Algorithms: a Quest for Absolute Definitions∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Journal of Applied Logic
JOURNAL OF APPLIED LOGIC AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Impact Factor p.1 • Abstracting and Indexing p.1 • Editorial Board p.1 • Guide for Authors p.5 ISSN: 1570-8683 DESCRIPTION . This journal welcomes papers in the areas of logic which can be applied in other disciplines as well as application papers in those disciplines, the unifying theme being logics arising from modelling the human agent. For a list of areas covered see the Editorial Board. The editors keep close contact with the various application areas, with The International Federation of Compuational Logic and with the book series Studies in Logic and Practical Reasoning. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license. If you require any further information or help, please visit our Support Center IMPACT FACTOR . 2016: 0.838 © Clarivate Analytics Journal Citation Reports 2017 ABSTRACTING AND INDEXING . Zentralblatt MATH Scopus EDITORIAL BOARD . Executive Editors Dov M. Gabbay, King's College London, London, UK Sarit Kraus, Bar-llan University, -
Logical Foundations: Personal Perspective
LOGICAL FOUNDATIONS: PERSONAL PERSPECTIVE YURI GUREVICH Abstract. This is an attempt to illustrate the glorious history of logical foundations and to discuss the uncertain future. Apologia1. I dread this scenario. The deadline is close. A reminder from the Chief Editor arrives. I forward it to the guest author and find out that they had a difficult real-world problem, and the scheduled article is not ready. I am full of sympathy. But the result is all the same: the article is not there. That happened once before in the long history of this column, in 2016. Then the jubilee of the 1966 Congress of Mathematicians gave me an excuse for a micro-memoir on the subject. This time around I decided to repurpose a recent talk of mine [2]. But a talk, especially one with ample time for a subsequent discussion, is much different from a paper. It would normally take me months to turn the talk into a paper. Quick repurposing is necessarily imperfect, to say the least. Hence this apologia. 1. Prelude What should logic study? Of course logic should study deductive rea- soning where the conclusions are true whenever the premises are true. But what other kinds of reasoning and argumentation should logic study? Ex- perts disagree about that. Typically it is required that reasoning be correct arXiv:2103.03930v1 [cs.LO] 5 Mar 2021 in some objective sense, so that, for example, demagoguery is not a subject of logic. My view of logic is more expansive. Logic should study argumentation of any kind, whether it is directed to a narrow circle of mathematicians, the twelve members of a jury, your family, your government, the voters of your country, the whole humanity. -
Computational Complexity Computational Complexity
In 1965, the year Juris Hartmanis became Chair Computational of the new CS Department at Cornell, he and his KLEENE HIERARCHY colleague Richard Stearns published the paper On : complexity the computational complexity of algorithms in the Transactions of the American Mathematical Society. RE CO-RE RECURSIVE The paper introduced a new fi eld and gave it its name. Immediately recognized as a fundamental advance, it attracted the best talent to the fi eld. This diagram Theoretical computer science was immediately EXPSPACE shows how the broadened from automata theory, formal languages, NEXPTIME fi eld believes and algorithms to include computational complexity. EXPTIME complexity classes look. It As Richard Karp said in his Turing Award lecture, PSPACE = IP : is known that P “All of us who read their paper could not fail P-HIERARCHY to realize that we now had a satisfactory formal : is different from ExpTime, but framework for pursuing the questions that Edmonds NP CO-NP had raised earlier in an intuitive fashion —questions P there is no proof about whether, for instance, the traveling salesman NLOG SPACE that NP ≠ P and problem is solvable in polynomial time.” LOG SPACE PSPACE ≠ P. Hartmanis and Stearns showed that computational equivalences and separations among complexity problems have an inherent complexity, which can be classes, fundamental and hard open problems, quantifi ed in terms of the number of steps needed on and unexpected connections to distant fi elds of a simple model of a computer, the multi-tape Turing study. An early example of the surprises that lurk machine. In a subsequent paper with Philip Lewis, in the structure of complexity classes is the Gap they proved analogous results for the number of Theorem, proved by Hartmanis’s student Allan tape cells used. -
Laudatio-May 22
Laudation on the Occasion of Egon Börger’s 70th birthday Elvinia Riccobene, University of Milan, Italy Vincenzo Gervasi, University of Pisa, Italy Uwe Glässer, Simon Fraser University, Canada This mini symposium has been organized to celebrate Egon Börger on the occasion of his 70 th birthday on the 13 th of May. It is a great pleasure for me to give this laudation in honor of Egon, also on half of Vincenzo Gervasi and Uwe Glässer. Egon Börger was born in Westfalia (Germany). He studied philosophy, logic and mathematics at La Sorbonne in Paris (France), the University of Louvain (Belgium) and the University of Münster (Germany), where he got his doctoral degree and his “Habilitation” in mathematics. He started very early his academic carrier in 1971 as research assistant at the University of Münster. From 1972 to 1976, he was Associate Professor in Salerno (Italy) where he contributed to create the computer science department, and from 1976 to 1978, he was lecturer in Münster. In 1978, he became full professor in Computer Science in Dortmund. In 1982, he moved on to Italy. He first joined the new computer science department in Udine (Italy) as a professor. In 1985, he accepted a computer science chair at the University of Pisa, which he held until his retirement in 2011, rejecting various offers from other prestigious universities. Since 2005, he is Emeritus member of the International Federation for Information Processing, and since 2010, he is a member of Academia Europea. During his long and still very active research carrier, Egon has made significant contributions to the field of logic and computer science. -
A Short History of Computational Complexity
The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns. -
Governs the Making of Photocopies Or Other Reproductions of Copyrighted Material
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law. Inductive definitions over finite structures Daniel Leivant June 23,1989 CMU-CS-89-153 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 To appear in Information and Computation Abstract We give a simple proof of a theorem of Gurevich and Shelah, that the inductive closure of an inflationary operator is equivalent, over the class of finite structures, to the inductive closure (i.e. minimal fixpoint) of a positive operator. A variant of the same proof establishes a theorem of Immerman, that the class of inductive closures of positive first order operators is closed under complementation. Research partially supported by ONR grant N00014-84-K-0415 and by DARPA grant F33615-87-C-1499, ARPA Order 4976, Amendment 20. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of ONR, DARPA, or the U.S. Government. Inductive definitions over finite structures Daniel Leivant Carnegie-Mellon University June 23, 1989 Introduction Inductive definitions have played a central role in the foundations of mathematics for over a century. They were used in the 1970's as the backbone of one major generalization of Recursive Functions Theory [Mos74,Acz77]. In recent years the relevance of inductive definitions (in particular over finite structures) to Database Theory, to Descriptive Computational Complexity, and to Logics of programs, has been recognized. -
A Dialogue with Yuri Gurevich About Mathematics, Computer Science and Life ∗
A Dialogue with Yuri Gurevich about Mathematics, Computer Science and Life ∗ Cristian S. Calude, Department of Computer Science The University of Auckland Auckland, New Zealand 1 A Dialogue with Yuri Gurevich about Mathematics, Computer Science and Life Yuri Gurevich is well-known to the readers of this Bulletin. He is a Princi- pal Researcher at Microsoft Research, where he founded a group on Founda- tions of Software Engineering, and a Professor Emeritus at the University of Michigan. His name is most closely associated with abstract state machines but he is known also for his work in logic, complexity theory and software engineering. The Gurevich-Harrington Forgetful Determinacy Theorem is a classical result in game theory. Yuri Gurevich is an ACM Fellow, a Guggen- heim Fellow, and a member of Academia Europaea; he obtained honorary doctorates from Hasselt University in Belgium and Ural State University in Russia. ∗Bulletin of the European Association for Theoretical Computer Science, No. 107, June 2012 1 Cristian Calude: Your background is in mathematics: MSc (1962), PhD (under P. G. Kontorovich, 1964) and Dr of Math (a post-PhD degree in Russia), all at Ural State University. Please reminisce about those years. Yuri Gurevich: I grew up in Chelyabinsk, an industrial city in the Urals, Russia, and was in the first generation of my family to get systematic educa- tion. In 1957, after ten boring years in elementary + middle + high school, I enrolled in the local Polytechnic. I enjoyed student life, but I couldn't draw well, and I hated memorizing things. In the middle of the second year, one math prof advised me to transfer | and wrote a recommendation letter | to the Math Dept of the Ural State University in Ekaterinburg (called Sverdlovsk at the time), about 200 km to the north of Chelyabinsk. -
A Variation of Levin Search for All Well-Defined Problems
A Variation of Levin Search for All Well-Defined Problems Fouad B. Chedid A’Sharqiyah University, Ibra, Oman [email protected] July 10, 2021 Abstract In 1973, L.A. Levin published an algorithm that solves any inversion problem π as quickly as the fastest algorithm p∗ computing a solution for ∗ ∗ ∗ π in time bounded by 2l(p ).t , where l(p ) is the length of the binary ∗ ∗ ∗ encoding of p , and t is the runtime of p plus the time to verify its correctness. In 2002, M. Hutter published an algorithm that solves any ∗ well-defined problem π as quickly as the fastest algorithm p computing a solution for π in time bounded by 5.tp(x)+ dp.timetp (x)+ cp, where l(p)+l(tp) l(f)+1 2 dp = 40.2 and cp = 40.2 .O(l(f) ), where l(f) is the length of the binary encoding of a proof f that produces a pair (p,tp), where tp(x) is a provable time bound on the runtime of the fastest program p ∗ provably equivalent to p . In this paper, we rewrite Levin Search using the ideas of Hutter so that we have a new simple algorithm that solves any ∗ well-defined problem π as quickly as the fastest algorithm p computing 2 a solution for π in time bounded by O(l(f) ).tp(x). keywords: Computational Complexity; Algorithmic Information Theory; Levin Search. arXiv:1702.03152v1 [cs.CC] 10 Feb 2017 1 Introduction We recall that the class NP is the set of all decision problems that can be solved efficiently on a nondeterministic Turing Machine. -
(Editors): Computer Science Logic Dagstuhl-Seminar-Report
Egon Börger, Yuri Gurevich Hans Kleine-Büning, M.M. Richter (editors): Computer Science Logic Dagstuhl-Seminar-Report; 40 13.07.-17.07.92 (9229) ISSN 0940-1121 Copyright © 1992 by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadern, Germany TeI.: +49-6871 - 2458 Fax: +49-6871 - 5942 Das Internationale Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemein- nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich eingeladenen Gästen durchgeführt werden. i Verantwortlich für das Programm: Prof. Dr.-Ing. Jose Encarnacao, Prof. Dr. Winfried Görke, Prof. Dr. Theo Härder, Dr. Michael Laska, Prof. Dr. Thomas Lengauer, Prof. Ph. D. Walter Tichy, Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor) Gesellschafter: Universität des Saarlandes, Universität Kaiserslautern, Universität Karlsruhe, Gesellschaft für Informatik e.V., Bonn Träger: Die Bundesländer Saarland und Rheinland-Pfalz Bezugsadresse: Geschäftsstelle Schloß Dagstuhl Informatik, Bau 36 Universität des Saarlandes W - 6600 Saarbrücken Germany Tel.: +49 -681 - 302 - 4396 Fax: +49 -681 - 302 - 4397 e-mail: [email protected] LComputer Science Logic 13.-17.7.1992 Organizers: EGoN BÖRGER(Universita di Pisa, Italia) YURI GUREVICI-I(University of Michigan, Ann Arbor, USA) HANSKLEINE BÜNING (Universität Paderborn, Germany) MICHAELM. RICHTER(Universität Kaiserslautern,Germany) Research in the area between computer science and logic is fast growing and already shows a tendency to split into various subareas. The aim of this workshop was to bring together eminent researchers of the most active and internationally recognized research lines of computer science logic in order to discuss and critically reflect upon the fundamental common problems, concepts and tools. -
THE INVARIANCE THESIS 1. Introduction in 1936, Turing [47
THE INVARIANCE THESIS NACHUM DERSHOWITZ AND EVGENIA FALKOVICH-DERZHAVETZ School of Computer Science, Tel Aviv University, Ramat Aviv, Israel e-mail address:[email protected] School of Computer Science, Tel Aviv University, Ramat Aviv, Israel e-mail address:[email protected] Abstract. We demonstrate that the programs of any classical (sequential, non-interactive) computation model or programming language that satisfies natural postulates of effective- ness (which specialize Gurevich’s Sequential Postulates)—regardless of the data structures it employs—can be simulated by a random access machine (RAM) with only constant factor overhead. In essence, the postulates of algorithmicity and effectiveness assert the following: states can be represented as logical structures; transitions depend on a fixed finite set of terms (those referred to in the algorithm); all atomic operations can be pro- grammed from constructors; and transitions commute with isomorphisms. Complexity for any domain is measured in terms of constructor operations. It follows that any algorithmic lower bounds found for the RAM model also hold (up to a constant factor determined by the algorithm in question) for any and all effective classical models of computation, what- ever their control structures and data structures. This substantiates the Invariance Thesis of van Emde Boas, namely that every effective classical algorithm can be polynomially simulated by a RAM. Specifically, we show that the overhead is only a linear factor in either time or space (and a constant factor in the other dimension). The enormous number of animals in the world depends of their varied structure & complexity: — hence as the forms became complicated, they opened fresh means of adding to their complexity. -
BU CS 332 – Theory of Computation
BU CS 332 –Theory of Computation Lecture 21: • NP‐Completeness Reading: • Cook‐Levin Theorem Sipser Ch 7.3‐7.5 • Reductions Mark Bun April 15, 2020 Last time: Two equivalent definitions of 1) is the class of languages decidable in polynomial time on a nondeterministic TM 2) A polynomial‐time verifier for a language is a deterministic ‐time algorithm such that iff there exists a string such that accepts Theorem: A language iff there is a polynomial‐time verifier for 4/15/2020 CS332 ‐ Theory of Computation 2 Examples of languages: SAT “Is there an assignment to the variables in a logical formula that make it evaluate to ?” • Boolean variable: Variable that can take on the value / (encoded as 0/1) • Boolean operations: • Boolean formula: Expression made of Boolean variables and operations. Ex: • An assignment of 0s and 1s to the variables satisfies a formula if it makes the formula evaluate to 1 • A formula is satisfiable if there exists an assignment that satisfies it 4/15/2020 CS332 ‐ Theory of Computation 3 Examples of languages: SAT Ex: Satisfiable? Ex: Satisfiable? Claim: 4/15/2020 CS332 ‐ Theory of Computation 4 Examples of languages: TSP “Given a list of cities and distances between them, is there a ‘short’ tour of all of the cities?” More precisely: Given • A number of cities • A function giving the distance between each pair of cities • A distance bound 4/15/2020 CS332 ‐ Theory of Computation 5 vs. Question: Does ? Philosophically: Can every problem with an efficiently verifiable solution also be solved efficiently? -
László Lovász Avi Wigderson of Eötvös Loránd University of the Institute for Advanced Study, in Budapest, Hungary and Princeton, USA
2021 The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2021 to László Lovász Avi Wigderson of Eötvös Loránd University of the Institute for Advanced Study, in Budapest, Hungary and Princeton, USA, “for their foundational contributions to theoretical computer science and discrete mathematics, and their leading role in shaping them into central fields of modern mathematics.” Theoretical Computer Science (TCS) is the study of computational lens”. Discrete structures such as the power and limitations of computing. Its roots go graphs, strings, permutations are central to TCS, back to the foundational works of Kurt Gödel, Alonzo and naturally discrete mathematics and TCS Church, Alan Turing, and John von Neumann, leading have been closely allied fields. While both these to the development of real physical computers. fields have benefited immensely from more TCS contains two complementary sub-disciplines: traditional areas of mathematics, there has been algorithm design which develops efficient methods growing influence in the reverse direction as well. for a multitude of computational problems; and Applications, concepts, and techniques from TCS computational complexity, which shows inherent have motivated new challenges, opened new limitations on the efficiency of algorithms. The notion directions of research, and solved important open of polynomial-time algorithms put forward in the problems in pure and applied mathematics. 1960s by Alan Cobham, Jack Edmonds, and others, and the famous P≠NP conjecture of Stephen Cook, László Lovász and Avi Wigderson have been leading Leonid Levin, and Richard Karp had strong impact on forces in these developments over the last decades. the field and on the work of Lovász and Wigderson.