Ionospheric and Atmospheric Perturbations Due to Two Major Earthquakes (M [ 7.0)

Total Page:16

File Type:pdf, Size:1020Kb

Ionospheric and Atmospheric Perturbations Due to Two Major Earthquakes (M [ 7.0) J. Earth Syst. Sci. (2021) 130:149 Ó Indian Academy of Sciences https://doi.org/10.1007/s12040-021-01650-x (0123456789().,-volV)(0123456789().,-volV) Ionospheric and atmospheric perturbations due to two major earthquakes (M [ 7.0) 1, 2 2 SANJAY KUMAR *, PRASHANT KUMAR SINGH ,ROHTASH KUMAR , 1 1 AKSINGH and R P SINGH 1Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005, India. 2Department of Geo-Physics, Banaras Hindu University, Varanasi 221 005, India. *Corresponding author. e-mail: [email protected] MS received 16 October 2020; revised 10 March 2021; accepted 25 March 2021 The perturbation produced in the atmosphere/ionosphere associated with earthquake precursors during seismic activity of two major earthquakes which occurred on (1) 24 June 2019 in Indonesia (M = 7.3) and (2) on 19 August 2018 at Ndoi, Fiji (M = 8.2), are studied. Based on statistical analysis of total electron content (TEC) data, the presence of ionospheric perturbations 5 days before and after the main shock are found, which depends on the distance as well as direction of observation point from the epicentre. In general, ionospheric perturbations after the EQ at all the stations are found larger than that before the EQ. Probable mechanisms behind these perturbations associated with EQ are also being discussed. The ionospheric perturbations are observed at stations which are at larger distances from the epicentre, but not observed over other stations in different directions which are comparatively closer to the epicentre. These results suggest that seismic induced ionospheric anomaly is not isotropic in nature. Ozone data from three satellites: AIRS, OMI, and TOMS-like and MERRA-2 model are also analyzed 5 days before the EQ day and compared to the monthly average level. A strong link between anomalous variation in ionospheric TEC and atmospheric ozone data prior to both the EQs is noticed. Keywords. GPS; ionosphere; earthquake; seismo-ionosphere precursor; ozone. 1. Introduction preparatory stage, anomalous changes occur in the lithosphere and as a result, seismic electric signal Earthquake, a natural sudden and relatively (SES), radioactive elements, and leakage of carrier unpredicted phenomenon causes huge destruction gases: CH4,CO2, He, and H2 (Pulinets 2004; to human life, material properties, eco system Pulinets and Ouzounov 2011) are produced which environment and regional structural changes. move upward and produce ionization in the near Therefore, to reduce huge losses it is essential to Earth atmosphere (Sorokin and Hayakawa 2013), develop earthquake prediction technique both at acoustic pressure waves (Astafyeva et al. 2013), short- and long-time scales. Long-time scale pre- release of positive holes (Freund 2013), under- diction seems to be difBcult due to very weak signal ground emission of aerosols (Pulinets et al. 2000), produced during the early preparatory stage of electromagnetic radiations (Parrot 1994), etc. earthquake. Therefore, presently emphasis is to These may cause perturbations in atmospheric develop techniques for short-time predictions electric Beld, generation of atmospheric gravity (Hayakawa and Hobara 2010). In the earthquake waves, ionospheric electron density distribution, 149 Page 2 of 15 J. Earth Syst. Sci. (2021) 130:149 temperature, composition change and ionospheric of 24 June 2019 and (ii) Ndoi, Fiji Earthquake of 19 peak parameters of F2-layer NmF2, foF2, TEC of August 2018. TEC and ozone data for the period of the ionosphere. Measurements of these perturba- 5 days before and after the two earthquakes are tions may provide information about earthquake analyzed to understand possible implication of and its precursor signals. earthquakes on atmosphere/ionosphere. In the recent past, numerous ground- and satel- lite-based measurements have been used to study 2. Data and analysis pre- and post-seismic anomalies in different layers of the ionosphere (Liu et al. 2001; Sharma et al. The main shock of the Indonesian earthquake of 2010; Maurya et al. 2013; Aggarwal 2015; Sunil magnitude 7.3 started at 02:53:39 UT on 24 June et al. 2015). The pre-seismic induced electric Beld 2019. The epicentre was located at 292 km NW of depending upon its polarity with respect to existing Saunmalaki, Indonesia (lat. 6.408°S, long. electric Bled may produce enhancement or 129.16°E). Figure 1 shows map location of the depression in TEC of the ionosphere (Sharma et al. earthquake epicentre which is marked by symbol * 2010; Priyadarshi et al. 2011a;Liet al. 2015; Kelley with the red colour. The circle of earthquake et al. 2017). The E 9 B instability seems to be the preparation zone is drawn by blue colour and GPS most likely physical mechanism responsible for the stations lying inside the preparation zone are seismo-ionospheric anomaly formation (Namgal- denoted by symbol + (with blue colour for NDOI adze et al. 2007). Using ground-based measure- earthquake and green colour for Indonesian earth- ments, Liu et al. (2001) and Li et al. (2011) quake). Blue circle of the earthquake preparation reported simultaneous and significant decrease of zone has been drawn by considering epicentre as a the ionospheric electron density, foF2 and TEC centre and radius ‘R’ calculated using the relation which were observed 1–4 days before the Chi-Chi, q =100.439M, where M is the magnitude of earth- Rei-Li and Chia-Yi earthquakes. Using GPS data, quake (Dobrovolsky et al. 1979). Similar exercise Ouzounov et al. (2011) have constructed global has been done for the second earthquake which ionospheric map (GIM) over the Japanese region occurred at Ndoi, Fiji on 19 August 2018. Tables 1 and showed strong enhancement in electron den- and 2 describe brief details of the earthquakes and sity 3 days before the earthquake. Enhancement in location of stations from where data are used in GPS-TEC data just 40 min before the Tohoku this study. earthquake has been reported by Heki (2011). The GPS observation data in RINEX FORMAT Recently, case study and statistical analysis have are downloaded from the website (http://ftp:// been made to observe the pre-seismic anomalies in cddis.gsfc.nasa.gov) and then processed for com- TEC (e.g., Nishihashi et al. 2009; Aggarwal 2015; putation of total electron content. The data for the Sunil et al. 2015). Periodic structures in seismic- induced TEC anomalies have also been reported (Oikonomou et al. 2016). In India, many results have been reported on the earthquake-induced ionospheric perturbations using GPS-TEC mea- surements (Singh et al. 2009; Priyadarshi et al. 2011a, b), VLF measurements (Maurya et al. 2013) and ionosonde measurements (Sripati et al. 2020). Using an electrodynamic model for atmosphere– ionosphere coupling, Sorokin et al. (2006) explained that the emanation of radon and other gases over the earthquake preparation zone may cause the generation of acoustic gravity waves. They further reported that large amount of ema- nation of these gases may cause generation of Figure 1. Map showing location of the earthquake epicenter anomalous electric Beld which can produce large- (by * with red colour), circle of earthquake preparation zone scale changes in ionosphere-electrodynamics. and ionospheric measuring GPS station (by + with blue color for Ndoi EQ and green color for Indonesian EQ). Blue circle In the present study, an attempt has been made indicates the earthquake preparation zone. This circle is drawn to analyze ionospheric perturbations caused by the by assming epicenter as a center and radius of erathquake two major earthquakes: (i) Indonesian Earthquake preparation zone as a radius. J. Earth Syst. Sci. (2021) 130:149 Page 3 of 15 149 Table 1. List of GPS stations considered for ionospheric perturbation analysis and location of epicentre for Indonesian Earth- quake of 24 June 2019. In the table ‘I’ stands for increase and ‘d’ stands for decrease. The number put before I and d indicate number of days from the main shock. EQ details: Date: 24-06-2019 Magnitude: 7.3, 292 km NW of Saumlaki, Indonesia Epicenter: Latitude: 6.4088S, Longitude: 129.1698E Occurrence UT: 02:53:39 (11:53:39 LT) Ionospheric perturbation Distance of GPS GPS stations with geographic IGS station from Before main After main coordinate code epicenter (km) Azimuth shock shock Kathrine, Australia KAT1 943 339.5° None None 14.376°S, 132.153°E Darwine, Australia DARW 747 341.85° None None 12.843°S, 131.132°E Benoa, Indonesia BNOA 1559 81.38° (1-2)-I 5-I 8.746°S, 115.209°E Quezon City, Philippines PIMO 2503 14.02° 3-d, (1-2)-I, 0-d 1-I, d 3-d(4-5)-I, d 14.635°N, 121.077°E Cape Ferguson, Australia TOW2 2404 112.3° None None 19.269°S, 147.055°E Puerto Princesa, Philippines PPPC 2137 10.82° 5-d,(2-3)-I,0-d 1-d, 4-I, 5-d 9.772°N, 118.74°E Lombrum, Papua New Guinea PNGM 2074 80.04° (1-5)-I (1-2)-I, 5-I 2.043°S, 147.366°E selected stations are subjected to statistical anal- The other source is from the Total Ozone Map- ysis to Bnd out presence of anomaly from day-to- ping Spectrometer (TOMS) based on a NASA day variations. The hourly mean values of VTEC satellite instrument. The instrument measures the (Vertical Total Electron Content) for 5 days before total column amount of atmospheric ozone NO2 as and after the earthquake are considered and well as lower atmospheric dust, smoke, and other anomalies in the data from the monthly average aerosols. Thus it can distinguish between aerosol variation are selected for further analysis. For types such as smoke, dust and sulphates. In this anomalous variations, an upper bound (UB) study, total ozone column (TOC) daily data pro- (TEC ðMMÞþ1:34r) and the lower bound (LB) duct (OMDOAO3e˙003˙ColumnAmountO3) with (TECðÞÀ MM 1:34r) are computed, where TEC 0.25°90.25° resolution is taken from https:// (MM) and r are the monthly median and standard giovanni.gsfc.nasa.gov/giovanni/.
Recommended publications
  • ISC Data Cited in Research Publications in 2019
    ISC data cited in research publications in 2019 This list is a result of a special effort to put together a collection of scientific papers published during 2019 that used ISC data. The list is by no means exhaustive. The ISC has become such a familiar name that many researchers sadly fail to reference their use of the ISC data. To track publications that use one or more of the ISC dataset and services, we set up automatic alerts with Google Scholar for scientific papers that refer to ISC. The Google Scholar alerts return matches with different ways to refer to the ISC as normally done by authors, such as “International Seismological Centre”, “International Seismological Center”, “ISC-GEM”, “ISC-EHB” and “EHB” + ”seismic”. No doubt many more references can be found by using different search phrases. Below are the bibliographic references to the ~280 works in year 2019 as gathered by Google Scholar. The references to articles published in journals are listed first, followed by the references to other types of publications (e.g., chapters in books, reports, thesis, websites). The references are sorted by journal name. The vast majority of the references below belong to journal articles. Radulian, M., Bălă, A., Ardeleanu, L., Toma-Dănilă, D., Petrescu, registered earthquakes in the Arctic regions, Arctic Environmental L. and Popescu, E. (2019). Revised catalogue of earthquake Research, 19, 3, 123-128, http://doi.org/10.3897/issn2541- mechanisms for the events occurred in Romania until the end of 8416.2019.19.3.123. twentieth century: REFMC, Acta Geod. Geoph., 54, 1, 3-18, Turova, A.P.
    [Show full text]
  • Seismotectonic Characteristics of the Taiwan Collision-Manila Subduction Transition the Effect of Pre-Existing Structures
    Journal of Asian Earth Sciences 173 (2019) 113–120 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes Seismotectonic characteristics of the Taiwan collision-Manila subduction transition: The effect of pre-existing structures T ⁎ Shao-Jinn China,b, Jing-Yi Lina,b, , Yi-Ching Yeha, Hao Kuo-Chena, Chin-Wei Liangb a Department of Earth Sciences, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan 32001, Taiwan, ROC b Center for Environmental Studies, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan 32001, Taiwan, ROC ARTICLE INFO ABSTRACT Keywords: Based on the distribution of an earthquake swarm determined from an ocean bottom seismometer (OBS) network Collision deployed from 20 August to 5 September 2015 in the northernmost part of the South China Sea (SCS) and data Subduction from inland seismic stations in Taiwan, we resolved a ML 4.1 earthquake occurring on 1 September 2015 as a NE- Taiwan SW-trending left-lateral strike-slip event that ruptured along the pre-existing normal faults generated during the Manila SCS opening phases. The direction of the T-axes derived from the M 4.1 earthquake and the background Ocean bottom seismometer L seismicity off SW Taiwan present high consistency, indicating a stable dominant NW-SE tensional stress for the Passive margin subducted Eurasian Plate (EUP). The distinct stress variations on the two sides of these reactivated NE-SW trending features suggest that the presence of pre-existing normal faults and other related processes may lessen the lateral resistance between the Taiwan collision and Manila subduction system, and facilitate the slab-pull process for the subducting portion, which may explain the NW-SE tensional stress environment near the tran- sition boundary in the northernmost part of the SCS.
    [Show full text]
  • Seismic Response of SDOF Systems Under Doublet Earthquakes
    Seismic response of SDOF systems under doublet earthquakes *Saman Yaghmaei-Sabegh1) 1) Department of Civil Engineering, University of Tabriz, Tabriz, Iran 1) [email protected] ABSTRACT A single event scenario has been adopted in seismic design process of buildings by current design codes however seismic sequences may influence the structural safety. On 11th August 2012, two earthquakes took place in East-Azerbaijan province in the north-western part of Iran. In this study, effect of different features of this special seismic sequence that is named “doublet events” has been considered in the analysis. Artificial earthquake ground motion sequences are constructed based on real single events and results are compared with real sequences in terms of displacement time history. Results of analysis would help to highlight the effect of such type of motion in seismic evaluation of structures. 1. INTRODUCTION Based on observations in the past, the seismic events with strong or moderate intensity levels may be followed by aftershocks with considerable level of intensity. Large aftershocks after the mainshocks of the 2010 Haiti (Mw=7.0), 2010 Chile (Mw=8.8), 2008 Sichuan, China (Mw=8.0), 2011 Tohoku (Mw=9.0), 2009 L’Aquila, Italy earthquakes caused considerable structural and non-structural damages in suffering regions. Building seismic design codes does not typically provide any explicit guideline to consider seismic sequences effect on analysis or design procedures. A large body of literature exists about seismic sequences effects (or multiple events) on nonlinear behavior of buildings (Parisi and Augenti 2013; Zhai et al. 2013; Penna et al 2014). However, Seismic sequences studies have frequently been focused on mainshock-aftershock events in the past.
    [Show full text]
  • Damage and Ground Motion of the 26 December 2006 Pingtung Earthquakes, Taiwan
    Terr. Atmos. Ocean. Sci., Vol. 19, No. 6, 641-651, December 2008 doi: 10.3319/TAO.2008.19.6.641(PT) Damage and Ground Motion of the 26 December 2006 Pingtung Earthquakes, Taiwan Kou-Liang Wen1, 2, 3, *, Yu-Wen Chang 2, Che-Min Lin1, Hsien-Jen Chiang1, and Ming-Wey Huang 3 1 Institute of Geophysics, National Central University, Chung-Li, Taiwan, ROC 2 National Center for Research on Earthquake Engineering, National Applied Research Laboratories, Taipei, Taiwan, ROC 3 National S&T Center for Disaster Reduction, National Applied Research Laboratories, Taipei, Taiwan, ROC Received 7 January 2008, accepted 26 September 2008 ABSTRACT Two consecutive large earthquakes eight minutes apart occurred offshore of Hengchun, Pingtung County of Taiwan at night on 26 December 2006. The seismic intensity in the Kaohsiung and Pingtung areas reached 5 according to the Central Weather Bureau’s intensity scale making them the strongest earthquakes in the Hengchun area in a century. These earthquakes were felt throughout Taiwan. Because the earthquakes were located not far offshore, seismic instruments at the Taipower’s Nuclear Power Plant No. 3 (NPP3) registered their largest motions since recording commenced at the site. As a result, unit 2 of NPP3 was shut down while Unit 1 remained operating at full capacity. Other damage that occurred during the Earthquake Doublet included building collapse, rock falls, structure and non-structural damage to buildings, fire, and damage to utilities such as gas, electricity, and telephone lines; liquefaction was also noted. In this paper, the shakemaps based on the source parameters and real-time observations were predicted and compared with the recorded shakemaps.
    [Show full text]
  • On the Segmentation of the Cephalonia–Lefkada Transform Fault Zone (Greece) from an Insar Multi-Mode Dataset of the Lefkada 2015 Sequence
    remote sensing Article On the Segmentation of the Cephalonia–Lefkada Transform Fault Zone (Greece) from an InSAR Multi-Mode Dataset of the Lefkada 2015 Sequence Nikos Svigkas 1,2,3,* , Simone Atzori 2, Anastasia Kiratzi 1 , Cristiano Tolomei 2 , Andrea Antonioli 2, Ioannis Papoutsis 3, Stefano Salvi 2 and Charalampos (Haris) Kontoes 3 1 Department of Geophysics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece 2 Osservatorio Nazionale Terremoti, Istituto Nazionale di Geofisica e Vulcanologia, 00143 Roma, Italy 3 Institute of Space Applications and Remote Sensing, National Observatory of Athens, 15236 Athens, Greece * Correspondence: [email protected] Received: 17 July 2019; Accepted: 6 August 2019; Published: 8 August 2019 Abstract: We use Interferometric Synthetic Aperture Radar (InSAR) to study the Cephalonia–Lefkada Transform Fault Zone (CTF) in the Ionian Sea. The CTF separates continental subduction to the north from oceanic subduction to the south, along the Hellenic Subduction Zone. We exploit a rich multi-modal radar dataset of the most recent major earthquake in the region, the 17 November 2015 Mw 6.4 event, and present new surface displacement results that offer additional constraints on the fault segmentation of the area. Based on this dataset, and by exploiting available information of earthquake relocation, we propose a new rupture process for the 2015 sequence, complementary to those published already. Our modelling includes an additional southern fault segment, oblique to the segment related with the mainshock, which indicates that the CTF structure is more complex than previously believed. Keywords: InSAR; fault segmentation; Cephalonia–Lefkada Transform Fault; seismology 1. Introduction The Cephalonia–Lefkada Transform Fault Zone (CTF) in western Greece (Figure1a), connects two different subducting regimes: subduction of continental lithosphere to the north, with subduction of oceanic lithosphere to the south [1].
    [Show full text]
  • Fault Model of the 2012 Doublet Earthquake, Near the Up-Dip End Of
    Kubota et al. Progress in Earth and Planetary Science (2019) 6:67 Progress in Earth and https://doi.org/10.1186/s40645-019-0313-y Planetary Science RESEARCH ARTICLE Open Access Fault model of the 2012 doublet earthquake, near the up-dip end of the 2011 Tohoku-Oki earthquake, based on a near-field tsunami: implications for intraplate stress state Tatsuya Kubota1,2* , Ryota Hino2, Daisuke Inazu3 and Syuichi Suzuki2 Abstract On December 7, 2012, an earthquake occurred within the Pacific Plate near the Japan Trench, which was composed of deep reverse- and shallow normal-faulting subevents (Mw 7.2 and 7.1, respectively) with a time interval of ~10 s. It had been known that the stress state within the plate was characterized by shallow tensile and deep horizontal compressional stresses due to the bending of the plate (bending stress). This study estimates the fault model of the doublet earthquake utilizing tsunami, teleseismic, and aftershock data and discusses the stress state within the incoming plate and spatiotemporal changes seen in it after the 2011 Tohoku-Oki earthquake. We obtained the vertical extents of the fault planes of deep and shallow subevents as ~45–70 km and ~5 (the seafloor)–35 km, respectively. The down-dip edge of the shallow normal-faulting seismic zone (~30–35 km) deepened significantly compared to what it was in 2007 (~25 km). However, a quantitative comparison of the brittle strength and bending stress suggested that the change in stress after the Tohoku-Oki earthquake was too small to deepen the down-dip end of the seismicity by ~10 km.
    [Show full text]
  • Doublet Earthquake Triggering for the April 2014 Events in the Solomon Islands
    SSS05-P05 Japan Geoscience Union Meeting 2019 Doublet Earthquake Triggering for the April 2014 Events in the Solomon Islands *Calvin Luiramo Qwana1, Masatoshi Miyazawa2, James Mori2 1. Graduate School of Science, Kyoto University, 2. DPRI, Kyoto Univ. In 2014 at 20:14 (UTC) on April 12th and 12:36 on April 13th, a doublet earthquake with moment magnitudes of M7.6 and M7.4, respectively occurred near Makira Island (San Cristobal) in the Solomon Islands. The depths of the events were 27 km and 37 km, respectively (GCMT). To understand the interrelation between the first (M7.6) and second (M7.4) events , we check the role of Coulomb stress triggering on aftershocks that follow the M7.6 main shock and the coulomb failure stress changes on both of the focal mechanism nodal planes for the second event. To understand if the coulomb stress triggering played a role in the evolution of the triggered event M7.4 earthquake, we evaluate the transient aftershocks from the M7.6 to see if it promoted failure on the rupture plane for the second event (M7.4). We evaluate the doublet source process of the events and recover the slip distribution on each of the faults. We use an iterative inversion method by Kikuchi and Kanamori (1991) for the teleseismic P waveforms recorded from more than 20 stations of the Global Seismographic Network in a distance range of 30° to 90°. A fault plane with fixed strike and dip is placed in the region of the earthquake hypocenter and divided into subfaults, and a constant rupture velocity of 2.5 km/s is assumed.
    [Show full text]
  • IRIS Citations, 2019
    Abers, G. A., Adams, A. N., Haeussler, P. J., Roland, E., Shore, P. J., Wiens, D. A., Schwartz, S. Y., Sheehan, A. F., Shillington, D. J., Webb, S., & Worthington, L. L. (2019). Examining Alaska’s earthquakes on land and sea. EOS, 100. https://doi.org/https://doi.org/10.1029/2019EO117621 Abers, G. A., Mann, M. E., Daly, K. A., Castaneda, R. A. S., & Christensen, D. H. (2019). Oblique subduction at the end of the Aleutian slab beneath the Wrangell Volcanic Field. AGU. Aderhold, K., Bradley, A. C., Busby, R., Gomberg, J., & Bostock, M. (2019). Sea ice and the Alaska Transportable Array. Seismological Research Letters, 90(2B), 1038. https://doi.org/http://dx.doi.org/10.1785/0220190061 Aderhold, K., Busby, R., Woodward, R., Vernon, F., Frassetto, A., & Hedlin, M. (2019). Observing the ‘Spheres with the EarthScope Transportable Array. AGU. Adimah, N. I., & Padhy, S. (2019). Ambient noise Rayleigh wave tomography across the Madagascar island. Geophysical Journal International, 220(3), 1657-1676. https://doi.org/10.1093/gji/ggz542 Aflaki, M., Mousavi, Z., Ghods, A., Shabanian, E., Vajedian, S., & Akbarzadeh, M. (2019). The 2017 Mw 6 Sefid Sang earthquake and its implication for the geodynamics of NE Iran. Geophysical Journal International, 218(2), 1227-1245. https://doi.org/10.1093/gji/ggz172 Afonso, J. C., Salajegheh, F., Szwillus, W., Ebbing, J., & Gaina, C. (2019). A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets. Geophysical Journal International, 217(3), 1602-1628. https://doi.org/10.1093/gji/ggz094 Agrawal, M., Pulliam, J., Sen, M.
    [Show full text]
  • Seismic Response of SDOF Systems Under Doublet Earthquakes
    Seismic response of SDOF systems under doublet earthquakes *Saman Yaghmaei-Sabegh1) 1) Department of Civil Engineering, University of Tabriz, Tabriz, Iran 1) [email protected] ABSTRACT A single event scenario has been adopted in seismic design process of buildings by current design codes however seismic sequences may influence the structural safety. On 11th August 2012, two earthquakes took place in East-Azerbaijan province in the north-western part of Iran. In this study, effect of different features of this special seismic sequence that is named “doublet events” has been considered in the analysis. Artificial earthquake ground motion sequences are constructed based on real single events and results are compared with real sequences in terms of displacement time history. Results of analysis would help to highlight the effect of such type of motion in seismic evaluation of structures. 1. INTRODUCTION Based on observations in the past, the seismic events with strong or moderate intensity levels may be followed by aftershocks with considerable level of intensity. Large aftershocks after the mainshocks of the 2010 Haiti (Mw=7.0), 2010 Chile (Mw=8.8), 2008 Sichuan, China (Mw=8.0), 2011 Tohoku (Mw=9.0), 2009 L’Aquila, Italy earthquakes caused considerable structural and non-structural damages in suffering regions. Building seismic design codes does not typically provide any explicit guideline to consider seismic sequences effect on analysis or design procedures. A large body of literature exists about seismic sequences effects (or multiple events) on nonlinear behavior of buildings (Parisi and Augenti 2013; Zhai et al. 2013; Penna et al 2014). However, Seismic sequences studies have frequently been focused on mainshock-aftershock events in the past.
    [Show full text]
  • Characteristics on Fault Coupling Along the Solomon Megathrust Based On
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Characteristics on fault coupling along the Solomon 10.1002/2016GL070188 megathrust based on GPS observations Key Points: from 2011 to 2014 • We deployed the first continuous GPS network at the Western Solomon Yu-Ting Kuo1, Chin-Shang Ku1,2, Yue-Gau Chen1, Yu Wang3, Yu-Nung Nina Lin4, Ray Y. Chuang5, Islands since 2011 2 6 2 1,2 • GPS record reveals significantly Ya-Ju Hsu , Frederick W. Taylor , Bor-Shouh Huang , and Hsin Tung different interseismic coupling ratios 1 2 between two adjacent segments on Department of Geosciences, National Taiwan University, Taipei, Taiwan, Institute of Earth Sciences, Academia Sinica, the Solomon megathrust Taipei, Taiwan, 3Earth Observatory of Singapore, Nanyang Technological University, Singapore, 4CGG, Singapore, • We identify a semipermanent asperity 5Department of Geography, National Taiwan University, Taipei, Taiwan, 6Institute for Geophysics, University of Texas at and a potential barrier to rupture, Austin, Austin, Texas, USA each corresponding to the subduction of geological features Abstract The Solomon megathrust along the western Solomon arc generated two megathrust earthquakes Supporting Information: in the past decade (Mw 8.1 in 2007 and Mw 7.1 in 2010). To investigate the interseismic deformation and • Supporting Information S1 inferred coupling on the megathrust, we deployed the first continuous GPS network in the Western Solomon Islands. Our 2011–2014 GPS data and the back slip inversion model show coupling ratio as high as 73% along Correspondence to: the southeastern 2007 rupture segment but only 10% on average along the segment of 2010 event. Based on Y.-G. Chen, [email protected] the spatial distribution of coseismic slip, aftershock clusters, derived coupling pattern, and paleogeodetic records, we discovered the former as a semipermanent asperity and the latter as a potential megathrust barrier.
    [Show full text]
  • Is the Eastern Denali Fault Still Active? Minhee Choi, David W
    https://doi.org/10.1130/G48461.1 Manuscript received 24 April 2020 Revised manuscript received 30 November 2020 Manuscript accepted 3 December 2020 © 2021 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 5 February 2021 Is the Eastern Denali fault still active? Minhee Choi, David W. Eaton and Eva Enkelmann Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada ABSTRACT rocks, ranging from Cambrian to Late Triassic The Denali fault, a transcurrent fault system that extends from northwestern Canada age, while the Wrangellia terrane is a late Paleo- across Alaska toward the Bering Sea, is partitioned into segments that exhibit variable zoic island-arc assemblage overlain by Mesozo- levels of historical seismicity. A pair of earthquakes (M 6.2 and 6.3) on 1 May 2017, in ic flood basalts and sedimentary rocks (Cobbett proximity to the Eastern Denali fault (EDF), exhibited source mechanisms and stress con- et al., 2016). During the Jurassic and Cretaceous, ditions inconsistent with expectations for strike-slip fault activation. Precise relocation of the Insular superterrane was intruded by several ∼1500 aftershocks revealed distinct fault strands that are oblique to the EDF. Calculated older arcs, and later by the active Wrangell arc, patterns of Coulomb stress show that the first earthquake likely triggered the second one. which has migrated from southeast to northwest The EDF parallels the Fairweather transform, which separates the obliquely colliding Ya- since 28 Ma (Beranek et al., 2017). kutat microplate from North America. In our model, inboard transfer of stress is deforming The Yakutat microplate is presently mov- and shortening the mountainous region between the EDF and the Fairweather transform.
    [Show full text]
  • Nonlinear Response Analysis of SDOF Systems Subjected to Doublet
    Engineering Structures 110 (2016) 281–292 Contents lists available at ScienceDirect Engineering Structures journal homepage: www.elsevier.com/locate/engstruct Nonlinear response analysis of SDOF systems subjected to doublet earthquake ground motions: A case study on 2012 Varzaghan–Ahar events ⇑ Saman Yaghmaei-Sabegh a, , Jorge Ruiz-García b a Department of Civil Engineering, University of Tabriz, Tabriz, Iran b Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C, Planta Baja, Ciudad Universitaria, 58040 Morelia, Mexico article info abstract Article history: A moderate earthquake ground motion with moment magnitude (Mw) 6.4 took place in the North- Received 28 February 2015 Western area of Iran on August 11, 2012, which was followed by an aftershock (Mw = 4.9) just 6 min Revised 14 November 2015 later. Eleven minutes after the first event, the affected area was struck by another moderate seismic event Accepted 19 November 2015 (Mw = 6.3) coming from a different seismogenic source. Earthquake ground motions of this special type Available online 29 December 2015 of seismic sequence were recorded in the cities of Varzaghan and Ahar. Therefore, the first part of this study investigated the energy distribution and frequency content characteristics of the Varzaghan– Keywords: Ahar earthquake ground motions records through wavelet transform analysis. The second part of this Doublet earthquake ground motion study presents the results of the nonlinear response of SDOF systems subjected to as-recorded Strength reduction factor Ductility demand Varzaghan–Ahar seismic sequences. The nonlinear response was measured in terms of constant- SDOF ductility strength reduction factors, R, and inelastic displacement ratios, IDR, which were compared with Wavelet analysis predictive capabilities of previously proposed predictive expressions that take into account seismic sequences.
    [Show full text]