Nitrate-Alkaline Pulp from Non-Wood Plants

Total Page:16

File Type:pdf, Size:1020Kb

Nitrate-Alkaline Pulp from Non-Wood Plants materials Article Nitrate-Alkaline Pulp from Non-Wood Plants KateˇrinaHájková 1,* , Jiˇrí Bouˇcek 1,2,*, Petr Procházka 3 , Petr Kalous 4 and Dominik Budský 4 1 Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Science Prague, Kamýcká 1176, 165 21 Prague, Czech Republic 2 Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Science Prague, Kamýcká 129, 165 21 Prague, Czech Republic 3 Department of Economics, Faculty of Economics and Administration, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; [email protected] 4 Secondary and Higher Vocational School of Packaging Technology in Štˇetí, Kostelní 134, 411 08 Štˇetí, Czech Republic; [email protected] (P.K.); [email protected] (D.B.) * Correspondence: hajkovakaterina@fld.czu.cz (K.H.); jboucek@fld.czu.cz (J.B.) Abstract: Because there is a lack of wood resources in many countries, this work focused on pulp and paper production from the waste and agricultural residues of non-wood plants. The work aimed to pulp the nitrate-alkaline of black mustard (Brassica Nigra L.) and camelina (Camelina Sativa L.). The black mustard and the camelina were selected due to the expanding planted areas of these crops in the Czech Republic. To characterize the chemical composition of black mustard and camelina, cellulose, lignin, ash, and extractives were determined. Raw alpha-cellulose, beta-cellulose, and gamma-cellulose were also measured. The results showed that the content of lignin in non-wood plants is lower than that in softwoods. The cooked pulp was characterized by the delignification degree–Kappa number. Additionally, handsheet papers were made for selected samples of pulp. The handsheet papers were characterized by tensile index, breaking length, and smoothness and compared with commonly available papers. Citation: Hájková, K.; Bouˇcek,J.; Procházka, P.; Kalous, P.; Budský, D. Keywords: nitrate-alkaline pulp; black mustard; camelina; tensile index; chemical analysis Nitrate-Alkaline Pulp from Non-Wood Plants. Materials 2021, 14, 3673. https://doi.org/10.3390/ ma14133673 1. Introduction Besides wood pulp, the pulp and paper industry uses fibers and agricultural waste. Academic Editor: Andrea Spagnoli The fibers of linen, hemp, and cotton have been processed since the beginnings of paper- making. These fibers are used for special types of paper. Even straw, sugarcane, cotton, and Received: 14 May 2021 other non-wood plants are used in the cellulose and paper industry. In the case of choosing Accepted: 22 June 2021 the raw material, it is important to know the chemical, morphological composition, and Published: 1 July 2021 structure of the plants [1]. Wood is the primary source for the paper industry nowadays. There is a lack of wood Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in sources which suits the growing inquiry in a lot of countries. Besides wood pulp, this published maps and institutional affil- causes the fibers and waste from the agricultural industry to be used for pulp and paper iations. making. Seventy percent of raw materials in the pulp and paper industry in China and India come from non-wood plants [2]. Hemp, sisal, and linen belong among the plants that are used in papermaking. The other raw material, which is added to banknote paper production, is cotton. The field planting areas in the Czech Republic have significantly changed during the past few years, Copyright: © 2021 by the authors. according to the planted crops. The cereals sown on the largest planting areas are, for Licensee MDPI, Basel, Switzerland. This article is an open access article example, wheat, barley, or rapeseed, but there has been significant growth of corn, poppy, distributed under the terms and mustard, and camelina planting areas recently. Figure1 shows that there is a significant conditions of the Creative Commons increase in the share of technical crops together with rapeseed (canola) over the last twenty Attribution (CC BY) license (https:// years. This is also true for the area of cropland devoted to poppy seed. A decline in creativecommons.org/licenses/by/ barley, rye, and potatoes means it grows fewer food crops in the Czech Republic over the 4.0/). observed time. Materials 2021, 14, 3673. https://doi.org/10.3390/ma14133673 https://www.mdpi.com/journal/materials Materials 2021, 14, x FOR PEER REVIEW 2 of 10 Materials 2021, 14, 3673 2 of 10 decline in barley, rye, and potatoes means it grows fewer food crops in the Czech Republic over the observed time. Figure 1. Planting areas in the Czech Republic. Cereals from grain (wheat, rye, barley, oat, and corn), legumes, root crops Figure 1. Planting areas in the Czech Republic. Cereals from grain (wheat, rye, barley, oat, and corn), legumes, root crops (potatoes, sugar beet), technical crops (rapeseed, sunflower, poppy, mustard, linen, etc.), and fodder [3]. (potatoes, sugar beet), technical crops (rapeseed, sunflower, poppy, mustard, linen, etc.), and fodder [3]. The non-wood plants have chemical and morphological characteristics different from the woodThe non-wood materials, andplants this have is the chemical reason and for other morphological cooking and characteristics bleaching conditions different from [4]. the woodThe non-wood materials, plants and this are processedis the reason by thefor chemicalother cooking method, and specifically bleaching conditions the amaranth, [4]. atriplexThe and non-wood Jerusalem plants artichoke are processed [5], and rapeseed by the strawchemical [6,7 ].method, Wheat, specifically rapeseed, amaranth, the ama- andranth, lavatera atriplex are and cooked Jerusalem in peracetic artichoke acid [5], [8], and and rapeseed rapeseed st strawraw [6,7]. produced Wheat, the rapeseed, neutral sulfiteamaranth, semi-chemical and lavatera pulp are [9 cooked,10]. in peracetic acid [8], and rapeseed straw produced the neutralAnother sulfite chemical semi-chemical method pulp for pulp [9,10]. making can be the nitrate-alkaline process, where duringAnother cooking chemical in the acid, method the cellulose–lignin for pulp making bond can isbe releasedthe nitrate-alkaline hydrolytically. process, The ligninwhere isduring nitrated cooking and partly in the oxidized acid, the into cellulose–lignin nitro-lignin, whichbond is is released soluble hydrolytically. in alkalies [11]. The lignin is nitratedThis paper and aimedpartly oxidized to cook the into nitrate-alkaline nitro-lignin, which pulp of isblack soluble mustard in alkalies (Brassica [11].Nigra L.) and camelinaThis paper (Camelina aimed Sativato cookL.) the and nitrate-alkaline to examine the pulp mechanical of black properties mustard of(Brassica paper made Nigra fromL.) and these camelina pulps. We(Camelina focused Sativa this study L.) and on examiningto examine the the chemical mechanical pulping properties of agricultural of paper cropsmade and from widening these pulps. the results We focused by the this other study potential on examining raw materials the chemical for cellulose pulping fibers. of ag- ricultural crops and widening the results by the other potential raw materials for cellulose 2.fibers. Materials and Methods On the fields in the highlands of the Ore Mountains, the black mustard (Brassica Nigra L.) is2. grown, Materials whereas, and Methods in the lowlands of the Podyjí area, the camelina (Camelina Sativa L.) is harvested.On the The fields raw in materials the highlands comprise of the stems Ore andMountains, fruits, which the black make mustard up to a quarter(Brassica of Nigra the wholeL.) is grown, quantity. whereas, The chemical in the analysislowlands was of the performed Podyjí area, according the camelina to the TAPPI (Camelina Test methodsSativa L.) beforeis harvested. the cooking The raw [12 ].materials The analysis comprise for randomly stems and taken fruits, samples which make were up determined to a quarter in aof laboratorythe whole vibratory quantity. mill, The specifically chemical analysis ash (TAPPI was T 211om-02)performed and according silica (TAPPI to the T TAPPI 245 cm-98) Test contents,methods as before well as the extractive cooking contents [12]. The by analysis Soxhlet extraction for randomly with acetone,taken samples ethanol, were and with deter- a 7:3mined mixture in a of laboratory ethanol to toluenevibratory by mill, volume specifically (TAPPI T ash 280 pm-99),(TAPPI asT well211om-02) as Klason and lignin silica (TAPPI(TAPPI T T 22 245 cm-02) cm-98) using contents, 72% sulphuric as well acid. as extr Followingactive contents the extraction, by Soxhlet the cellulose extraction content with wasacetone, determined ethanol, by and the Seifertwith a method7:3 mixture described of ethanol in reference to toluene [13], andby volume alpha-cellulose, (TAPPI T beta- 280 cellulose,pm-99), as and well gamma-cellulose as Klason lignin content (TAPPI according T 22 cm-02) to TAPPI using T72% 203 sulphuric cm-99. The acid. last Following chemical analysisthe extraction, was the the water cellulose solubility content of the was raw dete materialrmined under by the the Seifert TAPPI method Test method described T207 in om-93reference and [13], the 1% and sodium alpha-cellulose, hydroxide beta-cellulose, solubility, according and gamma-cellulose to TAPPI T 212 om-88.content according to TAPPIThe raw T 203 materials cm-99.were The disintegratedlast chemical analysis into chips was of 1the cm water length solubility before the of nitrate-the raw alkaline cooking. The nitrate-alkaline cooking occurred in lab conditions by utilizing 2l boiling flasks. Each flask comprised 50 g of dry air material, and the ratio of the chemical to raw material was 20:1. The cooking process started with 45 min of cooking under the Materials 2021, 14, 3673 3 of 10 reflux condenser in 6% nitric. The washing by water was followed by the extraction in 5% sodium hydroxide when we heated the solution and then cooked for 10 min. We did not perform the heating under the reflux condenser. The additional washing by water was followed by another pulping and the neutralization by 1% acetic acid for 5 min.
Recommended publications
  • Extended Impregnation Kraft Cooking of Softwood: Effects on Reject, Yield, Pulping Uniformity, and Physical Properties
    Extended Impregnation Kraft Cooking of Softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström Licentiate thesis Royal Institute of Technology (KTH) Department of Fibre and Polymer Technology Division of Wood Chemistry and Pulp Technology Stockholm 2009 TRITA-CHE-Report 2009:59 ISSN 1654-1081 ISBN 978-91-7415-496-2 Extended impregnation kraft cooking of softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström AKADEMISK AVHANDLING Som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknologie licentiatexamen fredagen den 18:e december 2009, kl. 10.00 i STFI-salen, Innventia AB, Drottning Kristinas väg 61, Stockholm. Avhandlingen försvaras på svenska. © Katarina Karlström Stockholm 2009 Department of Fibre and Polymer Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden Abstract Converting wood into paper is a complex process involving many different stages, one of which is pulping. Pulping involves liberating the wood fibres from each other, which can be done either chemically or mechanically. This thesis focuses on the most common chemical pulping method, the kraft cooking process, and especially on a recently developed improvement of the impregnation phase, which is the first part of a kraft cook. Extended impregnation kraft cooking (EIC) technique is demonstrated to be an improvement of the kraft pulping process and provides a way to utilize softwood to a higher degree, at higher pulp yield. We demonstrate that it is possible to produce softwood ( Picea abies ) kraft pulp using a new cooking technique, resulting in a pulp that can be defibrated without inline refining at as high lignin content as 8% on wood, measured as kappa numbers above 90.
    [Show full text]
  • Viimeinen Päivitys 8
    Versio 20.10.2012 (222 siv.). HÖYRY-, TEOLLISUUS- JA LIIKENNEHISTORIAA MAAILMALLA. INDUSTRIAL AND TRANSPORTATION HERITAGE IN THE WORLD. (http://www.steamengine.fi/) Suomen Höyrykoneyhdistys ry. The Steam Engine Society of Finland. © Erkki Härö [email protected] Sisältöryhmitys: Index: 1.A. Höyry-yhdistykset, verkostot. Societies, Associations, Networks related to the Steam Heritage. 1.B. Höyrymuseot. Steam Museums. 2. Teollisuusperinneyhdistykset ja verkostot. Industrial Heritage Associations and Networks. 3. Laajat teollisuusmuseot, tiedekeskukset. Main Industrial Museums, Science Centres. 4. Energiantuotanto, voimalat. Energy, Power Stations. 5.A. Paperi ja pahvi. Yhdistykset ja verkostot. Paper and Cardboard History. Associations and Networks. 5.B. Paperi ja pahvi. Museot. Paper and Cardboard. Museums. 6. Puusepänteollisuus, sahat ja uitto jne. Sawmills, Timber Floating, Woodworking, Carpentry etc. 7.A. Metalliruukit, metalliteollisuus. Yhdistykset ja verkostot. Ironworks, Metallurgy. Associations and Networks. 7.B. Ruukki- ja metalliteollisuusmuseot. Ironworks, Metallurgy. Museums. 1 8. Konepajateollisuus, koneet. Yhdistykset ja museot. Mechanical Works, Machinery. Associations and Museums. 9.A. Kaivokset ja louhokset (metallit, savi, kivi, kalkki). Yhdistykset ja verkostot. Mining, Quarrying, Peat etc. Associations and Networks. 9.B. Kaivosmuseot. Mining Museums. 10. Tiiliteollisuus. Brick Industry. 11. Lasiteollisuus, keramiikka. Glass, Clayware etc. 12.A. Tekstiiliteollisuus, nahka. Verkostot. Textile Industry, Leather. Networks.
    [Show full text]
  • Black Liquor Gasification
    Black Liquor Gasification Summary and Conclusions from the IEA Bioenergy ExCo54 Workshop This publication provides Wood and Wastes the record of a workshop organised by IEA Bioenergy. CO2 Pool Black liquor gasification is an interesting option for production of synthesis gas that can subsequently be converted to a variety of motor fuels. The technology can be integrated into modern, Carbon ecocyclic, kraft pulp mill Dioxide Pulp and Paper biorefineries. USA and Sweden lead developments in this field. It is of interest primarily among countries with strong pulp and paper industries and national policies which promote substitution of petrol and diesel by biofuels. IEA Bioenergy IEA BIOENERGY: ExCo:2007:03 INTRODUCTION a large pulp and paper industry. It is thus of great interest to convert the primary energy in the black liquor to an This publication provides a summary and the conclusions energy carrier of high value. from a workshop organised by IEA Bioenergy. It was held in conjunction with the 54th meeting of the Executive Worldwide, the pulp and paper industry currently processes Committee in Ottawa on 6 October 2004. The purpose of the about 170 million tonnes of black liquor (measured as dry workshop was to present the developments of black liquor solids) per year, with a total energy content of about 2EJ, gasification for the production of energy and/or biofuels making black liquor a very significant biomass source (see for transport and discuss the remaining barriers, either Figure 1). In comparison with other potential biomass technical or strategic, that need to be overcome in order sources for chemicals production, black liquor has the to accelerate the successful demonstration of black liquor great advantage that it is already partially processed and gasification technologies and subsequently their penetration exists in a pumpable, liquid form.
    [Show full text]
  • Improving Eucalyptus Pulp and Paper Quality Using Genetic Selection and Good Organization
    RESEARCH IMPROVING EUCALYPTUS PULP AND PAPER QUALITY USING GENETIC SELECTION AND GOOD ORGANIZATION PAUL COTTERILL AND SHARMANE MACRAE INTERACTIONS AMONG RESEARCH, FORESTRY, PULP MILL, SALES, AND THE CUSTOMER ARE VERY IMPORTANT. RESEARCH CAN BE THE BOND AMONG THE VARIOUS GROUPS IN DEVELOPING NEW PRODUCTS. UCALYPTUS KRAFT PULPS BEGAN TO APPEAR ON THE and E. grandis (and its hybrid with E. urophylla). world markets in the mid-1960s. Over less than • Why does the industry use so little of what the remark- a decade, eucalyptus pulps evolved to become able genus known as eucalyptus may have to offer? important raw materials for a wide range of printing and writing papers, specialty papers, Why have foresters not established plantations using E and tissue papers. a wider diversity of eucalyptus species? This relative lack It is interesting to analyze the general quality and mar- of diversity is surprising considering the worldwide ket position of eucalyptus pulps today and how eucalyp- increase in eucalyptus plantation area over the last tus pulp products could be developed in the future. This decade. Why has the pulp industry been content with paper focuses on opportunities to develop eucalyptus such a limited product range from eucalyptus? pulps through genetic selection both between and The eucalyptus pulp industry has so far missed con- within species. Attention is also devoted to the need for siderable opportunities by basing wood production on close integration among research and operational people so few species of eucalyptus. involved in the forest, mill, and sales organizations. HOW MUCH VARIABILITY EXISTS BETWEEN WHY DOES THE EUCALYPTUS PULP INDUSTRY USE SO DIFFERENT SPECIES OF EUCALYPTUS FOR WOOD AND LITTLE GENETIC VARIABILITY? PAPER PROPERTIES? Consider the following points: Field and laboratory studies The following results are from a eucalyptus species trial • Eucalyptus is a large genus of plants that includes established on one uniform site.
    [Show full text]
  • American Ft Forest & Paper 2QE5
    A 1 , i American Ft Forest & Paper 2QE5; Association , - May 6, 2015 Via Hand Delivery and by Email to iones.iim(a^epa.gov Administrator Gina McCarthy (1101A) Office of the Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 Re: Reguest for Full Exemption of Four Pulping Chemicals from the TSCA Chemical Data Reporting Rule Reguirements Dear Administrator McCarthy: The American Forest & Paper Association (AF&PA) hereby petitions EPA to amend the Chemical Data Reporting rule (CDR), 40 C.F.R. Part 711, to exempt from all CDR requirements four pulping chemicals involved in the manufacture of paper and other pulp-based products. The four pulping chemicals are complex mixtures used in the kraft pulping process: • Sulfite Liquors and Cooking Liquors, white (CAS No. 68131-33-9) (white liquor) • Sulfite Liquors and Cooking Liquors, spent (CAS No. 66071-92-9) (black liquor) • Sulfite Liquors and Cooking Liquors, spent, oxidized (CAS No. 68514-09-0) (black liquor, oxidized) • Sulfite Liquors and Cooking Liquors, green (CAS No. 68131-30-6) (green liquor) Each of these substances is manufactured and recycled onsite in a continuous closed loop. EPA has an enormous amount of information about these pulping chemicals and little current interest in them, as their potential risks are well understood and adequately managed. 1101 K Street, N.W., Suite 700 • Was hington, D.C.20005 • (202) 463•2700 •afandpa.org May 6, 2015 Page 2 This petition first identifies the four pulping chemicals in greater detail and explains why the kraft chemical regeneration process has led to inflated production volumes for these pulping chemicals in CDR data.
    [Show full text]
  • Parchment-Like Paper Using Water Hyacinth Pulp
    Philippine Journal of Science 141 (2): 179-185, December 2012 ISSN 0031 - 7683 Date Received: 20 Sept 2011 Parchment-Like Paper Using Water Hyacinth Pulp Erlinda L. Mari Forest Products Research and Development Institute Department of Science and Technology College, Laguna Water hyacinth pulps, obtained by open-vessel cooking of fresh, air-dried, and ground water hyacinth stems, were mixed with abaca and wastepaper pulps to form handsheets. The handsheets had natural glaze and those from pure hyacinth pulps were fairly translucent, with Cobb values of 38-40 g/m2 that compare well with commercial parchment paper. Compared with either pure abaca or pure wastepaper pulp, replacement with water hyacinth pulp by 25 to 75% significantly improved burst index and tensile index, suggesting better formation and bonding of fibers. Inversely, however, any amount of the soft and short-fibered hyacinth pulp with either pulp reduced tear index, understandably because this property is dependent more on fiber length. With wastepaper pulp, water hyacinth pulp improves the tensile property to a level comparable with that of paper from abaca pulp as well as parchment paper. Key Words: Cobb values, fiber formation, tensile index INTRODUCTION Interestingly, water hyacinth is already widely used in handmade papermaking (HMP) in Kenya (http:// Local studies on the pulp and papermaking potential of www.unep.org/roa 2008) and Bangladesh (http:// water hyacinth conducted in the late seventies (Zerrudo www. Bangladesh.com/ 2008) and is also becoming an et al. 1978, 1979) followed the conventional method alternative fiber material for HMP in some regions of the of pulping at high temperature and pressure using Philippines where it is abundant.
    [Show full text]
  • Construction Health and Safety Manual: Pulp and Paper Mills
    PULP AND PAPER MILLS 33 PULP AND PAPER MILLS The two common forms of chemical pulping are 1) the dominant “alkaline” or “kraft” process, and Processes 2) the “acid pulping” or “sulphite” process. Acid pulping has generally declined but is still in use. The A number of processes, grouped by type as mechanical, digester liquor is a solution of sulphurous acid, H SO , chemical, and semi-chemical (or hybrid), are used in 2 3 mixed with lime (CaO) or other base (magnesium, the preparation of wood pulp. In 1990 (according to sodium, or ammonium) to form bisulphites. Lockwood’s Directory) the distribution of pulp mills in Ontario and Quebec was as follows: Mechanical processes produce the highest yield from the wood, but have high energy demands. Mechanical pulping Process Type generally incorporates thermal or chemical pre-softening Chemical Processes Semi-chemical Mechanical Total of the wood chips, resulting in lower energy requirements. Kraft Sulphite Some chemical processes include mechanical features. Ontario 94 2 15 30 The division is not distinct and is generally based on Quebec 10 8241 61 efficiency of production from dry wood. Figure 22.1: Number of pulp mills by type in Ontario and Quebec Figure 22.2 provides a flow diagram for a semi-chemical pulp mill. In chemical pulping, the wood chips are cooked, using heat and a chemical solution that depends on the type of Of the chemical processes , alkaline pulping – the kraft process being used. The lignin binder, a natural glue that or sulphite process – is the most common and is shown in holds the wood cells (fibres) together, is dissolved.
    [Show full text]
  • Newsletter Vol
    Dayton Stamp Club newsletter Vol. 48 No. 4 July August 2020 Meetings and Activities Europa: A Topical Collection Meetings begin at 7:30 pm By Doug Files, DSC member Philatelists sometimes seek new interests to Dayton Stamp Club expand their collections. Expanding on a longtime interest in Europe, I started to col- meetings may be canceled lect Europa stamps a few years ago. It can be during July and August. financially perilous to start a new collection, 1984 Faroe Islands Europa Issue and sometimes we avoid new interests, but I engraved by Czeslaw Slania (1921- DSC is waiting on Christ United 2005) got a deal on a Europa album and then got From Blogspot, https:// hooked. Methodist Church to make a safety slaniacra- decision. As long as the church is zy.blogspot.com/2017/07/faroe- Europa collections are unusual in that the islands-1984-25-years-of- stamps are clearly topical. Yet, when you pur- closed there are no DSC meetings. europa.html sue the collection it feels more like country collecting than topical collecting. That is, you are not seeking stamps Members will be informed the Fri- with just airplanes or clowns or scouting. Rather, any topic can show up day before the scheduled meeting and you search for the stamps by country and year. That being said, date if the meeting is happening or leafing through an album the stamps display many colorful topics. And canceled by email (or post card if speaking of an Europa album brings up another point. you do not use email). Europa stamps are not cheap, but they are generally affordable.
    [Show full text]
  • Sorption and Desorption of Black Liquor Xylan Onto Cellulose Fibers – a New Separation Technique
    CELLULOSE CHEMISTRY AND TECHNOLOGY SORPTION AND DESORPTION OF BLACK LIQUOR XYLAN ONTO CELLULOSE FIBERS – A NEW SEPARATION TECHNIQUE SVERKER DANIELSSON Innventia AB, Stockholm, Sweden ✉Corresponding author: [email protected] The potential of xylan as a polymer in different new materials is large and not yet utilized. The availability in kraft pulp mills is large as the polymeric xylan dissolved in process liquors corresponds to up to 160 kg/adt and is today burnt to recover energy. A pre-requisite for using black liquor xylan in high-value products is to purify it from inorganic material and lignin in a technically effective and economical feasible way. This study combines two known properties of xylan: its affinity to cellulose and its solubility in alkali. The aim is to design an efficient separation process to produce black liquor xylan of high purity. A very pure xylan was reached with as low lignin contents as 1%. The hydroxide ion concentration was varied in the sorption step and it was found that an increase in hydroxide ion concentration resulted in a decreased amount of isolated xylan, decreased degree of substitution of uronic acids, but no effect on the lignin content and ash content was seen. Keywords : hardwood xylan, kraft pulping, separation, purification, precipitation, 4-O-methylglucuronic acid, hexenuronic acid, black liquor INTRODUCTION In the kraft pulping process, large amounts of tion from black liquor. The separation technique xylan are dissolved in the cooking liquor and end used in this study combines two well-known up as heat in the recovery boiler. The liquor is an phenomena of dissolved xylan in alkali: the attractive source for xylan production as the tendency of attaching to cellulose fibres 4-7 and the availability is high and the heat value for xylan possibility of dissolving xylan in alkali.
    [Show full text]
  • Energy Generation and Use in the Kraft Pulp Industry
    ENERGY GENERAnON AND USE IN THE KRAFT PULP INDUSTRY Alex Orr, H.A.Simoos Ltd INTRODUCTION The pulp and paper industry is one of the largest users of energy among the process industries, but most of its requirements, both steam and electrical power, can be produced from by-product and waste material produced within the process. This paper will discuss energy utilisation and generation in kraft pulp mills, and briefly describe the basic kraft pulping process. THE KRAFT PROCESS The kraft process is the most widely used chemical pulping process for a number of reasons: it produces the strongest pulp; it can handle a wide range of furnish: softwood, hardwood, bagasse and bamboo; the cooking chemicals can be recovered economically; it is energy efficient Figure 1 shows a simplified schematic of a kraft mill. The wood furnish supplied to the mill can be in the form of logs (roundwood) or by-product chips from sawmills.. The source of the wood supply has a significant affect on the energy production.. Ifroundwood is chipped the waste wood produced per ton ofchips will be around 200 kg, but when sawmill by-product chips are used the waste wood produced in the sawmill will be in the range of 450 kg/ton chips, as most of the log goes to produce lumbero This waste wood may be available to the pulp mill at a low cost, or even negative cost, allowing the production of low cost steam and electrical power" The chips are mixed with white liquor (NaOH and N~S) and cooked, using steam, in a large pressure vessel called a digester, either in a continuous or batch process.
    [Show full text]
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie A manufacturable smart dressing with oxygen delivery and sensing capability for chronic wound management M. Ochoa, R. Rahimi, J. Zhou, H. Jiang, C. K. Yoon, et al. M. Ochoa, R. Rahimi, J. Zhou, H. Jiang, C. K. Yoon, M. Oscai, V. Jain, T. Morken, R. H. Oliveira, D. Maddipatla, B. B. Narakathu, G. L. Campana, M. A. Zieger, R. Sood, M. Z. Atashbar, B. Ziaie, "A manufacturable smart dressing with oxygen delivery and sensing capability for chronic wound management," Proc. SPIE 10639, Micro- and Nanotechnology Sensors, Systems, and Applications X, 106391C (8 May 2018); doi: 10.1117/12.2306083 Event: SPIE Defense + Security, 2018, Orlando, Florida, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/18/2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Invited Paper A manufacturable smart dressing with oxygen delivery and sensing capability for chronic wound management M. Ochoaa, R. Rahimia, J. Zhoua, H. Jianga, C. K. Yoona, M. Oscaia, V. Jaina, T. Morkena, R. H. Oliveiraa, D. Maddipatlab, B. B. Narakathub, G. L. Campanac, M. A. Ziegerc, R. Soodc, M. Z. Atashbarb, B. Ziaie*a aBirck Nanotechnology Center. School of Electrical and Computer Engineering. Purdue University. 1205 W State Street, West Lafayette, IN, USA 47907; bElectrical and Computer Engineering Department, Western Michigan University, 4601 Campus Drive B-236, Kalamazoo, MI, USA 49008. cIndiana University School of Medicine. 980 West Walnut Street, Building R3 Room C634, Indianapolis, IN, USA, 48202. ABSTRACT Chronic non-healing wounds, impact over 6.5 million Americans, costs in excess of $25 billion to treat on an annual basis and its incidence is predicted to rise due to the prevalence of obesity and type-2 diabetes.
    [Show full text]
  • The Journal of the Walters Art Museum
    THE JOURNAL OF THE WALTERS ART MUSEUM VOL. 73, 2018 THE JOURNAL OF THE WALTERS ART MUSEUM VOL. 73, 2018 EDITORIAL BOARD FORM OF MANUSCRIPT Eleanor Hughes, Executive Editor All manuscripts must be typed and double-spaced (including quotations and Charles Dibble, Associate Editor endnotes). Contributors are encouraged to send manuscripts electronically; Amanda Kodeck please check with the editor/manager of curatorial publications as to compat- Amy Landau ibility of systems and fonts if you are using non-Western characters. Include on Julie Lauffenburger a separate sheet your name, home and business addresses, telephone, and email. All manuscripts should include a brief abstract (not to exceed 100 words). Manuscripts should also include a list of captions for all illustrations and a separate list of photo credits. VOLUME EDITOR Amy Landau FORM OF CITATION Monographs: Initial(s) and last name of author, followed by comma; italicized or DESIGNER underscored title of monograph; title of series (if needed, not italicized); volume Jennifer Corr Paulson numbers in arabic numerals (omitting “vol.”); place and date of publication enclosed in parentheses, followed by comma; page numbers (inclusive, not f. or ff.), without p. or pp. © 2018 Trustees of the Walters Art Gallery, 600 North Charles Street, Baltimore, L. H. Corcoran, Portrait Mummies from Roman Egypt (I–IV Centuries), Maryland 21201 Studies in Ancient Oriental Civilization 56 (Chicago, 1995), 97–99. Periodicals: Initial(s) and last name of author, followed by comma; title in All Rights Reserved. No part of this book may be reproduced without the written double quotation marks, followed by comma, full title of periodical italicized permission of the Walters Art Museum, Baltimore, Maryland.
    [Show full text]