Material Properties of Copper Alloys Containing Arsenic, Antimony, and Bismuth the Material of Early Bronze Age Ingot Torques

Total Page:16

File Type:pdf, Size:1020Kb

Material Properties of Copper Alloys Containing Arsenic, Antimony, and Bismuth the Material of Early Bronze Age Ingot Torques Material properties of copper alloys containing arsenic, antimony, and bismuth The material of Early Bronze Age ingot torques Von der Fakultät für Werkstoffwissenschaft und Werkstofftechnologie der Technischen Universität Bergakademie Freiberg genehmigte DISSERTATION zur Erlangung des akademischen Grades Doktor-Ingenieur Dr.-Ing. vorgelegt von Dipl.-Ing. Margrit Junk geboren am 17.01.1973 in Dresden Gutachter.: Prof. Dr. Ernst Pernicka, Freiberg Prof. Dr. Horst Biermann, Freiberg Dr. Peter Northover, Oxford Tag der Verleihung: 16.05.2003 II III Acknowledgements I would like to thank Prof. Ernst Pernicka for the possibility to work on this project and for his support. For providing archaeological material I am grateful to Dr. Stephan Möslein (Bad Tölz), Dr. Hans-Peter Uenze (Prähistorische Staatssammlung München), Werner Haber- länder (Neuhaus b. Schliersee), Dr. Rüdiger Krause (Landesdenkmalamt Baden-Württem- berg, Stuttgart) and Dr. Oldrich Kotyza (Okresní vlastivedné muzeum Litomerice).ˇ The sampling and restoration of the ingot torques and fragments was carried out by the au- thor in the restoration workshop of the Staatlicher Mathematisch-Physikalischer Salon Dresden. For their support and hints I would like to thank Andreas Holfert, Lothar Has- selmeyer and Johannes Eulitz. The copper for the reference material was provided by the Institut für NE-Metallurgie, arsenic by the faculty for chemistry and physics and by Freiberger Compound Materials GmbH. Antimony and bismuth were provided by the Institut für Gießereitechnik. The sand moulds were made by ACTech (Advanced Casting Technologies), Freiberg. The pattern for the mould was provided by the Institut für Gießereitechnik (Dr. Klaus Peukert, Reiner Rabe). The graphite mould was made in the mechanical workshop of the faculty for material science, as well as the specimens for material testing. The reference material was cast by Dr. Hans-Peter Heller, Peter Neuhold and Günter Franke in the Institut für Stahltechnologie. For X-raying the cast rods and for carrying out the tensile tests I would like to thank Reinald Weber (Institut für Werkstofftechnik). The notched bar impact tests were carried out by Dr. Peter Trubitz (Institut für Werkstofftechnik) and Dr. Andreas Weiß (Institut für Stahltechnologie), the torsion tests by Dr. Marlene Spittel, Dr. Werner Jungnickel, and Dagmar Schmidt (Institut für Metallformung). The rods were forged by Uwe Heinze (Institut für Metallformung). With the hardness measurements I was supported by Gudrun Bittner (Institut für Werkstofftechnik), with the stereo microscope by Birgit Liebscher (Institut für Werkstofftechnik). The EPMA and SEM investigations were carried out by Dr. Dietrich Heger, Dr. Hartmut Baum, and Brigitte Bleiber (Institut für Metallkunde). I am indebted to Gudrun Wolf (Institut für Metallkunde) for the support in metallographic preparation. The photographs of the artefacts were taken by Peter Müller (Staatlicher Mathematisch- Physikalischer Salon Dresden). The slides were scanned to files by Maik Böhme (Institut für Archäometrie). I would like to thank Amanda Crain and Dr. Daniel Müller (Departement Erdwis- senschaften, ETH Zürich) for language and proof correction of the manuscript. Finally, and most importantly, I am indebted to my husband and my parents for their patience to discuss about the work and for the support in all stages of the project. IV Abstract This work deals with Early Bronze Age ingot torques, their composition, and material properties. The aim was to decide whether and how a choice of materials by composition or properties was possible during the Early Bronze Age. Early Bronze Age ingot torques were analysed and artefacts from several hoard finds and working stages were investigated metallographically. On the basis of these data the production technology was reconstructed. For the determination of mechanical and technological properties, reference alloys were produced and investigated. The production process was simulated by forging experiments. The investigations revealed that ingot torques were produced by a standardised technology, independent of their composition. The results of the material testing show that it is possible to distinguish the composition of the Early Bronze Age alloys by their mechanical and technological properties. ___________________ Die Arbeit befaßt sich mit frühbronzezeitlichen Ösenringbarren, ihrer Zusam- mensetzung und ihren Werkstoffeigenschaften. Es sollte untersucht werden, ob und wie in der Frühbronzezeit eine Materialauswahl auf der Basis von Zusam- mensetzung oder Eigenschaften möglich war. Frühbronzezeitliche Ösenringbarren wurden analysiert und Artefakte unter- schiedlicher Herkunft und Fertigungsstufen metallographisch untersucht. Auf der Grundlage dieser Ergebnisse wurde die Herstellung der Ringe rekonstruiert. Zur Bestimmung der mechanischen und technologischen Eigenschaften wurden Referenzlegierungen hergestellt und untersucht. Der Herstellungsprozeß wurde durch Schmiedeversuche simuliert. Die Untersuchungen ergaben, daß die Ösenringbarren unabhängig von ihrer Zusammensetzung nach einer einheitlichen Technologie hergestellt wurden. Die Ergebnisse der Werkstoffprüfung zeigen, daß eine Unterscheidung frühbronze- zeitlichen Legierungen anhand ihrer mechanischen und technologischen Eigen- schaften möglich ist. VI Contents List of Tables XI List of Figures XIII Symbols and abbreviations XIX 1 Introduction 1 2 Ingot torques and ingot torque metal 3 2.1 An archaeological view on materials . .............. 4 2.1.1 Alloys in prehistory ..................... 4 2.1.2 Estimates for material classification . ....... 5 2.2 Ingot torques ............................ 11 2.2.1 General remarks and typology . .............. 11 2.2.2 Technology . ..................... 13 2.2.3 The material of ingot torques . .............. 13 2.2.4 Archaeological and archaeometallurgical interpretation of ingot torques . ..................... 17 3 The influence of arsenic, antimony, and bismuth on the properties of copper 19 3.1 The influence of arsenic on copper . .............. 19 3.1.1 The copper-arsenic equilibrium phase diagram . 19 3.1.2 Casting properties ..................... 20 3.1.3 Mechanical properties . .............. 22 3.1.4 Working properties ..................... 23 3.2 The influence of antimony on copper . .............. 26 3.2.1 The copper-antimony equilibrium phase diagram . 26 VIII Contents 3.2.2 Casting properties . ................... 26 3.2.3 Mechanical properties ................... 27 3.2.4 Working properties . ................... 28 3.3 The influence of bismuth on copper . ............ 29 3.3.1 The copper-bismuth equilibrium phase diagram . 29 3.3.2 Casting properties . ................... 29 3.3.3 Mechanical properties ................... 29 3.3.4 Working properties . ................... 30 3.4 The combined influence of the alloying elements . ........ 31 3.4.1 Combined influence of arsenic and antimony on copper . 31 3.4.2 The influence of arsenic and antimony on copper contain- ing oxygen . ................... 32 3.4.3 The influence of arsenic and antimony on copper contain- ing bismuth . ................... 33 4 Methods used for sampling, analysis and material testing 35 4.1 Sampling of archaeological material . ............ 35 4.1.1 Drill shavings for X-ray fluorescence analysis . 35 4.1.2 Samples for metallography . ............ 35 4.2 Analysis . .......................... 36 4.2.1 Energy dispersive X-ray fluorescence analysis . 36 4.2.2 Scanning electron microscopy and electron microprobe analysis . .......................... 38 4.3 Metallography . .......................... 39 4.4 Material testing . .......................... 40 4.4.1 Macroscopic X-ray analysis (radiography) . ........ 40 4.4.2 Vickers hardness test . ................... 40 4.4.3 Tensile test . ................... 42 4.4.4 Notched bar impact test . ............ 43 4.4.5 Torsion test . ................... 44 5 X-ray fluorescence analyses of Early Bronze Age ingot torques 47 5.1 Andechs-Erling, Kr. Starnberg ................... 48 5.2 Piding, Kr. Berchtesgadener Land . ............ 48 5.3 Sicharting, Kr. Traunstein . ................... 52 5.4 Staudach-Egerndach, Kr. Traunstein . ............ 52 5.5 Unterwössen, Kr. Traunstein . ................... 55 5.6 Valley, Kr. Miesbach . ................... 56 Contents IX 5.7 Summary . ............................ 59 6 Metallographic investigation of Early Bronze Age ingot torques 61 6.1 Aschering, Kr. Starnberg . ..................... 61 6.1.1 Fragment Asch1 . ..................... 62 6.1.2 Fragment Asch2 . ..................... 65 6.2 Bernhaupten, Kr. Traunstein . .............. 67 6.2.1 Fragment Ber1 . ..................... 68 6.2.2 Fragment Ber3 . ..................... 68 6.3 Gammersham, Kr. Wasserburg am Inn . .............. 70 6.3.1 Fragment Gam1 . ..................... 72 6.3.2 Fragment Gam2 . ..................... 75 6.4 Hechendorf am Pilsensee, Kr. Starnberg .............. 77 6.4.1 Fragment Hech1 . ..................... 77 6.4.2 Fragment Hech2 . ..................... 78 6.5 Hohenlinden-Mühlhausen, Kr. Ebersberg . ....... 80 6.5.1 Fragment Hoh1 . ..................... 81 6.6 Mühldorf am Inn, Kr. Mühldorf . .............. 84 6.6.1 Fragment Müh1 . ..................... 84 6.7 Pfedelbach-Untersteinbach, Hohenlohekreis . ....... 86 6.7.1 Ingot torque Pfe10 ..................... 86 6.7.2 Ingot torque Pfe14 ..................... 90 6.8 Radostice, okr. Litomericeˇ ..................... 93 6.8.1 Ingot torque Rad2 ..................... 93 6.8.2 Ingot torque Rad4 ....................
Recommended publications
  • Part Report for Each Region Was Prepared
    WORK PACKAGE 10 First Confrontation of Theory and Practice: Test of the Tools and Discussion of their Use for Sustainable Regional Development in Five (Six!) Test Regions FINAL REPORT – 9. 11. 2007 WORK PACKAGE RESPONSIBLE: Anton Melik Geographical Institute of Scientific Research Centre of the Slovenian Academy of Sciences and Arts (AMGI SRC SASA) CONTENT I. Introduction II. Methodology III. Searching for sustainable regional development in the Alps: Bottom-up approach IV. Workshops in selected test regions 1. Austria - Waidhofen/Ybbs 1.1. Context analysis of the test region 1.2. Preparation of the workshop 1.2.1. The organizational aspects of the workshop 1.3. List of selected instruments 1.4. List of stakeholders 1.5. The structure of the workshop 1.5.1. Information on the selection of respected thematic fields/focuses 1.6. Questions for each part of the workshop/ for each instrument 1.7. Revised answers 1.8. Confrontation of the context analysis results with the workshop results 1.9. Starting points for the second workshop 1.10. Conclusion 2. France – Gap 2.1. Context analysis of the test region 2.2. Preparation of the workshop 2.2.1. The organizational aspects of the workshop 2.3. List of selected instruments 2.4. List of stakeholders 2.5. The structure of the workshop 2.5.1. Information on the selection of respected thematic fields/focuses 2.6. Questions for each part of the workshop/ for each instrument 2.7. Revised answers 2.8. Confrontation of the context analysis results with the workshop results 2.9. Starting points for the second workshop 2.10.
    [Show full text]
  • Identification and Quantification of Arsenic Species in Gold Mine Wastes Using Synchrotron-Based X-Ray Techniques
    Identification and Quantification of Arsenic Species in Gold Mine Wastes Using Synchrotron-Based X-ray Techniques Andrea L. Foster, PhD U.S. Geological Survey GMEG Menlo Park, CA Arsenic is an element of concern in mined gold deposits around the world Spenceville (Cu-Au-Ag) Lava Cap (Nevada) Ketza River (Au) Empire Mine (Nevada) low-sulfide, qtz Au sulfide and oxide ore Argonaut Mine (Au) bodies Don Pedro Harvard/Jamestown Ruth Mine (Cu) Kelly/Rand (Au/Ag) Goldenville, Caribou, and Montague (Au) The common arsenic-rich particles in hard-rock gold mines have long been known Primary Secondary Secondary/Tertiary Iron oxyhydroxide (“rust”) “arsenian” pyrite containing arsenic up to 20 wt% -1 Scorodite FeAsO 2H O As pyrite Fe(As,S)2 4 2 Kankite : FeAsO4•3.5H2O Reich and Becker (2006): maximum of 6% As-1 Arseniosiderite Ca2Fe3(AsO4)3O2·3H2O Arsenopyrite FeAsS Jarosite KFe3(SO4)2(OH)6 Yukonite Ca7Fe12(AsO4)10(OH)20•15H2O Tooleite [Fe6(AsO3)4(SO4)(OH)4•4H2O Pharmacosiderite KFe (AsO ) (OH) •6–7H O arsenide n- 4 4 3 4 2 n = 1-3 But it is still difficult to predict with an acceptable degree of uncertainty which forms will be present • thermodynamic data lacking or unreliable for many important phases • kinetic barriers to equilibrium • changing geochemical conditions (tailings management) Langmuir et al. (2006) GCA v70 Lava Cap Mine Superfund Site, Nevada Cty, CA Typical exposure pathways at arsenic-contaminated sites are linked to particles and their dissolution in aqueous fluids ingestion of arsenic-bearing water dissolution near-neutral, low
    [Show full text]
  • Überarbeitete Fassung 02.04.20
    LAG „Traun-Alz-Salzach“ Lokale Entwicklungsstrategie LEADER 2014 - 2020 Gefördert durch das Bayerische Staatsministerium für Ernährung, Landwirtschaft und Forsten und den Europäischen Landwirtschaftsfonds für die Entwicklung des ländlichen Raums (ELER). Überarbeitete Fassung vom 02.04.2020 Seite 1 LAG „Traun-Alz-Salzach“ Inhaltsverzeichnis Seite A Inhalte des Evaluierungsberichts Leader 2007-2013 entfällt B Inhalte der Lokalen Entwicklungsstrategie (LES) 1. Festlegung des LAG-Gebiets 4 2. Lokale Aktionsgruppe 6 2.1 Rechtsform, Zusammensetzung und Struktur 6 2.2 Aufgaben und Arbeitsweise 10 2.3 LAG-Management 11 3. Ausgangslage und SWOT-Analyse 13 3.1 Beschreibung Ausgangslage und Analyse Entwicklungsbedarf und -potenziale 13 3.1.1 Landschaft und Umwelt 13 3.1.2 Klimaschutz 15 3.1.3 Land- und Forstwirtschaft 16 3.1.4 Bevölkerung und demographischer Wandel 18 3.1.5 Siedlungsentwicklung, Versorgung und Soziales 21 3.1.6 Verkehr und Mobilität 22 3.1.7 Kultur, Tourismus und Freizeit 23 3.1.8 Wirtschaft und Bildung 25 3.2 Bestehende Planungen und Initiativen 26 3.3 Bürgerbeteiligung 28 4. Ziele der Entwicklungsstrategie und ihre Rangfolge 30 4.1 Innovativer Charakter für die Region 30 4.2 Beitrag zu den übergreifenden ELER-Zielsetzungen 30 4.3 Beitrag zur Bewältigung der Herausforderungen des demographischen Wandels 31 4.4 Mehrwert durch Kooperationen 31 4.5 Regionale Entwicklungsziele 33 4.6 Beschreibung der Ziele und Indikatoren 35 4.7 Finanzplanung 47 5. LAG-Projektauswahlverfahren 48 5.1 Regeln für das Projektauswahlverfahren und Förderhöhe
    [Show full text]
  • Arsenic and Lead Contamination in Oklahoma Soils Arsenic and Lead Are Naturally Occurring Elements Present in Rocks
    Arsenic and Lead Contamination in Oklahoma Soils Arsenic and lead are naturally occurring elements present in rocks. As these rocks erode, arsenic and lead get in soils, waters and plants. The United States Geological Survey (USGS) reports an average of 7.4 parts per million (ppm) as the arsenic concentration in soils for the entire United States and 7.2 ppm as the average arsenic concentration in soils for the western U.S.(1) Background arsenic concentrations in Central Oklahoma soils range from 0.6 to 21 ppm.(2) The USGS reports an average lead concentration of 13 parts per million (ppm) in soils for central Oklahoma(2) and an average lead concentration of 18 ppm for the Western United States.(3) Pollution from historic lead and zinc smelters in Oklahoma left residues of lead, arsenic and cadmium in area soils. Contamination was also spread by using smelter debris as fill material, driveways and roads. These former smelters were primarily located in eastern Oklahoma. Some arsenic contamination above naturally occurring levels is also attributed to agricultural, energy and industrial practices. For example, arsenic-containing insecticides and herbicides were widely used on vegetables, fruits and field crops from the 1900s to around 1950. Coal combustion, wood preserving and smelting operations are known to be sources of arsenic contamination.(1) Lead was once commonly used in paint and in plumbing. Lead was an additive to gasoline for many years and has also been found in ceramics, mini-blinds and other products. Homes built before 1970 commonly have lead-based paint. Renovation activities and peeling or flaking paint can release lead inside the home.
    [Show full text]
  • Grund- Und Mittelschulen Im Landkreis Traunstein Schulanschrift Schul-Nr
    Staatliches Schulamt im Landkreis Traunstein Grund- und Mittelschulen im Landkreis Traunstein Schulanschrift Schul-Nr. Schulkontaktdaten Schulleitung Grundschule Altenmarkt 2882 GS Tel.: 08621 1720 Schwan Sabine (Rin) Schulweg 15 2914 MS Fax: 08621 63635 Zehentmaier Gertraud (StRGS/STV) 83352 Altenmarkt [email protected] Frau Geerk (VA) Grundschule Bergen 1277 GS Tel.: 08662 8306 Mitterer Monika (Rin) Tannhäuserweg 10 2915 MS Fax: 08662 419723 Leitenstorfer Christine (L/STV) 83346 Bergen [email protected] Frau Gehmacher (VA) Grund- und Mittelschule Chieming 1278 GS Tel.: 08664 9849-0 Röhr Sabine (Rin) Josef-Heigenmooser-Straße 45 2916 MS Fax: 08664 9849-22 n. n. 83339 Chieming [email protected] Frau Wimmer (VA) Grundschule Engelsberg 2917 GS Tel.: 08634 620730 Unterforsthuber Christine (Rin) Raiffeisenplatz 6 Fax: 08634 620750 Brüche Christine (L/STV) 84549 Engelsberg [email protected] Frau Hamberger (VA) Grund- und Mittelschule Salzachtal in Fridolfing 2869 GS Tel.: 08684 240 Stehböck Thomas (R) Schulweg 6 2919 MS Fax: 08684 9194 Baumann Wolfgang (KR) 83413 Fridolfing [email protected] Frau Stettmeier (VA), Frau Mörtl (VA) Grundschule Grabenstätt 2920 GS Tel.: 08661 241 Zeitel Johannes (R) Am Eichbergfeld 11 Fax: 08661 8058 Gebert-Schwarm Birgit (StRGS/STV) 83355 Grabenstätt [email protected] Frau Ganser (VA) Grund- und Mittelschule Grassau 1279 GS Tel.: 08641 2125 Tischler Georg (KR 1/SLei) Birkenweg 12 2921 MS Fax: 08641 697552 n. n. 83224 Grassau [email protected]
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • United States Patent Office
    Patented Mar. 12, 1946 2,396.465 UNITED STATES PATENT OFFICE PREPARATION OF SODUMARSENTE Erroll Hay Karr, Tacoma, Wash, assignor to The Pennsylvania Salt Manufacturing Company, Philadelphia, Pa, a corporation of Pennsyl vania No Drawing. Application October 12, 1943, Serial No. 506,00 3 Claims. (C. 23-53) This invention relates to the production of metal arsenites from alkali metal hydroxide and high arsenic content water soluble, alkali metal arsenic trioxide without the necessity of using arsenites, and more particularly, it relates to an the alkali metal hydroxide in powder form. improved method of causing a controlled reac Another object of the invention is to provide tion between an alkali metal hydroxide and a cheap and easily performed process for the arsenic trioxide to obtain a granular product in preparation of alkali metal arsenites from con a one-step operation. centrated solutions of caustic alkali and pow It is known that solid sodium arsenite can be dered arsenic trioxide in standard mixing equip prepared by mixing together powdered Solid ment. caustic soda and arsenic oxide in a heap and O An additional object of the invention is to pro initiating the reaction by adding a small quan vide a process for obtaining alkali metal arsenites tity of water. Ullmann's Encyclopedia der Techn. in granular form from concentrated solutions of Chemie., volume I, page 588. This method will caustic alkali and powdered arsenic trioxide. yield a solid material but it is attended by sev A further object of the invention is to provide eral disadvantages. 5 a process for the preparation of granular alkali .
    [Show full text]
  • Detection, Distribution and Health Risk Assessment of Toxic Heavy
    foods Article Detection, Distribution and Health Risk Assessment of Toxic Heavy Metals/Metalloids, Arsenic, Cadmium, and Lead in Goat Carcasses Processed for Human Consumption in South-Eastern Nigeria Emmanuel O. Njoga 1,* , Ekene V. Ezenduka 1 , Chiazor G. Ogbodo 1, Chukwuka U. Ogbonna 2 , Ishmael F. Jaja 3 , Anthony C. Ofomatah 4 and Charles Odilichukwu R. Okpala 5,* 1 Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Nigeria; [email protected] (E.V.E.); [email protected] (C.G.O.) 2 Department of Biochemistry, Federal University of Agriculture Abeokuta, Ogun State 110124, Nigeria; [email protected] 3 Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa; [email protected] 4 National Centre for Energy Research and Development, University of Nigeria, Nsukka 410001, Nigeria; [email protected] 5 Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland Citation: Njoga, E.O.; Ezenduka, * Correspondence: [email protected] (E.O.N.); [email protected] (C.O.R.O.) E.V.; Ogbodo, C.G.; Ogbonna, C.U.; Jaja, I.F.; Ofomatah, A.C.; Okpala, Abstract: Notwithstanding the increased toxic heavy metals/metalloids (THMs) accumulation in C.O.R. Detection, Distribution and (edible) organs owed to goat0s feeding habit and anthropogenic activities, the chevon remains Health Risk Assessment of Toxic increasingly relished as a special delicacy in Nigeria. Specific to the South-Eastern region, however, Heavy Metals/Metalloids, Arsenic, Cadmium, and Lead in Goat there is paucity of relevant data regarding the prevalence of THMs in goat carcasses processed for Carcasses Processed for Human human consumption.
    [Show full text]
  • Projekt ‚Solidarische Landwirtschaft
    Donnerstag, 24. Mai 2018 LOKALES SWA Nummer 118 27 Projekt „Solidarische Landwirtschaft“ Verbraucher unterstützen bei Tettenberg Gärtnerei durch feste Abnahmegarantien – „Acker-Frühstück“ am Samstag Von Hans Eder Wochen noch leeren Felder be- Sauerkirschen. Die Auswahl an reits teilweise von allerlei Pflan- Obst und auch an Beeren wird im Otting. Bei der Ortschaft Tet- zen bedeckt sind – gefördert durch Laufe der nächsten Jahre noch zu- tenberg in der Nähe von Otting die nach wochenlanger Trocken- nehmen. Johannisbeeren aller- entsteht auf einer 1,3 Hektar gro- heit jetzt doch endlich eingetroffe- dings sind bereits reichlich vor- ßen Anbaufläche ein gemein- nen Regenfälle. Es sind vor allem handen, da sie schon vor einigen schaftlich getragenes Gemüse- verschiedene Salatsorten sowie Jahren gepflanzt wurden. Auch bau-Projekt der „Solidarischen Radieschen und einige Kräuter, Kräuter und Teepflanzen werden Landwirtschaft“ (SoLaWi). Wer die inzwischen bereits geerntet angebaut. sich daran beteiligt, kann sich Wo- werden können. Die beiden Ver- Demnächst werden noch zwei che für Woche mit einem breit ge- teilungsstellen sind im ehemali- Gewächshäuser aufgebaut, die fächerten Gemüse-Paket versor- gen Rossstall am Ottinger Pfarr- zunächst hauptsächlich für Toma- gen. Inhaberin ist Demeter-Land- hof und an der Zentrale des Kreis- ten gedacht sind, in denen dann wirtin Kristine Rühl aus Siegsdorf; bildungswerks im Campus St. Mi- aber in der kalten Jahreszeit die Elfriede Brenner ihre Nichte Karoline Widur und chael an der Kardinal-Faulhaber- winterharten Salate und Gemüse- eine Gruppe von weiteren freiwil- Straße in Traunstein. sorten angebaut werden sollen. wird heute 89 ligen Helfern arbeiten dabei mit. Das Konzept dieses biodynami- Was aktuell in den kommenden schen Gemüsebau-Projekts: In- Wochen vor allem geerntet wer- Waging am See.
    [Show full text]
  • Are You Living in an Area with Mine Tailings? Arsenic and Health Did You Know?
    Are you living in an area with mine tailings? Arsenic and health Did you know? • Mine tailings from gold mining often contain high levels of arsenic. • Arsenic in mine tailings may be harmful to health. – Most people have only a very small chance of being affected. – Babies and young children are more likely to be affected than adults. – Children who eat small handfuls of mine tailings are especially at risk – they may even get arsenic poisoning. • Unlike historical mines, licensed gold mines today are highly regulated, including the management of tailings. • If you live near historical mine tailings, you can reduce the risk to your health by reducing the amount of soil and dust that you swallow. • Fruit and vegetables that are grown on mine tailings may absorb arsenic. – Eating fruit and vegetables with raised levels of arsenic may sometimes be harmful to health. Many towns and cities in Victoria have been built in areas with a history of gold mining. Mine tailings that contain arsenic are spread over large areas of land, including land now used for housing. This booklet contains information for people who live in these areas. It gives information on what you need to know and actions you can take to protect your family’s health. b What is arsenic? Arsenic is a substance that is found naturally in rock, often near gold deposits. It was used as a poison to kill insects that attack animals, timber, fruit and vegetables. In some situations, arsenic causes health effects in people. What are mine tailings and why do they contain high levels of arsenic? When gold is mined, rocks are brought to the surface and crushed to extract the gold.
    [Show full text]
  • Possible Health Risks from Exposure to Arsenic, Lead, and Polycyclic
    How can I reduce my family’s exposure to arsenic, lead, and PAHs in surface soil? • Wash pets often. • Wash children’s toys often. Separate indoor and outdoor toys. Possible Health Risks from Exposure to Arsenic, • Wash children’s hands and feet after they have been playing outside. Lead, and Polycyclic Aromatic Hydrocarbons • Do not eat food, chew gum, or smoke when working in the yard. • Parents monitor their children’s behavior while playing outdoors and prevent their children from eating soil, or unintentionally swallowing 35th Avenue Site Public Health Evaluation, North Birmingham, it. A covered sandbox can reduce children’s digging in soil in other Alabama areas of the yard. Introduction Are the fruits and vegetables from my garden safe to eat? The United States Environmental Protection Agency (US EPA) sampled • PAHs were not found in garden produce. Exposure to PAHs in surface soil from over 1,100 residential properties and homegrown produce should not cause health problems. garden produce from a few area gardens at the 35th Avenue site. The • The arsenic and lead levels found in garden produce are low. Eating Agency for Toxic Substances and Disease Registry (ATSDR) looked at garden produce should not cause health problems if this is the only the arsenic, lead, and polycyclic aromatic hydrocarbons (called PAHs) way people are exposed to arsenic or lead. However, when people levels to see if people’s contact with these compounds could harm are also exposed to high levels of arsenic and lead in soil, or other ways, they are more likely to develop their health.
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]