Bosonic Topological Insulator Intermediate State in the Superconductor-Insulator Transition

Total Page:16

File Type:pdf, Size:1020Kb

Bosonic Topological Insulator Intermediate State in the Superconductor-Insulator Transition Physics Letters A 384 (2020) 126570 Contents lists available at ScienceDirect Physics Letters A www.elsevier.com/locate/pla Bosonic topological insulator intermediate state in the superconductor-insulator transition M.C. Diamantini a, A.Yu. Mironov b,c, S.M. Postolova b,d, X. Liu e, Z. Hao e, D.M. Silevitch f, ∗ Ya. Kopelevich g, P. Kim e, C.A. Trugenberger h, V.M. Vinokur i,j, a NiPS Laboratory, INFN and Dipartimento di Fisica e Geologia, University of Perugia, via A. Pascoli, I-06100 Perugia, Italy b A.V. Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentjev Avenue, Novosibirsk 630090, Russia c Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia d Institute for Physics of Microstructures RAS, GSP-105, Nizhny Novgorod 603950, Russia e Department of Physics, Harvard University, Cambridge, MA 02138, USA f Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA g Universidade Estadual de Campinas-UNICAMP, Instituto de Física “Gleb Wataghin”/DFA, Rua Sergio Buarque de Holanda, 777, Brazil h SwissScientific Technologies SA, rue du Rhone 59, CH-1204 Geneva, Switzerland i Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60637, USA j Consortium for Advanced Science and Engineering (CASE), University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA a r t i c l e i n f o a b s t r a c t Article history: A low-temperature intervening metallic regime arising in the two-dimensional superconductor-insulator Received 12 April 2020 transition challenges our understanding of electronic fluids. Here we develop a gauge theory revealing Accepted 12 May 2020 that this emergent anomalous metal is a bosonic topological insulator where bulk transport is Available online 19 May 2020 suppressed by mutual statistics interactions between out-of-condensate Cooper pairs and vortices and Communicated by L. Ghivelder the longitudinal conductivity is mediated by symmetry-protected gapless edge modes. We explore Keywords: the magnetic-field-driven superconductor-insulator transition in a niobium titanium nitride device and Berezinskii-Kosterlitz-Thouless transition find marked signatures of a bosonic topological insulator behavior of the intervening regime with the Superconductor-insulator transition saturating resistance. The observed superconductor-anomalous metal and insulator-anomalous metal dual Bose metal phase transitions exhibit quantum Berezinskii-Kosterlitz-Thouless criticality in accord with the gauge Bosonic topological insulator theory. Josephson junction arrays © 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND Quantum Berezinskii-Kosterlitz-Thouless license (http://creativecommons.org/licenses/by-nc-nd/4.0/). transition Introduction SIT [20] and unravel the fundamental role of the infrared-dominant Aharonov-Bohm-Casher (ABC) mutual statistics interactions that An anomalous metallic regime intervening between the su- determine the SIT phase structure. Here utilizing the technique perconductor and insulator has been reported in a wide va- of [20], we construct a gauge theory of the Bose metal (BM) in riety of two-dimensional electronic systems experiencing the which strong quantum fluctuations prevent Bose condensation of superconductor-to-insulator transition (SIT) [1–15], and is often re- both vortices and Cooper pairs (CP) and their mutual statistics in- ferred to as “Bose metal” [16]. Despite decades of dedicated studies teractions, see Fig. 1, induce a gap in their fluctuation spectrum, [17,18], its nature remains unclear and poses a challenge to our quantified by the Chern-Simons mass, mCS [21], preventing bulk understanding of electron fluids. The very existence of a 2D metal transport. The longitudinal conductance is mediated by symmetry- is at odds with the 2D orthodoxy, as conventional theories expect protected U(1)ZT edge modes, where ZT denotes time-reversal a direct quantum SIT with no intermediate metallic phase. 2 2 symmetry. Hence the BM realizes the long sought [22] bosonic Yet a gauge theory of Josephson junction arrays (JJA) at T = 0 topological insulator. We demonstrate that at T = 0the transitions [19]predicted a metallic phase intervening between the supercon- between the superconductor and BM and between the BM and ductor and superinsulator at T = 0. Extending the approach of [19] superinsulator are the respective quantum Berezinskii-Kosterlitz- to finite temperatures, enabled us to develop a field theory of the Thouless (BKT) transitions. We report transport measurements on niobium titanium nitride (NbTiN) and van der Waals heterostruc- * Corresponding author. tures of twisted double bilayer graphene (TDBG) films offering E-mail address: [email protected] (V.M. Vinokur). strong support to the proposed picture. https://doi.org/10.1016/j.physleta.2020.126570 0375-9601/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 2 M.C. Diamantini et al. / Physics Letters A 384 (2020) 126570 parameter η describes the strength of quantum fluctuations. Near the SIT, where eq ≈ ev, η acquires the form (in physical units) 1 π 2 π η = G , (1) α μeλ⊥ αλ⊥ Fig. 1. Mutual statistics interactions. a: A charge (blue ball) evolves along the 2 Euclidean time axis and is encircled by a vortex (red). The two trajectories are where α = e /(hc¯ ) ≈ 1/137 is the fine structure constant, μe is the topologically linked since one cannot decouple the charge trajectory from the cir- positional entropy (see SI), and G is the diagonal element of the 3D cle without breaking it. This linking encodes the Aharonov-Casher effect. b: A dual Green function describing electromagnetic interactions screened by situation in which a vortex (red ball) evolves along the Euclidean time direction the CS mass, see SI. Identifying the UV cutoff with the supercon- and is encircled by a charge. This linking represent the Aharonov-Bohm effect. c: The linked charge-anticharge and vortex-antivortex fluctuations representing cou- ducting coherence length ξ , yields the geometric factor as d/(κλL) pled Aharonov-Bohm-Casher interactions which are encoded in the Chern-Simons where κ = λL/ξ is the Landau-Ginzburg parameter. term in the action. (For interpretation of the colors in the figure(s), the reader is Bose condensation of charges and/or vortices means prolifera- referred to the web version of this article.) tion of strings of an arbitrary size and occurs if F is negative, i.e. if Phase structure of the SIT Q 2/g + gM2 < 1/η . (2) We consider a two-dimensional superconducting film in the The phase emerging at particular values of g and η is determined vicinity of the SIT at temperatures T Tc0, where Tc0 is the mean- field temperature of formation of Cooper pairs with the infinite by the geometric condition that the nods on a square lattice of in- lifetime. Near the SIT, a film acquires self-induced electronic gran- teger electric and magnetic charges, {Q , M}, fall within the interior = 1/2 = 1/2 ularity which, conjectured in [23,24], became a paradigmatic at- of an ellipse with semi-axes rQ (g/η) and rM 1/(gη) , see tribute of the SIT [25,26]. This implies that in the critical vicinity Fig. 2(a–d). The Bose metal emerges if none of the condensates can of the SIT the 2D superconducting film can be perfectly modeled form i.e. if simultaneously as the granular superconductor or JJA. The latter harbors interact- ing elementary excitations, Cooper pairs which in this case can g/η > 1andgη > 1 . (3) be considered as charged bosons [27,28] and vortices with char- This relation resolves the enigma of why some materials exhibit acteristic energies 4E and 2π 2 E , respectively, E and E being C J C J a direct SIT while others go through the intermediate Bose metal the charging energy and Josephson coupling energy of a single phase. The direct SIT at g = 1 corresponds to η < 1; tuning g, one junction. The mapping on the real film is achieved by replace- crosses the region η < g < 1/η, where both vortex and Cooper ment 4E → e2 = 4e2/ and 2π 2 E → e2 = 2/λ⊥ where e is the C q J v 0 pair condensates coexist, i.e. the direct SIT is a first-order quan- electron charge (we use natural units, c = 1, h¯ = 1, restoring phys- tum transition. The Bose metal phase opens up for η > 1 and is ical units when necessary), = π/e is the flux quantum, the 0 favored by thicker films and for materials with low κ. Its domain ultraviolet (UV) cutoff of the theory is defined as min{d,ξ}, is delimited by the lines g = η and g = 1/η. As we show below, with d and ξ being the thickness of the film and the supercon- these lines represent quantum BKT transitions [32,33], and g = 1, = 2 ducting coherence length, respectively, and λ⊥ λL /d is the Pearl η = 1is a quantum tri-critical point. length of the film, with λL being the London penetration depth of To describe the magnetic-field-driven SIT in systems with g ≈ 1 the bulk material. Note that in a superconducting film the mean i.e. which are already on the brink of the SIT, we introduce the distance between Cooper pairs is much less than the size of a sin- frustration factor f = B/B, where B is the magnetic field corre- gle Cooper pair, hence, strictly speaking, the latter are not bosons. sponding to one flux quantum 0 = π/e per unit cell. Then the ex- However, since in a superconducting film the Cooper pair conden- ternal magnetic field shifts M → M + f and modifies the conden- sate maintains phase coherence, one can still describe the ensem- sation conditions, see Fig.
Recommended publications
  • M. Cristina Diamantini Nips Laboratory, INFN and Department of Physics and Geology University of Perugia Coll: • Luca Gammaitoni, University of Perugia • Carlo A
    M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: • Luca Gammaitoni, University of Perugia • Carlo A. Trugenberger, SwissScientific • Valerii Vinokur, Argonne National Laboratory arXiv:1806.00823 arXiv:1807.01984 XIIIth Quark Confinement and the Hadron Spectrum, Maynooth August 2018 T=0 e TToppologliocBoseagl iincs metalualal tionr/sBouslea mteotarl Superinsulator topological insulator Superinsulator SSupueprcoenrdcuoctonrd uctor (topological) (bosonic) g quarks bound by (chromo)-electric strings in a condensate of magnetic monopoles (Mandelstam, ‘t Hooft, Polyakov) mirror analogue to vortex formation in type II superconductors Polyakov's magnetic monopole condensation⟹ electric string ⟹ linear confinement of Cooper pairs one color QCD Superconductor Superinsulator R = 0 S duality R = ∞ G= ∞ Mandelstam ’tHooft G= 0 Polyakov theoretically predicted in 1996 P. Sodano, C.A. Trugenberger, MCD, Nucl. Phys. B474 (1996) 641 experimentally observed in TiN films in 2008 Vinokur et al, Nature 452 (2008) 613 confirmed in NbTin films in 2017 Vinokur et al, Scientific Reports 2018 Superinsulation: realization and proof of confinement by monopole condensation and asymptotic freedom in solid state materials Cooper pairs Quarks Results for homogeneously disordered TiN film (2D) transition driven by: • tuning disorder (thickness of the film) • external magnetic field (Vinokur et al. Nature) superinsulating state dual to the superconducting state Superconductor Superinsulator Cooper pair
    [Show full text]
  • Unit VI Superconductivity JIT Nashik Contents
    Unit VI Superconductivity JIT Nashik Contents 1 Superconductivity 1 1.1 Classification ............................................. 1 1.2 Elementary properties of superconductors ............................... 2 1.2.1 Zero electrical DC resistance ................................. 2 1.2.2 Superconducting phase transition ............................... 3 1.2.3 Meissner effect ........................................ 3 1.2.4 London moment ....................................... 4 1.3 History of superconductivity ...................................... 4 1.3.1 London theory ........................................ 5 1.3.2 Conventional theories (1950s) ................................ 5 1.3.3 Further history ........................................ 5 1.4 High-temperature superconductivity .................................. 6 1.5 Applications .............................................. 6 1.6 Nobel Prizes for superconductivity .................................. 7 1.7 See also ................................................ 7 1.8 References ............................................... 8 1.9 Further reading ............................................ 10 1.10 External links ............................................. 10 2 Meissner effect 11 2.1 Explanation .............................................. 11 2.2 Perfect diamagnetism ......................................... 12 2.3 Consequences ............................................. 12 2.4 Paradigm for the Higgs mechanism .................................. 12 2.5 See also ...............................................
    [Show full text]
  • Magnetic Monopole Mechanism for Localized Electron Pairing in HTS
    Magnetic monopole mechanism for localized electron pairing in HTS Cristina Diamantini University of Perugia Carlo Trugenberger SwissScientic Technologies SA Valerii Vinokur ( [email protected] ) Terra Quantum AG https://orcid.org/0000-0002-0977-3515 Article Keywords: Effective Field Theory, Pseudogap Phase, Charge Condensate, Condensate of Dyons, Superconductor-insulator Transition, Josephson Links Posted Date: July 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-694994/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Magnetic monopole mechanism for localized electron pairing in HTS 1 2 3, M. C. Diamantini, C. A. Trugenberger, & V.M. Vinokur ∗ Recent effective field theory of high-temperature superconductivity (HTS) captures the universal features of HTS and the pseudogap phase and explains the underlying physics as a coexistence of a charge condensate with a condensate of dyons, particles carrying both magnetic and electric charges. Central to this picture are magnetic monopoles emerg- ing in the proximity of the topological quantum superconductor-insulator transition (SIT) that dominates the HTS phase diagram. However, the mechanism responsible for spatially localized electron pairing, characteristic of HTS remains elusive. Here we show that real-space, localized electron pairing is mediated by magnetic monopoles and occurs well above the superconducting transition temperature Tc. Localized electron pairing promotes the formation of supercon- ducting granules connected by Josephson links. Global superconductivity sets in when these granules form an infinite cluster at Tc which is estimated to fall in the range from hundred to thousand Kelvins. Our findings pave the way to tailoring materials with elevated superconducting transition temperatures.
    [Show full text]
  • Arxiv:1807.01984V2 [Hep-Th] 7 Nov 2018 films [14] and Have Become Ever Since a Subject of an Intense Study, See [15–17] and References Therein
    Confinement and asymptotic freedom with Cooper pairs M. C. Diamantini,1 C. A. Trugenberger,2 and V. M. Vinokur3 1NiPS Laboratory, INFN and Dipartimento di Fisica e Geologia, University of Perugia, via A. Pascoli, I-06100 Perugia, Italy 2SwissScientific Technologies SA, rue du Rhone 59, CH-1204 Geneva, Switzerland 3Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439, USA One of the most profound aspects of the standard model of particle physics, the mechanism of confinement binding quarks into hadrons, is not sufficiently understood. The only known semiclassical mechanism of con- finement, mediated by chromo-electric strings in a condensate of magnetic monopoles still lacks experimental evidence. Here we show that the infinite resistance superinsulating state, which emerges on the insulating side of the superconductor-insulator transition in superconducting films offers a realization of confinement that al- lows for a direct experimental access. We find that superinsulators realize a single-color version of quantum chromodynamics and establish the mapping of quarks onto Cooper pairs. We reveal that the mechanism of superinsulation is the linear binding of Cooper pairs into neutral “mesons” by electric strings. Our findings offer a powerful laboratory for exploring and testing the fundamental implications of confinement, asymptotic freedom, and related quantum chromodynamics phenomena via the desktop experiments on superconductors. INTRODUCTION a The standard model of particle physics is extraordinarily successful at explaining many facets of the physical realm. Yet, one of its profound aspects, the mechanism of confine- ment binding quarks into hadrons, is not sufficiently under- b stood. The only known semiclassical mechanism of confine- ment is mediated by chromo-electric strings in a condensate of magnetic monopoles [1–3] but its relevance for quantum chromodynamics still lacks experimental evidence.
    [Show full text]
  • Arxiv:2007.02356V2 [Hep-Th] 17 Feb 2021 Insulator Transition [11] and the Appearance of the Superinsu- Lating State [12–14]
    Quantum magnetic monopole condensate M. C. Diamantini,1 C. A. Trugenberger,2 and V.M. Vinokur3 1NiPS Laboratory, INFN and Dipartimento di Fisica e Geologia, University of Perugia, via A. Pascoli, I-06100 Perugia, Italy 2SwissScientific Technologies SA, rue du Rhone 59, CH-1204 Geneva, Switzerland 3Terra Quantum AG, St. Gallerstrasse 16A, CH-9400 Rorschach, Switzerland Despite decades-long efforts, magnetic monopoles were never found as elementary particles. Monopoles and associated currents were directly measured in experiments and identified as topological quasiparticle excitations in emergent condensed matter systems. These monopoles and the related electric-magnetic symmetry were restricted to classical electrodynamics, with monopoles behaving as classical particles. Here we show that the electric-magnetic symmetry is most fundamental and extends to full quantum behavior. We demonstrate that at low temperatures magnetic monopoles can form a quantum Bose condensate dual to the charge Cooper pair condensate in superconductors. The monopole Bose condensate manifests as a superinsulating state with infinite resistance, dual to superconductivity. Monopole supercurrents result in the electric analog of the Meissner effect and lead to linear confinement of Cooper pairs by Polyakov electric strings in analogy to quarks in hadrons. INTRODUCTION a b + – – – + + – – + + Maxwell’s equations in vacuum are symmetric under the dual- + – – + – – + – – ity transformation E ! B and B ! −E (we use natural units + c = 1, ~ = 1, " = 0). Duality is preserved, provided that both + + 0 – + – – – + electric and magnetic sources (magnetic monopoles and mag- – – + + + – netic currents) are included [1]. Magnetic monopoles, while + – + + – + elusive as elementary particles [2], exist in many materials in – + + the form of emergent quasiparticle excitations [3]. Magnetic – monopoles and associated currents were directly measured in experiments [4], confirming the predicted symmetry between electricity and magnetism.
    [Show full text]
  • An Emergent Realisation of Confinement
    universe Review Superinsulators: An Emergent Realisation of Confinement Maria Cristina Diamantini 1,*,† and Carlo A. Trugenberger 2,† 1 NiPS Laboratory, INFN and Dipartimento di Fisica e Geologia, University of Perugia, Via A. Pascoli, I-06100 Perugia, Italy 2 SwissScientific Technologies SA, Rue du Rhone 59, CH-1204 Geneva, Switzerland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Superinsulators (SI) are a new topological state of matter, predicted by our collaboration and experimentally observed in the critical vicinity of the superconductor-insulator transition (SIT). SI are dual to superconductors and realise electric-magnetic (S)-duality. The effective field theory that describes this topological phase of matter is governed by a compact Chern-Simons in (2+1) dimensions and a compact BF term in (3+1) dimensions. While in a superconductor the condensate of Cooper pairs generates the Meissner effect, which constricts the magnetic field lines penetrating a type II superconductor into Abrikosov vortices, in superinsulators Cooper pairs are linearly bound by electric fields squeezed into strings (dual Meissner effect) by a monopole condensate. Magnetic monopoles, while elusive as elementary particles, exist in certain materials in the form of emergent quasiparticle excitations. We demonstrate that at low temperatures magnetic monopoles can form a quantum Bose condensate (plasma in (2+1) dimensions) dual to the charge condensate in superconductors. The monopole Bose condensate manifests as a superinsulating state with infinite resistance, dual to superconductivity. The monopole supercurrents result in the electric analogue of the Meissner effect and lead to linear confinement of the Cooper pairs by Polyakov electric strings in Citation: Diamantini, M.C.; analogy to quarks in hadrons.
    [Show full text]
  • Arxiv:1906.07969V2 [Cond-Mat.Str-El] 31 Aug 2019 Tual Statistics Interactions Determining the SIT Phase Coded in the Chern-Simons Term in the Action
    Bosonic topological insulator intermediate state in the superconductor-insulator transition M. C. Diamantini,1 A. Yu. Mironov,2, 3 S. V. Postolova,2, 4 X. Liu,5 Z. Hao,5 D. M. Silevitch,6 Ya. Kopelevich,7 P. Kim,5 C. A. Trugenberger,8 and V. M. Vinokur9, 10 1NiPS Laboratory, INFN and Dipartimento di Fisica e Geologia, University of Perugia, via A. Pascoli, I-06100 Perugia, Italy 2A. V. Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentjev Avenue, Novosibirsk, 630090 Russia 3Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia 4Institute for Physics of Microstructures RAS, GSP-105, Nizhny Novgorod 603950, Russia 5Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 6Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 7Universidade Estadual de Campinas-UNICAMP, Instituto de F¨ı¿œ¨ı¿œsica \Gleb Wataghin"/DFA Rua Sergio Buarque de Holanda, 777, Brasil 8SwissScientific Technologies SA, rue du Rhone 59, CH-1204 Geneva, Switzerland 9Materials Science Division, Argonne National Laboratory, 9700 S. Cass. Ave, Lemont, IL 60437, USA. 10Consortium for Advanced Science and Engineering (CASE) University of Chicago 5801 S Ellis Ave Chicago, IL 60637 A low-temperature intervening metallic regime arising in the two-dimensional superconductor- insulator transition challenges our understanding of electronic fluids. Here we develop a gauge theory revealing that this emergent anomalous metal is a bosonic topological insulator where bulk transport is suppressed by mutual statistics interactions between out-of-condensate Cooper pairs and vortices and the longitudinal conductivity is mediated by symmetry-protected gapless edge modes. We explore the magnetic-field-driven superconductor-insulator transition in a niobium titanium nitride device and find marked signatures of a bosonic topological insulator behavior of the intervening regime with the saturating resistance.
    [Show full text]
  • Yttrium Barium Copper Oxide 15 Liquid Nitrogen 20
    Wiki Book Mounir Gmati Wiki Book Mounir Gmati Lévitation Quantique: Les ingrédients et la recette PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Mon, 14 Nov 2011 01:54:04 UTC Wiki Book Mounir Gmati Contents Articles Superconductivity 1 Superconductivity 1 Type-I superconductor 14 Yttrium barium copper oxide 15 Liquid nitrogen 20 Magnetism 23 Magnetism 23 Magnetic field 33 Flux pinning 54 Magnetic levitation 55 References Article Sources and Contributors 63 Image Sources, Licenses and Contributors 65 Article Licenses License 66 Wiki Book Mounir Gmati 1 Superconductivity Superconductivity Superconductivity is a phenomenon of exactly zero electrical resistance occurring in certain materials below a characteristic temperature. It was discovered by Heike Kamerlingh Onnes on April 8, 1911 in Leiden. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It is characterized by the Meissner effect, the complete ejection of magnetic field lines from the interior of the superconductor as it transitions into the superconducting state. The occurrence of the Meissner effect indicates that superconductivity cannot be understood simply as the A magnet levitating above a high-temperature idealization of perfect conductivity in classical physics. superconductor, cooled with liquid nitrogen. Persistent electric current flows on the surface of The electrical resistivity of a metallic conductor decreases gradually as the superconductor, acting to exclude the temperature is lowered. In ordinary conductors, such as copper or magnetic field of the magnet (Faraday's law of silver, this decrease is limited by impurities and other defects. Even induction). This current effectively forms an electromagnet that repels the magnet.
    [Show full text]
  • Supercapacitance and Superinductance of Tin and Nbtin Lms in the Vicinity of Superconductor-To- Insulator Transition
    Supercapacitance and Superinductance of TiN and NbTiN lms in the Vicinity of Superconductor-to- Insulator Transition Alexey Mironov Novosibirsk State University Daniel Silevitch California Institute of Technology Svetlana Postolova Novosibirsk State University Maria Burdastyh Novosibirsk State University Thomas Proslier CEA-Saclay Tatyana Baturina Novosibirsk State University Thomas Rosenbaum California Institute of Technology Valerii Vinokur ( [email protected] ) Terra Quantum AG Research Article Keywords: TiN , NbTiN lms , superconductor-insulator transition, frequency, temperature, magnetic eld Posted Date: March 10th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-253509/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on August 10th, 2021. See the published version at https://doi.org/10.1038/s41598-021-95530-5. Supercapacitance and Superinductance of TiN and NbTiN films in the Vicinity of Superconductor-to-Insulator Transition A. Yu. Mironov1,2, D. M. Silevitch3, S. V.Postolova1,4, M. V.Burdastyh1,2, T. Proslier5, T. I. Baturina1, T. F. Rosenbaum3, and V.M. Vinokur6,* 1A. V.Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentjev Avenue, Novosibirsk 630090, Russia 2Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia 3Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 4Institute for Physics of Microstructures
    [Show full text]
  • Arxiv:1906.12265V3 [Cond-Mat.Supr-Con] 27 Aug 2020
    Direct probe of the interior of an electric pion in a Cooper pair superinsulator M. C. Diamantini,1 S. V.Postolova,2, 3 A. Yu.Mironov,2, 4 L. Gammaitoni,1 C. Strunk,5 C. A. Trugenberger,6 and V.M. Vinokur7, 8 1NiPS Laboratory, INFN and Dipartimento di Fisica e Geologia, University of Perugia, via A. Pascoli, I-06100 Perugia, Italy 2A. V.Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentjev Avenue, Novosibirsk, 630090 Russia 3Institute for Physics of Microstructures RAS, GSP-105, Nizhny Novgorod 603950, Russia 4Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia 5Institute of Experimental and Applied Physics, University of Regensburg, D-93025 Regensburg, Germany 6SwissScientific Technologies SA, rue du Rhone 59, CH-1204 Geneva, Switzerland 7Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA 8Consortium for Advanced Science and Engineering (CASE) University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA The nature of hadrons is one of the most fundamental mysteries of physics. It is generally agreed that they are made of “colored” quarks, which move nearly free at short scales but are confined inside hadrons by strong in- teractions at large distances. Because of confinement, quarks are never directly observable and, experimentally, their properties can be tested only indirectly, via high energy collisions. Here we show that superinsulating films realize a complete, one-color model system of hadron physics with Cooper pairs playing the role of quarks. We report measurements on highly controlled NbTiN films that provide a window into the interior of “Cooper pair mesons” and present the first direct evidence of asymptotic freedom, t Hoofts dual superconductivity confine- ment mechanism, and magnetic monopoles.
    [Show full text]
  • The Superconductor-Superinsulator Transition: S-Duality and QCD on The
    The Superconductor-Superinsulator Transition: S-duality and the QCD on the desktop M. Cristina Diamantini,1 Luca Gammaitoni,1 Carlo A. Trugenberger,2 and Valerii M. Vinokur3 1NiPS Laboratory, INFN and Dipartimento di Fisica, University of Perugia, via A. Pascoli, I-06100 Perugia, Italy 2SwissScientific, rue due Rhone 59, CH-1204 Geneva, Switzerland 3Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA We show that the nature of quantum phases around the superconductor-insulator transition (SIT) is controlled by charge-vortex topological interactions, and does not depend on the details of ma- terial parameters and disorder. We find three distinct phases, superconductor, superinsulator and bosonic topological insulator. The superinsulator is a state of matter with infinite resistance in a finite temperatures range, which is the S-dual of the superconductor and in which charge transport is prevented by electric strings binding charges of opposite sign. The electric strings ensuring linear confinement of charges are generated by instantons and are dual to superconducting Abrikosov vor- tices. Material parameters and disorder enter the London penetration depth of the superconductor, the string tension of the superinsulator and the quantum fluctuation parameter driving the transi- tion between them. They are entirely encoded in four phenomenological parameters of a topological gauge theory of the SIT. Finally, we point out that, in the context of strong coupling gauge theories, the many-body localization phenomenon that is often referred to as an underlying mechanism for superinsulation is a mere transcription of the well-known phenomenon of confinement into solid state physics language and is entirely driven by endogenous disorder embodied by instantons with no need of exogenous disorder.
    [Show full text]
  • M. Cristina Diamantini Nips Laboratory, INFN and Department of Physics and Geology University of Perugia Coll
    M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: • Luca Gammaitoni, University of Perugia arXiv:1806.00823 • Carlo A. Trugenberger, SwissScientific • Valerii Vinokur, Argonne National Laboratory arXiv:1807.01984 P. Sodano, C.A. Trugenberger, MCD, Nucl. Phys. B474 (1996) 641 The Superconductor-Insulator Transition and Low-Dimensional Superconductors Villard de Lans October 2018 T=0 e quarks bound by (chromo)- (Bose metal) electric strings in a Bosonic condensate of Topological insulator (chromo)-magnetic Topological insulator/Bose metal monopoles (Mandelstam, ‘t Hooft, Polyakov) Superinsulator mirror analogue to Superinsulator SSupueprcoenrdcuoctonrd uctor vortex formation in type II superconductors g Polyakov's magnetic monopole condensation Nature of phases: universal ⟹ linear confinement All microscopic details enter of Cooper pairs by g, η and the Pearl length of SC and electric strings ⟹ string tension of SI one color QCD Superinsulation: realization and proof of confinement byPolyakov's monopolemagnetic monopole condensation condensation and asymptotic freedom ⟹ linear confinement of Cooper pairs by inelectric solid strings state ⟹ materialsone color QCD Cooper pairs Quarks Superconductor Superinsulator R = 0 S duality R = ∞ G= ∞ Mandelstam ’tHooft G= 0 Polyakov ‘t Hooft 1978 (Nucl. Phys. B138 (1978) 1) : “….absolute confinement is realized in a phase which is in many respects similar to the superconducting phase. In a certain sense it is the extreme opposite ("superinsulator”)”
    [Show full text]