Process Analysis and Simulation in Chemical Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Process Analysis and Simulation in Chemical Engineering Process Analysis and Simulation in Chemical Engineering Iva´n Darı´o Gil Chaves Javier Ricardo Guevara Lopez Jose´ Luis Garcı´a Zapata Alexander Leguizamon Robayo Gerardo Rodrı´guez Nino~ Process Analysis and Simulation in Chemical Engineering Iva´n Darı´o Gil Chaves Javier Ricardo Guevara Lopez Chemical and Environmental Engineering Y&V - Bohorquez Ingenierı´a Universidad Nacional de Colombia Bogota´, Colombia Bogota´, Colombia Alexander Leguizamon Robayo Jose´ Luis Garcı´a Zapata Chemical Engineering Processing Technologies Norwegian University of Science Alberta Innovates - Technology Futures and Technology Edmonton, AB, Canada Trondheim, Norway Gerardo Rodrı´guez Nino~ Chemical and Environmental Engineering National University of Colombia Bogota´, Colombia ISBN 978-3-319-14811-3 ISBN 978-3-319-14812-0 (eBook) DOI 10.1007/978-3-319-14812-0 Library of Congress Control Number: 2015955604 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer ScienceþBusiness Media (www.springer.com) Preface This book has been developed as an alternative to illustrate the use of process simulation as a tool for the analysis of chemical processes and for the conceptual design of unit operations. In the last years, chemical process simulation has become of significant importance due to the evolution of computing tools, which have opened a wider spectrum of possibilities in the use of applications for process integration, dynamic analysis, costs evaluation, and conceptual design of reaction and separation operations. All above added to the need of performing calculations in a fast way in order to focus in the analysis of the obtained information and on other relevant aspects such as safety, green engineering, economic profitability, and many other factors that make the solutions of engineering more competitive. Process simulation is a discipline transversal to all the areas of chemical engineering. The development of many engineering projects demands simulation studies since the preliminary feasibility analysis, conceptual design, detailed design, until the process operation. For that reason, the generation of new process supported in the simulation requires the integration of concepts of chemical engineering and the breeding of innovation abilities. All that integration redounds in controllability studies and dynamic analysis, energy integration, and optimization, which aim to achieve the goals of environmental protection, process safety, and product quality. The last academic reform of the chemical engineering program of the National University of Colombia has punted to a more integral formation, addressed to the reinforcement of the new areas that have become a part of the modern chemical engineering. Modeling and simulation of chemical processes is one subject that appears as a natural response to the always more imperative exigency of the working market in the process design. This book brackets the fundamental concepts of process simulation and brings together in a concise way some of the most important principles of the chemical engineering to apply them in the use of process simulators. To achieve it, the book has been sectioned in ten chapters. The first one attempts to introduce the fundamentals of process simulation in steady state. In the second chapter, thermodynamics and basic criteria for the selection of property packages are addressed. The third and fourth chapters cover to fluid dynamics and v vi Preface heat exchangers, respectively. There the fundamentals that support the calculation of pressure and temperature change operations are illustrated. In Chap. 4, the last part is dedicated to heat integration and the tools available to design and evaluate heat exchanger networks. The fifth chapter deals with chemical reactors making emphasis in the importance of this kind of equipment in the conceptual design of the process. In consequence, with the objective of giving a systematic order from the learning point of view, the sixth chapter regards the operations of vapor–liquid separation, presenting the theory behind the shortcut and rigorous calculations. The last four chapters involve transversal or special topics, beginning with process optimization in Chap. 7, dynamic analysis of processes in Chap. 8, solids operations in Chap. 9 and, finally, some cases of study related to integrated problems with specific applications are addressed in the tenth chapter. According to the goals of the instructor, a typical 16-week semester is enough to cover the entire text. The topics presented in the chapters are organized in an inductive way, starting from the more simple simulation up to some additional and advanced complex problems. As the reader can note, the first four chapters are focused on the fundamentals with special emphasis on thermodynamics and simu- lation convergence. After that, the core of a chemical process, i.e., chemical reactors, is studied. Column operations and advance distillation technologies are presented after reactors in order to show the importance of solving the separation problems that naturally appear at the outputs of chemical reaction operations. Finally, specific topics are developed to illustrate the application of process simu- lation in a global way. At National University of Colombia, we teach the one- semester, three-credit course Modeling and Simulation of Chemical Processes. Students attend two 2-h sessions each week. During the sessions, the first part is dedicated to present and discuss some theoretical aspects related to specific prob- lem simulations, then in the last part of the sessions students are encouraged to solve computer simulation exercises, working in pairs. So, examples from each chapter can be used to be solved in exercise session part. Additional problems are proposed at the end of the chapter to be discussed in additional sessions or as homework problems. In this way, some chapters can be covered in a week and others can be covered in 2 weeks. This book is addressed to undergraduates in chemical and process engineering, as a support for the development of courses such as process simulation, process design, process engineering, plant design, and process control. Nonetheless, some sections can also be used in fundamental subjects like chemical reactions and mass transfer operations. The material presented here has been in part developed by the authors and, in part, compiled by Professor Iva´n Gil in the lecture of Modeling and Simulation of Chemical Processes, in the undergraduate program of chemical engineering at the National University of Colombia. Also, his experience as instructor of the lecture of Process Plant Design at Andes University, as well as the experience resulting of the development of some research projects and the interaction with real problems of the industry, has influence in the final contents of the book. The solved examples aim to ensure the understanding of all the presented topics and invite the reader to look deeper with more complex and Preface vii elaborated examples. It is expected that the guidelines and examples will allow the effective usage of commercial process simulators and become a consulting guide for all engineers involved in the development of process simulations and computer- assisted process design. The authors state their most sincere thanks to the Department of Chemical and Environmental Engineering of the National University of Colombia, campus Bogota´, for the lessons learned and the support of all the professors in the depart- ment, generating a pleasant environment of work and cooperation. It is also important to mention the support of teaching assistants from Computing Laboratory for Process Analysis and Design, as well as the students from Modeling and Simulation of Chemical Processes, and Process Control lectures. Particularly, we would like to thank some of our graduate students at National University of Colombia: Paola Bastidas, Nelson Borda, Francisco Malagon, Andre´s Ramirez, Edward Sierra, Santiago Vargas, and Karen Pineros,~ who helped us in proofreading and the development of some tests for simulation examples. Bogota´, Colombia Iva´n Darı´o Gil Chaves Bogota´, Colombia Javier Ricardo Guevara Lopez Edmonton, AB, Canada Jose´ Luis Garcı´a Zapata Trondheim, Norway Alexander Leguizamon Robayo Bogota´, Colombia
Recommended publications
  • Chemical Process Modeling in Modelica
    Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier Fakultät für Mathematik, Universität Wien Nordbergstraße 15, A-1090 Wien, Austria Abstract model creation involves only high-level operations on a GUI; low-level coding is not required. This is the Chemical process models are highly structured. Infor- desired way of input. Not surprisingly, this is also mation on how the hierarchical components are con- how it is implemented in commercial chemical process nected helps to solve the model efficiently. Our ulti- simulators such as Aspen PlusR , Aspen HYSYSR or mate goal is to develop structure-driven optimization CHEMCAD R . methods for solving nonlinear programming problems Nonlinear system of equations are generally solved (NLP). The structural information retrieved from the using optimization techniques. AMPL (FOURER et al. JModelica environment will play an important role in [12]) is the de facto standard for model representation the development of our novel optimization methods. and exchange in the optimization community. Many Foundations of a Modelica library for general-purpose solvers for solving nonlinear programming (NLP) chemical process modeling have been built. Multi- problems are interfaced with the AMPL environment. ple steady-states in ideal two-product distillation were We are aiming to create a ‘Modelica to AMPL’ con- computed as a proof of concept. The Modelica source verter. One could use the Modelica toolchain to create code is available at the project homepage. The issues the models conveniently on a GUI. After exporting the encountered during modeling may be valuable to the Modelica model in AMPL format, the already existing Modelica language designers. software environments (solvers with AMPL interface, Keywords: separation, distillation column, tearing AMPL scripts) can be used.
    [Show full text]
  • Chemical Engineering Careers in the Bioeconomy
    BioFutures Chemical engineering careers in the bioeconomy A selection of career profiles Foreword In December 2018, IChemE published the final report of its BioFutures Programme.1 The report recognised the need for chemical engineers to have a greater diversity of knowledge and skills and to be able to apply these to the grand challenges facing society, as recognised by the UN Sustainable Development Goals2 and the NAE Grand Challenges for Engineering.3 These include the rapid development of the bioeconomy, pressure to reduce greenhouse gas emissions, and an increased emphasis on responsible and sustainable production. One of the recommendations from the BioFutures report prioritised by IChemE’s Board of Trustees was for IChemE to produce and promote new career profiles to showcase the roles of chemical engineers in the bioeconomy, in order to raise awareness of their contribution. It gives me great pleasure to present this collection of careers profiles submitted by members of the chemical engineering community. Each one of these career profiles demonstrates the impact made by chemical engineers across the breadth of the bioeconomy, including water, energy, food, manufacturing, and health and wellbeing. In 2006, the Organisation for Economic Co-operation and Development (OECD) defined the bioeconomy as “the aggregate set of economic operations in a society that uses the latent value incumbent in biological products and processes to capture new growth and welfare benefits for citizens and nations”.4 This definition includes the use of biological feedstocks and/or processes which involve biotechnology to generate economic outputs. The output in terms of products and services may be in the form of chemicals, food, pharmaceuticals, materials or energy.
    [Show full text]
  • The Sequential-Clustered Method for Dynamic Chemical Plant Simulation
    Con~purers them. Engng, Vol. 14, No. 2. pp. 161-177, 1990 0098-I 354/90 %3.00 + 0.00 Printed an Great Britain. All rights reserved Copyright 6 1990 Pergamon Press plc THE SEQUENTIAL-CLUSTERED METHOD FOR DYNAMIC CHEMICAL PLANT SIMULATION J. C. FAGLEY’ and B. CARNAHAN* ‘B. P. America Research and Development Co., Cleveland, OH 44128, U.S.A. ‘Department of Chemical Engineering, The University of Michigan, Ann Arbor, Ml 48109, U.S.A. (Rrreiwd 28 May 1987; final revision received 26 June 1989; received for publicarion 11 July 1989) Abstract-We describe the design, development and testing of a prototype simulator to study problems associated with robust and efficient solution of dynamic process problems, particularly for systems with models containing moderately to very stiff ordinary differential equations and associated algebraic equations. A new predictor-corrector integration strategy and modular dynamic simulator architecture allow for simultaneous treatment of equations arising from individual modules (equipment units), clusters of modules, or in the limit, all modules associated with a process. This “sequential-clustered” method allows for sequential and simultaneous modular integration as extreme cases. Testing of the simulator using simple but nontrivial plant models indicates that the clustered integration strategy is often the best choice, with good accuracy, reasonable execution time and moderate storage requirements. INTRODUCTION simulator and includes results of tests on simulator performance. Direct numerical comparisons of Two major stumbling blocks in the development alternative integration strategies are given for some of robust dynamic chemical process simulators are: relatively simple test plants. Conclusions and recom- (1) mathematical models for many important equip- mendations drawn from our experiences should be ment types give rise to quite large systems of ordinary of interest to other workers developing dynamic differential equations (ODES); and (2) these ODE simulation software.
    [Show full text]
  • Handbook of Chemical Engineering Calculations
    Source: HANDBOOK OF CHEMICAL ENGINEERING CALCULATIONS SECTION 1 PHYSICAL AND CHEMICAL PROPERTIES Avinash Gupta, Ph.D. Senior Principal Chemical Engineer Chevron Lummus Global Bloomfield, NJ 1.1 MOLAR GAS CONSTANT 1.2 EQUATIONS AND LIQUID-LIQUID 1.2 ESTIMATION OF CRITICAL EQUILIBRIUM DATA 1.44 TEMPERATURE FROM EMPIRICAL 1.21 ACTIVITY-COEFFICIENT-CORRELATION CORRELATION 1.2 EQUATIONS AND VAPOR-LIQUID 1.3 CRITICAL PROPERTIES FROM EQUILIBRIUM DATA 1.46 GROUP-CONTRIBUTION METHOD 1.3 1.22 CONVERGENCE-PRESSURE 1.4 REDLICH-KWONG EQUATION VAPOR-LIQUID EQUILIBRIUM K OF STATE 1.5 VALUES 1.49 1.5 P-V-T PROPERTIES OF A GAS 1.23 HEAT OF FORMATION FROM MIXTURE 1.8 ELEMENTS 1.64 1.6 DENSITY OF A GAS MIXTURE 1.12 1.24 STANDARD HEAT OF REACTION, 1.7 ESTIMATION OF LIQUID STANDARD FREE-ENERGY CHANGE, AND EQUILIBRIUM CONSTANT 1.67 DENSITY 1.14 1.25 STANDARD HEAT OF REACTION FROM 1.8 ESTIMATION OF IDEAL-GAS HEAT HEAT OF FORMATION—AQUEOUS CAPACITY 1.15 SOLUTIONS 1.68 1.9 HEAT CAPACITY OF REAL GASES 1.20 1.26 STANDARD HEAT OF REACTION FROM 1.10 LIQUID HEAT CAPACITY— HEAT OF COMBUSTION 1.68 GENERALIZED CORRELATION 1.22 1.27 STANDARD HEAT OF FORMATION 1.11 ENTHALPY DIFFERENCE FOR IDEAL FROM HEAT OF COMBUSTION 1.70 GAS 1.24 1.28 HEAT OF ABSORPTION FROM 1.12 ESTIMATION OF HEAT OF SOLUBILITY DATA 1.71 VAPORIZATION 1.24 1.29 ESTIMATION OF LIQUID VISCOSITY 1.13 PREDICTION OF VAPOR AT HIGH TEMPERATURES 1.73 PRESSURE 1.27 1.30 VISCOSITY OF NONPOLAR AND 1.14 ENTHALPY ESTIMATION— POLAR GASES AT HIGH GENERALIZED METHOD 1.29 PRESSURE 1.73 1.15 ENTROPY INVOLVING A PHASE 1.31
    [Show full text]
  • Marko Leino Process Simulation Unit Operation Models – Review of Open
    MARKO LEINO PROCESS SIMULATION UNIT OPERATION MODELS – REVIEW OF OPEN AND HSC CHEMISTRY I/O INTERFACES Master of Science Thesis Examiner: Professor Hannu Jaakkola Examiner and topic approved by the Faculty Council of the Faculty of Business and Built Environment on 6 April 2016 i ABSTRACT MARKO LEINO: Process Simulation Unit Operation Models – Review of Open and HSC Chemistry I/O Interfaces Tampere University of Technology Master of Science Thesis, 76 pages, 29 Appendix pages April 2016 Master’s Degree Programme in Information Technology Major: Software Engineering Examiner: Professor Hannu Jaakkola Keywords: CAPE-OPEN, HSC Chemistry Sim, unit operation, process simulation Chemical process modelling and simulation can be used as a design tool in the development of chemical plants, and is utilized as a means to evaluate different design options. The CAPE- OPEN interface standards were developed to allow the deployment and utilization of process modelling components in any compliant process modelling environment. This thesis examines the possibilities provided by the CAPE-OPEN interfaces and the .NET framework to develop compliant, cross-platform process modelling components, particularly unit operations. From the software engineering point of view, a unit operation is a represen- tation of physical equipment, and contains the mathematical model of its functionality. The study indicates that the differences between the CAPE-OPEN standards and Outotec HSC Chemistry Sim are negligible at the conceptual level. On the other hand, at the implementa- tion level, the differences are quite considerable. Regardless of the simulation application be- ing used, the modelling of unit operations requires interdisciplinary skills, and creating tools and methods to ease the development of such models is well justified.
    [Show full text]
  • Course Chemical Process Modeling
    Course Chemical Process Modeling Basic Information Course «Chemical Process Modeling» will provide you with the advanced knowledge and skills to training in use of modelling and simulation approaches, and their application to practical problems of relevance to chemical and refinery industries. This is a course, which contributes to MSc award in Petroleum Chemistry and Refining Title of the Master's Degree Programs in English “Petroleum Chemistry and Academic Program Refining” Type of the course core /mandatory Course period From December 1st till December 31st, 1 semester (5 weeks) Study credits 4 ECTS credits Duration 144 hours Language of English instruction BSc degree in Petroleum Engineering, Engineering, Chemistry , , Academic Environmental Sciences or equivalent (transcript of records), requirements good command of English (certificate or other official document) Course Description The course of «Chemical Process Modeling» provided a curriculum of master’s program 04.04.01.10 «Petroleum chemistry and refining». Chemical Process Modeling considers a systematic approach to the creation of information systems of modeling and design of complex chemical-technological processes. The students are introduced to the methods of computer simulation of engineering systems as used within the chemical and refinery industry, for the prediction of the (steady-state) behavior and performance of various technology processes such as separation processes, heat transfer and chemical conversions. Special Features of the Course (module) Chemical Process
    [Show full text]
  • When Chemical Reactors Were Admitted and Earlier Roots of Chemical Engineering
    When Chemical Reactors Were Admitted And Earlier Roots of Chemical Engineering 9 Biographical sketch of L. E. ‘Skip’ Scriven L. E. 'Skip' Scriven is Regents' Professor and holder of the L E Scriven Chair of Chemical Engineering & Materials Science at the University of Minnesota. He is a Fellow of the Minnesota Supercomputer Institute, founded the Coating Process Fundamentals Program, and now co-leads it with Professor Lorraine F. Francis. He is distinguished for pioneering researches in several areas of fluid mechanics, interfacial phenomena, porous media and surfactant technologies, and the recently emerged field of coating science and engineering. He promoted close interactions with industry by showing how good theory, incisive experimental techniques, and modern computer-aided mathematics can be combined to solve industrial processing problems. He graduated from the University of California, Berkeley, received a Ph.D. from the University of Delaware, and was a research engineer with Shell Development Company for four years before joining the University of Minnesota. He received the AIChE Allan P. Colburn Award four decades ago, the William H. Walker Award two decades ago, the Tallmadge Award in 1992, and the Founders Award in 1997. He has also been honored by the University of Minnesota and the American Society for Engineering Education for outstanding teaching. He has co-advised or advised many undergraduate, graduate and postdoctoral research students, including over 100 Ph.D.’s. Elected to the National Academy of Engineering in 1978, he has served on several U.S. national committees setting priorities for chemical engineering and materials science research. In 1990-92 he co-chaired the National Research Council's Board on Chemical Sciences and Technology, and in 1994-97 he served on the governing Commission on Physical Sciences, Mathematics, and Applications.
    [Show full text]
  • Roadmap Chemical Reaction Engineering an Initiative of the Processnet Subject Division Chemical Reaction Engineering
    Roadmap Chemical Reaction Engineering an initiative of the ProcessNet Subject Division Chemical Reaction Engineering 2nd edition May 2017 roadmap chemical reaction engineering Table of contents Preface 3 1 What is Chemical Reaction Engineering? 4 2 Relevance of Chemical Reaction Engineering 6 3 Experimental Reaction Engineering 8 A Laboratory Reactors 8 B High Throughput Technology 9 C Dynamic Methods 10 D Operando and in situ spectroscopic methods including spatial information 11 4 Mathematical Modeling and Simulation 14 A Challenges 14 B Workflow of Modeling and Simulation 15 C Achievements & Trends 20 5 Reactor Design and Process Development 22 A Optimization of Transport Processes in the Reactor 22 B Miniplant Technology and Experimental Scale-up 24 C Equipment Development 25 D Process Intensification 29 E Systems Engineering Approaches for Reactor Analysis, Synthesis, Operation and Control 32 6 Case studies 35 Case Study 1: The EnviNOx® Process 35 Case Study 2: Redox-Flow Batteries 36 Case Study 3: On-Board Diagnostics for Automotive Emission Control 37 Case Study 4: Simulation-based Product Design in High-Pressure Polymerization Technology 39 Case Study 5: Continuous Synthesis of Artemisinin and Artemisinin-derived Medicines 41 7 Outlook 43 Imprint 47 2 Preface This 2nd edition of the Roadmap on Chemical Reaction Engi- However, Chemical Reaction Engineering is not only driven by neering is a completely updated edition. Furthermore, it is the need for new products (market pull), but also by a rational written in English to gain more international visibility and approach to technologies (technology push). The combina- impact. Especially for the European Community of Chemical tion of digital approaches such as multiscale modeling and Reaction Engineers organized under the auspices of European simulation in combination with experimentation and space Federation of Chemical Engineering (EFCE) it can be a contri- and time-resolved in situ measurements opens up the path to bution to help to establish a Roadmap on a European level.
    [Show full text]
  • ATTAINABLE REGION THEORY an Introduction to Choosing An
    k ATTAINABLE REGION THEORY k k k k k k k k ATTAINABLE REGION THEORY An Introduction to Choosing an Optimal Reactor By DAVID MING University of the Witwatersrand, Johannesburg DAVID GLASSER and DIANE HILDEBRANDT Material and Process Synthesis research unit, University of South Africa BENJAMIN GLASSER Rutgers, The State University of New Jersey MATTHEW METZGER Merck & Co., Inc k k k k Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Chemical Reaction Engineering A. Sarath Babu
    CHEMICAL REACTION ENGINEERING A. SARATH BABU 1 Course No. Ch.E – 326 CHEMICAL REACTION ENGINEERING Periods/ Week : 4 Credits: 4 Examination Teacher Assessment: Marks: 20 Sessionals: 2 Hrs Marks: 30 End Semester: 3 Hrs Marks : 50 1. KINETICS OF HOMOGENEOUS REACTIONS 2. CONVERSION AND REACTOR SIZING 3. ANALYSIS OF RATE DATA 4. ISOTHERMAL REACTOR DESIGN 5. CATALYSIS AND CATALYTIC RECTORS 6. ADIABATIC TUBULAR REACTOR DESIGN 7. NON-IDEAL REACTORS 2 TEXT BOOKS 1. Elements of Chemical Reaction Engineering - Scott Fogler H 2. Chemical Reaction Engineering - Octave Levenspiel 3. Introduction to Chemical Reaction Engineering & Kinetics, Ronald W. Missen, Charles A. Mims, Bradley A. Saville 4. Fundamentals of Chemical Reaction Engineering – Charles D. Holland, Rayford G. Anthony 5. Chemical Reactor Analysis – R. E. Hays 6. Chemical Reactor Design and operation – K. R. Westerterp, Van Swaaij and A. A. C. M. Beenackers 7. The Engineering of Chemical Reactions – Lanny D. Schmidt 8. An Introduction to Chemical Engineering Kinetics and Reactor Design – Charles G. Hill, Jr. 9. Chemical Reactor Design, Optimization and Scaleup – E. Bruce Nauman 3 10.Reaction Kinetics and Reactor Design – John B. Butt Without chemical reaction our world would be a barren planet. No life of any sort would exist. There would be no fire for warmth and cooking, no iron and steel to make even the crudest implements, no synthetic fibers for clothing, and no engines to power our vehicles. One feature that distinguishes the chemical engineer from others is the ability to analyze systems in which chemical reactions occur and to apply the results of the analysis in a manner that benefits society.
    [Show full text]
  • Chemical Engineer
    International Hazard Datasheets on Occupation Chemical engineer Who is a chemical engineer? A worker who designs equipment and develops processes for manufacturing chemicals and related products utilizing the principles and technology of chemistry, physics, mathematics, engineering and related physical and natural sciences. Conducts research to develop new and improved chemical manufacturing processes. What is dangerous about this job? Risk of explosion from uncontrolled chemical reactions and /or overpressure in processing installations. Exposure to new chemicals with not yet specified toxicity and to carcinogenic, mutagenic, and teratogenic substances. Exposure to chemicals which may cause severe allergic reactions. Exposure to ionizing radiation caused by radioactive materials, used in various processes. Allergic reactions produced by exposure to various chemicals, giving rise to respiratory tract, eye and skin irritations. Stress and anxiety as a result of experimental work which can give rise to unexpected effects. Hazards related to this job Specific preventive measures can be seen by clicking on the respective in the third column of the table. Accident Falls from height during inspection of various industrial installations hazards Slips, trips and falls on the level particularly on floors made wet and slippery as a result of leak or spillage of chemicals Injuries caused by striking against stationary industrial installations or being struck by falling objects, particularly in overcrowded conditions Risk of explosion from uncontrolled
    [Show full text]
  • Process and Plant Design CHE432
    Plant Design CHEN 451 Engineering design of new chemical and petrochemical plants and the expansion or revision of existing ones require the use of engineering principles and theories combined with a practical realization of the limits imposed by industrial conditions. A successful engineer needs more than a knowledge and understanding of the fundamental sciences and the related engineering subjects such as thermodynamics, reaction kinetics, and computer technology. The engineer must also have the ability to apply this knowledge to practical situations for the purpose of accomplishing something that will be beneficial to society. There are three parameters that must be defined namely: 1-Design: design is a creative activity and is defined as the synthesis, the putting together of ideas to achieve a desired purpose. Also it can be defined as the creation of manufacturing process to fulfill a particular need. The need may be public need or commercial opportunity. 2-Process Design: process design establishes the sequence of chemical and physical operations; operating conditions; the duties, major specifications, and materials of construction (where critical) of all process equipment (as distinguished from utilities and building auxiliaries); the general arrangement of equipment needed to ensure proper functioning of the plant; line sizes; and principal instrumentation. The process design is summarized by a process flowsheet. Process design is intended to include: 1. Flowsheet development. 2. Process material and heat balances. 3. Auxiliary services material and heat balances (utilities requirements). 4. Chemical engineering performance design for specific items of equipments required for a flowsheet. 5. Instrumentation as related to process performance. 6. Preparation of specifications (specification sheets) in proper form for use by the project team as well as for the purchasing function.
    [Show full text]