(Hymenoptera: Braconidae), a Parasitoid of the Emerald Ash Borer

Total Page:16

File Type:pdf, Size:1020Kb

(Hymenoptera: Braconidae), a Parasitoid of the Emerald Ash Borer Biological Control 52 (2010) 24–29 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Host-seeking behavior and parasitism by Spathius agrili Yang (Hymenoptera: Braconidae), a parasitoid of the emerald ash borer Xiao-Yi Wang a, Zhong-Qi Yang a,*, Juli R. Gould b, Hui Wu c, Jian-Hai Ma d a The Key Laboratory of Forest Protection, State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China b Animal and Plant Health Inspection Service, Department of Agriculture, Otis ANGB, MA 02542 5008, USA c Forestry Bureau of Sanming City in Fujian Province, Sanming, Fujian 365000, China d Forest Pest Control Station of Qinghai Province, Xining, Qinghai 810000, China article info abstract Article history: Spathius agrili Yang (Hymenoptera: Braconidae) is a newly described and important idiobiont ectoparasi- Received 6 November 2008 toid of the emerald ash borer (EAB) that has excellent potential as a biological control agent against EAB Accepted 15 September 2009 populations in the USA. In order to understand the ecological factors involved in the search and discovery Available online 23 September 2009 of concealed hosts by S. agrili, we investigated the behavioral responses of adult female wasps to potential semiochemicals from host plants, hosts, and host frass as well as to vibration signals from host feeding Keywords: and movement. Using a bioassay, we showed that S. agrili first finds the host’s habitats by detecting Spathius agrili the volatile compounds emitted by ash. In the second phase of host location and acceptance, the parasit- Agrilus planipennis oids detect the mechanical vibrations produced by host feeding and movement under the surface of the Host location Concealed insect pest bark and then probe to find the EAB larvae. Contact chemicals seem to play little or no role in short-range Biological control host finding. Female wasps avoided laying eggs on EAB larvae already parasitized and thus paralyzed. We hypothesized that female wasps were not attracted to these larvae due to their lack of feeding or move- ment. While an induced paralysis in the host is instrumental in avoiding superparasitism, we cannot rule out that S. agrili females also use an oviposition pheromone to deter conspecific females. Together, these results suggest that vibration and olfactory cues play significant roles in distinct phases of S. agrili host habitat and host location behaviors. Ó 2009 Elsevier Inc. All rights reserved. 1. Introduction is packed inside gallery, which makes detection and control of the insect challenging (Wang et al., in press). EAB was accidentally The emerald ash borer (EAB), Agrilus planipennis Fairmaire (=A. introduced into North America in the late 1990s and subsequently marcopoli Obenberger) (Coleoptera: Buprestidae), is an important killed large numbers of ash trees in the United States and Canada insect pest attacking trees in the genus Fraxinus (Oleaceae). It is na- (Haack et al., 2002). Eradication of the pest appears increasingly tive to Japan, Korea, China, and far eastern Russia. The susceptible unlikely as its distribution continues to expand. host trees include Fraxinus mandshurica Rupr., Fraxinus velutina Spathius agrili Yang (Hymenoptera: Braconidae) is an ectopar- Torr., Fraxinus americana L., Fraxinus pennsylvanica Marshall var. asitoid initially discovered in Tianjin, China that can cause a high subintegerrima (Vahl), and Fraxinus nigra Marshall (Yu, 1992; Pan percentage of parasitism in EAB populations. Parasitism rates are and You, 1994; Zhang et al., 1995; Haack et al., 2002; Zhao et al., typically 40–50%, but can be as high as 85–90% in some areas (Yang 2005). The EAB lays eggs inside bark crevices and the newly et al., 2005). Spathius agrili has also been found in Changchun, Jilin hatched larvae chew through the outer bark layer, later feeding Province. The adult female detects EAB larvae hidden under the on the cambium layer. There are four larval instars (Wang et al., bark, and using its ovipositor, penetrates through the bark to inject 2005). The fully grown fourth-instar larvae excavate galleries in venoms for paralyzing the host. The female then lays a clutch of the outer sapwood, where they pupate the following spring. EAB eggs on the surface of host (Yang et al., in press). Parasitized EAB adults emerge in early summer, leaving a D-shaped exit hole in larvae cease feeding and parasitoid progeny develop on the para- the bark. During immature development, larval frass is not ejected lyzed EAB larvae. The braconid larvae pupate at the end of host gal- outside of the tree as is the case for many wood-boring beetles, but leries after completely consuming the host. Parasitoid females have the ability to evaluate host larval sizes under the bark to opti- mally allocate the size and sex ratio of each clutch of eggs (Wang * Corresponding author. Fax: +86 10 6288 9502. et al., 2008). Female adults usually select late larval instars, which E-mail address: [email protected] (Z.-Q. Yang). 1049-9644/$ - see front matter Ó 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.biocontrol.2009.09.008 X.-Y. Wang et al. / Biological Control 52 (2010) 24–29 25 are larger, to ensure an adequate food supply for their offspring ima leaves, 10 mg of fresh EAB frass or 64 fourth-instar EAB larvae. (Wang et al., 2006). Each material was tested against clean air flowing in the other arm Spathius agrili has good potential as a biological control agent of the tube. Newly eclosed (within 1 week), mated female wasps and was released in the United States to control EAB populations were released individually into the base of the Y-tube and ob- in 2007 (Gould, personal comm.). The use of this parasitoid will re- served for up to 5 min. Choice was recorded when the wasp quire an adequate knowledge of its interactions with EAB, and we crossed a line half-way up the length of a given arm. No response provide here a preliminary investigation of the ecological mecha- was recorded if the wasp failed to make a selection within 5 min of nisms of S. agrili host location. More specifically, we have investi- its release into the tube. Each treatment included at least 30 repli- gated (i) S. agrili host-habitat location behavior (role played by cates (different female wasps), and wasps that failed to make a chemical cues from ash plants), (ii) host location behavior (re- choice were eliminated from the statistical analysis. Each wasp sponses to host vibration or semiochemicals from host larvae and was tested only once and all tests were performed between 0800 frass), and (iii) host-acceptance behaviors (with EAB, non-habitual and 1700 h at a temperature range of 25–29 °C and a relative hosts, and artificial hosts) and occurrence of superparasitism (two humidity of 55–70%. The Y-tube was washed with 95% ethanol egg clutches on one host larva) in a laboratory setting. This knowl- once every 10 runs, and for the testing of treatments (plant, EAB edge should prove useful in several applications related to the use larvae, and frass materials), the positions of the sample bottle of this natural EAB control agent, notably in artificial rearing tech- and the clean air bottle were switched once every five runs. In or- niques and field efficacy tests. der to expose wasps to uniform lighting, the entire Y-tube device was positioned vertically inside a wood box covered with a white cloth. 2. Materials and methods 2.2. Host location Both the parasitoids, S. agrili, and hosts, EAB larvae, tested in this study were collected from the Guangang Forest Park of Dagang 2.2.1. Field and laboratory observations of host-seeking behavior District in Tianjin, China (38°560N, 117°290E). The experimental Adult S. agrili were observed at a study site located in the Guan- forest contained a stand of 12-year-old velvet ash, F. velutina, gang Forest Park of Dagang District in Tianjin, China in 2005–2006. approximately 80% of which were infested with EAB. EAB larvae A stand of 12-year-old velvet ash, F. velutina, infested with EAB was were collected from the ash trees by peeling the bark. Wasp co- selected for the observations. From July to September, the mating coons were obtained from the host galleries and taken to the lab- behavior of adults and the host-seeking behaviors of female para- oratory for adult emergence. Newly emerging adult wasps were sitic wasps were observed on trees selected randomly in the field gregariously maintained within glass vials (2.8 cm dia. Â 11.5 cm and on twigs in the laboratory. Host-seeking behaviors of 10 fe- length) for group mating and developmental maturation of the fe- males were observed on ash trunks in field, while under laboratory male reproductive systems, which took approximately one week. conditions, 30 observations of mating and host-seeking behaviors All adult wasps were reared in glass vials (2.8 cm dia. Â 11.5 cm were recorded. length) sealed with cotton plugs and were fed a 20% honey solution applied to a small cotton ball on a piece of filter paper attached to 2.2.2. Response to dead hosts and artificial hosts the inside of the vial. One possible mechanism of S. agrili host location is the detec- Two methods were used to present EAB larvae to S. agrili fe- tion of mechanical vibrations produced by live hosts (feeding or males for parasitization. The ‘‘twig” method involved using small movement). We tested whether female wasps will oviposit on lar- F. velutina twigs (1.0–1.5 cm in diameter) that were cut into 5– vae that are not moving by presenting them with dead or artificial 10 cm long sections and then split in half along their length.
Recommended publications
  • Arthropod Containment in Plant Research
    Arthropod Containment in Plant Research Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware What we do at USDA ARS BIIRU - • To develop biological control programs against invasive (non-native) agriculture and forest pests – Research involves both the plant-feeding insects and their natural enemies (predators & parasitoids) Invasive Emerald Ash Borer Larval Parasitoids of EAB (EAB) The Goal of Insect Containment at USDA ARS BIIRU-Quarantine Facility • Prevent “accidental introduction” of “unwanted” non-native insects from damaging our agriculture and forestry Outlines • Why do we need to contain insects in plant research? • How can we most effectively contain insects in plant research? • Quarantine containment facility and standard operation procedures Why Do We Need To Contain Insects in Plant Research • Non-native insects can become serious invasive pests in a newly introduced region because disassociation with co- evolved natural enemies • Non-native insects used in plant research should be contained prior to regulatory approval for environmental releases Non-native, plant-feeding insects can become devastating pests in agriculture and forestry Detected in Michigan in 2002 • 31 States in the U.S. • Killed millions of ash trees Emerald Ash Borer Native Range of EAB & Origin of EAB-Parasitoids Origin of EAB Biocontrol Agents (Year releases began in US) 1. Oobius agrili 2. Tetrastichus planipennisi 3. Spathius agrili 4. Spathius galinae Russia China 1 4 2 3 Prevent “accidental introduction” of weed biocontrol
    [Show full text]
  • FIELD RELEASE of SPATHIUS AGRILI YANG (BRACONIDAE): MONITORING NON-TARGET WOOD BORERS John S
    FIELD RELEASE OF SPATHIUS AGRILI YANG (BRACONIDAE): MONITORING NON-TARGET WOOD BORERS John S. Strazanac1, Juli R. Gould2, Robert A. Haack3, and Ivich Fraser4 1Plant and Soil Sciences/Entomology West Virginia University, Morgantown, WV 26505 2USDA APHIS, PPQ, Otis Pest Survey, Detection, and Exclusion Laboratory Otis ANGB, MA 02542 3U.S. Forest Service, Northern Research Station 1407 S. Harrison Rd., East Lansing, MI 48823 4USDA APHIS, PPQ, Emerald Ash Borer Project 5936 Ford Ct., Ste. 200, Brighton, MI 48116 ABSTRACT Before the identification of emerald ash borer (EAB) to the trunks of EAB-infested trees in the immediate area (Agrilis planipennis [Coleoptera: Buprestidae]) in of the planned S. agrili release sites. In late winter 2008, Michigan in 2002, Spathius agrili Yang (Hymenoptera: the ash logs will be placed in individual rearing tubes and Braconidae) was discovered attacking this buprestid in monitored for Spathius emergence. its native range in China. Subsequent laboratory host Host trees (d.b.h. ~ 15 cm) for the non-target Agrilus specificity testing with North American wood borers species were moved to the release sites during early and olfactometer testing of various tree volatiles, summer 2007: pin oak (Quercus palustris) for the including those from ash, suggest that S. agrili will not twolined chestnut borer and European paper birch (Betula have a significant impact on native North American pendula) for the bronze birch borer. In the laboratory, bolts wood borer fauna. of host trees infested with these species were placed in To determine the ability of S. agrili to establish in rearing tubes and adults were collected upon emergence.
    [Show full text]
  • Field Release of the Parasitoid Spathius Galinae for the for the Biological Control of the Emerald Ash Borer (Agrilus Planipennis) in the Contiguous United States
    United States Department of Agriculture Marketing and Field Release of the Regulatory Programs Parasitoid Spathius Animal and Plant Health Inspection galinae for the Biological Service Control of the Emerald Ash Borer (Agrilus planipennis) in the Contiguous United States Environmental Assessment, March 2015 Field Release of the Parasitoid Spathius galinae for the for the Biological Control of the Emerald Ash Borer (Agrilus planipennis) in the Contiguous United States Environmental Assessment, March 2015 Agency Contact: Robert Tichenor Pest Permitting Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 133 Riverdale, MD 20737–1236 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form.
    [Show full text]
  • Progress in the Classical Biological Control of Agrilus Planipennis Fairmaire (Coleoptera: Buprestidae) in North America Leah S
    300 Progress in the classical biological control of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) in North America Leah S. Bauer,1 Jian J. Duan, Juli R. Gould, Roy Van Driesche Abstract—First detected in North America in 2002, the emerald ash borer (EAB) (Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), an invasive phloem-feeding beetle from Asia, has killed tens of millions of ash (Fraxinus Linnaeus; Oleaceae) trees. Although few parasitoids attack EAB in North America, three parasitoid species were found attacking EAB in China: the egg parasitoid Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) and two larval parasitoids Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae). In 2007, classical biological control of EAB began in the United States of America after release of these three species was approved. In 2013, release of the larval parasitoids was approved in Canada. Research continues at study sites in Michigan, United States of America where the establishment, prevalence, and spread of O. agrili and T. planipennisi have been monitored since 2008. However, establishment of S. agrili remains unconfirmed in northern areas, and its release is now restricted to regions below the 40th parallel. In 2015, approval for release of Spathius galinae Belokobylskij (Hymenoptera: Braconidae), an EAB larval parasitoid from the Russian Far East, may be granted in the United States of America. Researchers are guardedly optimistic that a complex of introduced and native natural enemies will regulate EAB densities below a tolerance threshold for survival of ash species or genotypes in forested ecosystems. Introduction quarantines, and initiating eradication activities (Federal Register 2003; Poland and McCullough The emerald ash borer (EAB), Agrilus planipennis 2006; Herms and McCullough 2014).
    [Show full text]
  • Biology and Behavior of Spathius Agrili, a Parasitoid of the Emerald Ash Borer, Agrilus Planipennis, in China
    Journal of Insect Science: Vol. 10 | 30 Yang et al. Biology and behavior of Spathius agrili, a parasitoid of the emerald ash borer, Agrilus planipennis, in China Zhong-Qi Yang1a, Xiao-Yi Wang1, Juli R. Gould2, Richard C. Reardon3, Yi-Nan Zhang1, Gui- Jun Liu4, and En-Shan Liu4 1The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China 2Animal and Plant Health Inspection Service, United States Department of Agriculture, 1398 West Truck Road, Buzzards Bay, MA 02542, USA 3Forest Health Technology Enterprise Team, USDA Forest Service, 180 Canfield St., Morgantown, WV 26505, USA 4Guangang Forest Park, Dagang District, Tianjin 300270, China Abstract Spathius agrili Yang (Hymenoptera: Braconidae) is a gregarious larval ectoparasitoid of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) and is a recently described species. Both pest and parasitoid are native to China. In Tianjin City, China, S. agrili typically exhibited 3-4 generations per year, overwintering as a prepupa in a cocoon inside the host gallery. The multiple generations of S. agrili overlapped with its host, as did the emergence dates of the overwintering generation. From a single host, 1-18 S. agrili successfully developed to the adult stage (average 8.4), but in all cases the host was killed. The sex ratio (female: male) of the parasitoid adults emerging from field-collected cocoons was 2:1, whereas the sex ratio of parasitoids reared from field collected eggs and larvae was greater than 3:1. On average, adult females lived 29.1 d, and males lived 23.6 d when fed with 20% honey solution, significantly longer than without a nutritional supplement.
    [Show full text]
  • Preliminary Assesment of the Potential Role of Biocontrol in The
    BUYING TIME: PRELIMINARY ASSESMENT OF THE POTENTIAL ROLE OF BIOCONTROL IN THE RECOVERY OF NATIVE FOREST VEGETATION FOLLOWING THE INVASION OF EMERALD ASH BORER by Elan Margulies A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Natural Resources and Environment) at the University of Michigan August 2017 Faculty Advisors Professor Inés Ibáñez Professor Leah Bauer Abstract: Introduced forest pests have become one of the major threats to forest ecosystems in North America. Once the spread phase is underway, biological control is one of the few environmentally acceptable and sustainable practices available for the management of destructive invasive pests in natural ecosystems. Assessing the impact of a biocontrol program progresses from evaluating the establishment of biocontrol agents, to control of the target pest, to impacts on the affected organism, and ultimately, to the indirect impacts that biocontrol may have on the whole community. In our study, we assessed the recovery of forest vegetation following the mortality of overstory ash trees caused by the emerald ash borer (EAB) invasion and ongoing management of EAB using biological control. We collected data on the forest structure and composition of stands affected by this pest and where biocontrol agents were released or not (biocontrol and no-biocontrol plots). We then used a multilevel modeling framework to evaluate the potential indirect effects of a biocontrol agent on native tree seedling forest regeneration. We found that the impacts of biocontrol on ash saplings had community- level effects by protecting native seedlings from invasive and weedy saplings. Our results showed a higher number of ash saplings with increasing numbers of the dominant EAB biocontrol agent T.
    [Show full text]
  • And the Phylogenetic Utility of Mitochondrial Genomes with Special Reference to Holometabolous Insects Shu-Jun Wei Zhejiang University, China
    University of Kentucky UKnowledge Entomology Faculty Publications Entomology 6-11-2010 Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects Shu-jun Wei Zhejiang University, China Min Shi Zhejiang University, China Michael J. Sharkey University of Kentucky, [email protected] Cornelis van Achterberg Nationaal Natuurhistorisch Museum, Netherlands Xue-xin Chen Zhejiang University, China Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Entomology Commons Repository Citation Wei, Shu-jun; Shi, Min; Sharkey, Michael J.; van Achterberg, Cornelis; and Chen, Xue-xin, "Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects" (2010). Entomology Faculty Publications. 39. https://uknowledge.uky.edu/entomology_facpub/39 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects Notes/Citation Information Published in BMC Genomics, v. 11, 371. © 2010 Wei et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Questions and Answers: Biological Control for Emerald Ash Borer
    U.S. DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service Plant Protection and Quarantine Questions and Answers: Biological Control for Emerald Ash Borer For several years, the U.S. Department of Agriculture’s SPATHIUS GALINAE SPATHIUS AGRILI Animal and Plant Health Inspection Service (APHIS) has used the emerald ash borer’s (EAB) natural enemies— tiny stingless wasps known as parasitoids—as biological control agents to help manage infestations. The goal of APHIS’ EAB program is to help maintain ash trees as part of the North American landscape and biological OOBIUS AGRILI TETRASTICHUS PLANIPENNISI control significantly contributes to this goal. • Spathius agrili has a long egg-laying organ or What is biological control? ovipositor that helps it attack EAB larvae in many Biological control, or biocontrol, uses natural enemies different sized ash trees. This wasp penetrates such as parasitoids, predators, pathogens, or through tree bark and lays up to 20 eggs on an EAB antagonists to reduce plant pests or diseases. Biological larva. The hatching wasp larvae feed and develop on control can be a practical and an environmentally sound the EAB larva, resulting in its death. method for pest control. The biological control agents used against EAB include four tiny stingless wasp • Spathius galinae also attacks EAB larvae like Spathius species—the largest is about the size of a typical agrili does, but what makes this wasp different is that it mosquito. can tolerate colder climates, which makes it an optimal biological control agent for releasing in the northern states. • Tetrastichus planipennisi also attacks EAB larvae, but the female lays eggs inside EAB larvae where the wasp larvae grow and eventually kill their host.
    [Show full text]
  • A Single Origin of Gall Association in a Group of Parasitic Wasps with Disparate Morphologies
    Molecular Phylogenetics and Evolution 44 (2007) 981–992 www.elsevier.com/locate/ympev A single origin of gall association in a group of parasitic wasps with disparate morphologies Alejandro Zaldivar-Rivero´n a,*, Sergey A. Belokobylskij b,c, Virginia Leo´n-Regagnon a, Juan Jose´ Martı´nez d, Rosa Bricen˜o e, Donald L.J. Quicke f,g a Departamento de Zoologı´a, Instituto de Biologı´a, Universidad Nacional Auto´noma de Me´xico, 3er. Circuito Exterior, Cd. Universitaria, Ap. Postal 70-153, C. P. 04510, Me´xico D. F., Mexico b Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia c Museum and Institute of Zoology, PAN, Wilcza 64, Warsaw 00-679, Poland d Divisio´n de Entomologı´a, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Av. Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina e Universidad Centroccidental ‘‘Lisandro Alvarado’’, Decanato de Agronomı´a, Depto. de Ciencias Biolo´gicas, Seccio´n de Entomologı´a, Cabudare, Estado Lara, Venezuela f Division of Biology and Centre for Population Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK g Department of Entomology, Natural History Museum, London SW7 5BD, UK Received 17 August 2006; revised 10 May 2007; accepted 17 May 2007 Available online 9 June 2007 Abstract The braconid wasp subfamily Doryctinae mainly comprises idiobiont ectoparasitoids of other insect larvae. In recent years, however, members of a few genera have been discovered to be associated with galls from various unrelated host plant families, with some of these being gall inducers whereas others are suspected as being predators of gallers.
    [Show full text]
  • Emerald Ash Borer Development Across a Latitudinal Gradient: Implications for Biocontrol
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2020 EMERALD ASH BORER DEVELOPMENT ACROSS A LATITUDINAL GRADIENT: IMPLICATIONS FOR BIOCONTROL Sarah Pellecchia University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2020.159 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Pellecchia, Sarah, "EMERALD ASH BORER DEVELOPMENT ACROSS A LATITUDINAL GRADIENT: IMPLICATIONS FOR BIOCONTROL" (2020). Theses and Dissertations--Entomology. 55. https://uknowledge.uky.edu/entomology_etds/55 This Master's Thesis is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Hymenoptera: Braconidae), a North American Larval Parasitoid Attacking the Invasive Emerald Ash Borer (Coleoptera: Buprestidae) Jian J
    Biology and life history of Atanycolus cappaerti (Hymenoptera: Braconidae), a North American larval parasitoid attacking the invasive emerald ash borer (Coleoptera: Buprestidae) Jian J. Duan* and Jonathan Schmude Abstract Atanycolus cappaerti Marsh & Strazanac (Hymenoptera: Braconidae) is a native North American parasitoid that has been found parasitizing late instars of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a serious invasive pest of ash trees (Fraxinus species; Ole- aceae). In this study, we determined the longevity, weekly oviposition rate, realized lifetime fecundity, diapause pattern, and development time of A. cappaerti for late instars of A. planipennis larvae at 25 ± 1.5 °C, 65 ± 10% RH, and a 16:8 h L:D photoperiod in the laboratory. Our study showed that adults of A. cappaerti had a median survival time of 9 to 11 wk, and females lived approximately 2 wk longer than males. The weekly progeny production by female parasitoids peaked at 3 wk after emergence, with a mean of 5.4 progeny per female. Throughout their life span, females pro- duced a mean (± SE) of 28 (± 3.07) progeny. Atanycolus cappaerti larvae molted 5 times to reach the 6th instar in silk cocoons in a median of 8.3 d. Approximately 43% of the 6th instars continued development to adult wasps and the rest diapaused. The median development time from eggs to adults for non-diapaused parasitoids was 20 d. For diapausing A. cappaerti, however, the development stopped when larvae entered obligatory dia- pause in 6th instars. The median time for diapause-terminated larvae to adults was 28 d after being chilled for 2 to 4 mo at 2 to 4 °C.
    [Show full text]
  • The Seasonality of Two Parasitoids (Spathius Agrili and Tetrastichus
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2014 The seasonality of two parasitoids (Spathius agrili and Tetrastichus planipennisi) of the emerald ash borer, Agrilus planipennis, and a survey for native natural enemies of the Emerald Ash Borer in eastern Tennessee Nicholas Andrew Hooie University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Entomology Commons Recommended Citation Hooie, Nicholas Andrew, "The seasonality of two parasitoids (Spathius agrili and Tetrastichus planipennisi) of the emerald ash borer, Agrilus planipennis, and a survey for native natural enemies of the Emerald Ash Borer in eastern Tennessee. " Master's Thesis, University of Tennessee, 2014. https://trace.tennessee.edu/utk_gradthes/3157 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Nicholas Andrew Hooie entitled "The seasonality of two parasitoids (Spathius agrili and Tetrastichus planipennisi) of the emerald ash borer, Agrilus planipennis, and a survey for native natural enemies of the Emerald Ash Borer in eastern Tennessee." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology.
    [Show full text]