilities. Here, the known ‘bad boys’ among repetitive DNAs are reviewed. Variable numbers of tandem repeats (VNTRs = micro- and minisatellites), small-scale repetitive elements (SSREs) and even chromosomal heteromorphisms (CHs) may therefore have direct or indirect influences on human diseases and susceptibilities. Summarizing this specific aspect here for the first time should contribute to stimulating more research on human repetitive DNA. It should also become clear that these kinds of studies must be done at all available levels of resolution, i.e., from the base pair to chromosomal level and, importantly, the epigenetic level, as well. Keywords: variable numbers of tandem repeats (VNTRs); microsatellites; minisatellites; small-scale repetitive elements (SSREs); chromosomal heteromorphisms (CHs); higher-order repeat (HOR); retroviral DNA 1. Introduction Citation: Liehr, T. Repetitive In humans, like in other higher species, the genome of one individual never looks 100% Elements in Humans. Int. J. Mol. Sci. alike to another one [1], even among those of the same gender or between monozygotic 2021, 22, 2072.
    [Show full text]
  • MMP-25 Metalloprotease Regulates Innate Immune Response Through NF- Κb Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G
    MMP-25 Metalloprotease Regulates Innate Immune Response through NF- κB Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G. Osorio, Dido Carrero, Adolfo A. Ferrando, Enrique Colado, This information is current as M. Soledad Fernández-García, Elena Bonzon-Kulichenko, of September 27, 2021. Jesús Vázquez, Antonio Fueyo and Carlos López-Otín J Immunol 2016; 197:296-302; Prepublished online 3 June 2016; doi: 10.4049/jimmunol.1600094 Downloaded from http://www.jimmunol.org/content/197/1/296 Supplementary http://www.jimmunol.org/content/suppl/2016/06/01/jimmunol.160009 Material 4.DCSupplemental http://www.jimmunol.org/ References This article cites 41 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/197/1/296.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology MMP-25 Metalloprotease Regulates Innate Immune Response through NF-kB Signaling Clara Soria-Valles,* Ana Gutie´rrez-Ferna´ndez,* Fernando G.
    [Show full text]
  • The Role of Non-Coding Rnas in Uveal Melanoma
    cancers Review The Role of Non-Coding RNAs in Uveal Melanoma Manuel Bande 1,2,*, Daniel Fernandez-Diaz 1,2, Beatriz Fernandez-Marta 1, Cristina Rodriguez-Vidal 3, Nerea Lago-Baameiro 4, Paula Silva-Rodríguez 2,5, Laura Paniagua 6, María José Blanco-Teijeiro 1,2, María Pardo 2,4 and Antonio Piñeiro 1,2 1 Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; [email protected] (D.F.-D.); [email protected] (B.F.-M.); [email protected] (M.J.B.-T.); [email protected] (A.P.) 2 Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; [email protected] (P.S.-R.); [email protected] (M.P.) 3 Department of Ophthalmology, University Hospital of Cruces, Cruces Plaza, S/N, 48903 Barakaldo, Vizcaya, Spain; [email protected] 4 Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; [email protected] 5 Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15706 Santiago de Compostela, Spain 6 Department of Ophthalmology, University Hospital of Coruña, Praza Parrote, S/N, 15006 La Coruña, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-981951756; Fax: +34-981956189 Received: 13 September 2020; Accepted: 9 October 2020; Published: 12 October 2020 Simple Summary: The development of uveal melanoma is a multifactorial and multi-step process, in which abnormal gene expression plays a key role.
    [Show full text]
  • Product Datasheet Cxorf26 Recombinant Protein Antigen NBP1
    Product Datasheet CXorf26 Recombinant Protein Antigen NBP1-82657PEP Unit Size: 0.1 ml Store at -20C. Avoid freeze-thaw cycles. Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NBP1-82657PEP Updated 11/3/2016 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NBP1-82657PEP Page 1 of 2 v.20.1 Updated 11/3/2016 NBP1-82657PEP CXorf26 Recombinant Protein Antigen Product Information Unit Size 0.1 ml Concentration Please see the vial label for concentration. If unlisted please contact technical services. Storage Store at -20C. Avoid freeze-thaw cycles. Preservative No Preservative Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Target Molecular Weight 34 kDa Product Description Description A recombinant protein antigen with a N-terminal His6-ABP tag corresponding to human PBDC1. Source: E.coli Amino Acid Sequence: EVYYKLISSVDPQFLKLTKVDDQIYSEFRKNFETLRIDVLDPEELKSESAKEKWR PFCLKFNGIVEDFNYGTLLRLDCSQGYTEENTIFAPRIQFFAIEIARNREGYNKAV YISVQDKEGEKGVNNGGEKRADSGEEENTKNGGEK Gene ID 51260 Gene Symbol PBDC1 Species Human Product Application Details Applications Antibody Competition Recommended Dilutions Antibody Competition 10 - 100 molar excess Application Notes This peptide is useful as a blocking peptide for NBP1-82657.Protein was purified by IMAC chromatography. The expected concentration is greater than 0.5 mg/ml. This product is produced on demand, estimated
    [Show full text]
  • XIST Induced by JPX Suppresses Hepatocellular Carcinoma by Sponging Mir-155-5P
    Original Article Yonsei Med J 2018 Sep;59(7):816-826 https://doi.org/10.3349/ymj.2018.59.7.816 pISSN: 0513-5796 · eISSN: 1976-2437 XIST Induced by JPX Suppresses Hepatocellular Carcinoma by Sponging miR-155-5p Xiu-qing Lin, Zhi-ming Huang, Xin Chen, Fang Wu, and Wei Wu Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. Purpose: The influence of X-inactive specific transcript (XIST) and X-chromosome inactivation associated long non-coding RNAs (lncRNAs) just proximal to XIST (JPX) on hepatocellular carcinoma (HCC) remains controversial in light of previous reports, which the present study aimed to verify. Materials and Methods: The DIANA lncRNA-microRNA (miRNA) interaction database was used to explore miRNA interactions with JPX or XIST. JPX, XIST, and miR-155-5p expression levels in paired HCC specimens and adjacent normal tissue were ana- lyzed by RT-qPCR. Interaction between XIST and miR-155-5p was verified by dual luciferase reporter assay. Expression levels of miR-155-5p and its known target genes, SOX6 and PTEN, were verified by RT-qPCR and Western blot in HepG2 cells with or with- out XIST knock-in. The potential suppressive role of XIST and JPX on HCC was verified by cell functional assays and tumor for- mation assay using a xenograft model. Results: JPX and XIST expression was significantly decreased in HCC pathologic specimens, compared to adjacent tissue, which correlated with HCC progression and increased miR-155-5p expression. Dual luciferase reporter assay revealed XIST as a direct target of miR-155-5p.
    [Show full text]
  • PRODUCT SPECIFICATION Anti-PBDC1 Product
    Anti-PBDC1 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-PBDC1 Product Number HPA003155 Gene Description polysaccharide biosynthesis domain containing 1 Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: EVYYKLISSVDPQFLKLTKVDDQIYSEFRKNFETLRIDVLDPEELKSESA KEKWRPFCLKFNGIVEDFNYGTLLRLDCSQGYTEENTIFAPRIQFFAIEI ARNREGYNKAVYISVQDKEGEKGVNNGGEKRADSGEEENTKNGGEK Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended IHC (Immunohistochemistry) Applications - Antibody dilution: 1:200 - 1:500 - Retrieval method: HIER pH6 WB (Western Blot) - Working concentration: 0.04-0.4 µg/ml ICC-IF (Immunofluorescence) - Fixation/Permeabilization: PFA/Triton X-100 - Working concentration: 0.25-2 µg/ml Characterization Data Available at atlasantibodies.com/products/HPA003155 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions.
    [Show full text]
  • Limma: Linear Models for Microarray and RNA-Seq Data User’S Guide
    limma: Linear Models for Microarray and RNA-Seq Data User's Guide Gordon K. Smyth, Matthew Ritchie, Natalie Thorne, James Wettenhall, Wei Shi and Yifang Hu Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia First edition 2 December 2002 Last revised 14 July 2021 This free open-source software implements academic research by the authors and co-workers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1. Contents 1 Introduction 5 2 Preliminaries 7 2.1 Citing limma ......................................... 7 2.2 Installation . 9 2.3 How to get help . 9 3 Quick Start 11 3.1 A brief introduction to R . 11 3.2 Sample limma Session . 12 3.3 Data Objects . 13 4 Reading Microarray Data 15 4.1 Scope of this Chapter . 15 4.2 Recommended Files . 15 4.3 The Targets Frame . 15 4.4 Reading Two-Color Intensity Data . 17 4.5 Reading Single-Channel Agilent Intensity Data . 19 4.6 Reading Illumina BeadChip Data . 19 4.7 Image-derived Spot Quality Weights . 20 4.8 Reading Probe Annotation . 21 4.9 Printer Layout . 22 4.10 The Spot Types File . 22 5 Quality Assessment 24 6 Pre-Processing Two-Color Data 26 6.1 Background Correction . 26 6.2 Within-Array Normalization . 28 6.3 Between-Array Normalization . 30 6.4 Using Objects from the marray Package . 33 7 Filtering unexpressed probes 34 1 8 Linear Models Overview 36 8.1 Introduction . 36 8.2 Single-Channel Designs . 37 8.3 Common Reference Designs .
    [Show full text]