Vehicle Chassis, Vehicle Body and Vehicle

Total Page:16

File Type:pdf, Size:1020Kb

Vehicle Chassis, Vehicle Body and Vehicle (19) TZZ ¥__T (11) EP 2 427 361 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: B62D 21/04 (2006.01) 11.09.2013 Bulletin 2013/37 (86) International application number: (21) Application number: 10723737.2 PCT/GB2010/000907 (22) Date of filing: 06.05.2010 (87) International publication number: WO 2010/128297 (11.11.2010 Gazette 2010/45) (54) VEHICLE CHASSIS, VEHICLE BODY AND VEHICLE SUSPENSION FAHRGESTELL, FAHRZEUGKORPUS UND FAHRZEUGAUFHÄNGUNG CHASSIS DE VEHICULE, CARROSSERIE DE VEHICULE, ET SUSPENSION DE VEHICULE (84) Designated Contracting States: (74) Representative: Chettle, Adrian John et al AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Withers & Rogers LLP GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 4 More London Riverside PL PT RO SE SI SK SM TR London SE1 2AU (GB) (30) Priority: 07.05.2009 GB 0907880 (56) References cited: (43) Date of publication of application: EP-A1- 0 653 344 WO-A1-03/102489 14.03.2012 Bulletin 2012/11 WO-A1-2010/118248 AU-B2- 703 896 DE-A1- 19 631 715 DE-A1- 19 860 562 (73) Proprietor: Ricardo Uk Limited FR-A1- 2 179 890 US-A- 5 833 269 West Sussex BN43 5FG (GB) US-A1- 2007 186 762 (72) Inventor: JACOB-LLOYD, Roland Warwickshire CV31 1FQ (GB) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 427 361 B1 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 427 361 B1 2 Description riously compromised, and additional measures to deal with consequences can result in new problems. For ex- [0001] This invention relates to a chassis for a wheeled ample improved cooling arrangements for the engine, vehicle, to a vehicle body and mounting arrangements driveline and occupants may be difficult to site since con- thereof, and to a novel vehicle suspension. The present 5 ventional vehicles have optimized space utilization be- inventions are particularly suitable for military vehicles, fore adaptation to military use. but also have non-military application. [0010] Suspension arrangements for 4wd vehicles can [0002] Military vehicles have a number of special re- be complex in order to give good road holding and com- quirements including high mobility over rough terrain, fort. For a military vehicle a simple arrangement is ac- adaptability of purpose, ease of maintenance and resist- 10 ceptable especially if giving improved serviceability at a ance to ballistic damage. Light vehicles have traditionally field workshop. One aspect of the present invention dis- been adapted from four- wheel drive (4wd) road vehicles, closes such a suspension arrangement, which is partic- and are poorly suited to military use in some respects. ularly suitable for the improved vehicle chassis disclosed [0003] Resistance to ballistic damage can be in- herein. creased by the use of additional layers of protective ma- 15 [0011] Military vehicles are expensive, and thus pref- terial, which are generally applied to the existing vehicle erably adaptable to different circumstances of use. For structure. Protection against blast damage from below is example some different military applications are patrol, typically by the use of armour plating on the vehicle un- logistics and fire support. A vehicle which is easily adapt- derside. However the application of such blast protection ed to different purposes would have significant advan- is generally compromised by the complex underside20 tages for a multi-role military force. shape of a conventional 4wd vehicle, and is at best a [0012] DE- A- 19860562 discloses a vehicle having a very shallow ’V’ shape so as to minimize loss of ground punt type chassis having a flat bottom and side walls clearance. Typically such additional protection is above which are angled upwardly and outwardly. Internal par- the driveline. tition walls are provided. An electro- chemical power [0004] A particular difficulty with conventional protec- 25 source is envisaged, with wheel motors. tion is that whilst blast damage can be resisted to some [0013] FR- A- 2179890 discloses a dray having a low extent, the force of the blast may be sufficient to lift a ground clearance. The bottom of the vehicle is in the form vehicle high into the air leaving the occupants vulnerable of a shallow V with flat central portion. to a hard landing. Even a modest blast may be sufficient [0014] US 2007/186762 discloses an armoured vehi- to overturn a vehicle, leaving it immobile with the occu- 30 cle with a hull affixed to a frame having a generally dia- pants at risk. mond shaped vertical cross section. [0005] What is required is a vehicle better able to resist [0015] DE 19631715 discloses a protective system at- blast damage. tached to the underside of a vehicle, whereby a free [0006] A second difficulty is that damaged light vehi- space is formed between the deflector and the underside cles can be complex and awkward to repair in the field, 35 of the vehicle. since they are generally derived from road vehicles which [0016] According to the present invention there is pro- are optimized for different circumstances of use. In par- vided a spine-type chassis of a vehicle and a vehicle ticular chassis repair may require very substantial dis- body (21), said chassis comprises a single open trough mantling of the vehicle, and may thus be practically im- having a substantially ’V’ section and substantially possible to achieve in a field workshop. 40 straight flanks closer together at the bottom than at the [0007] What is required is an improved vehicle chassis top, the trough having an apex and an included angle of better suited to field replacement. 100° or less, characterised in that the chassis is adapted [0008] Conventional 4wd vehicles generally have a to receive an engine and transmission therein, the chas- rather open flat underside with major driveline compo- sis further comprises mounts for the vehicle body, said nents mounted below. Blast protection to the vehicle45 mounts being annular and axially aligned on an axis ad- body typically leaves the driveline substantially exposed, jacent one of the sides of said trough at the mouth thereof, so that a vehicle may be immobilized by blast damage the vehicle body included on said mounts, said mounts thereto. In many cases effective shrouding of, for exam- permitting pivoting of said body about said axis. ple, rigid axles, is not possible without seriously affecting [0017] By transmission we mean the driveline compo- articulation thereof. Furthermore such shrouding may 50 nents between the engine and the means of rotating the prevent effective cooling and lead to mechanical failure vehiclewheels, typicallythe drive shafts ofa conventional due to overheating. A chassis adapted to protect major differential and final drive gear. Thus all major driveline driveline components but which permits adequate cool- components, namely engine, multispeed transmission ing would be a significant advance. and final drive gears are received within the trough chas- [0009] Yet another difficulty relates to overall vehicle 55 sis of the invention. weight. A typical 4wd road vehicle is heavy (c. 2.5 tonnes) [0018] The chassis is preferably symmetrical, and the before the application of protective materials such as ar- flanks thereof are preferably substantially flat. The chas- mour plating. The performance of the vehicle can be se- sis may have an included angle of less than 75°, and 2 3 EP 2 427 361 B1 4 most preferably less than 60°. The apex of the ’V’ may the manufacturing cost reduced. be rounded in order to give improved ground clearance. [0026] In a preferred embodiment the chassis is adapt- In the preferred embodiment no significant horizontal sur- ed to receive a driver module thereon, said module com- faces are provided, such as would provide lift of the ve- prising lower side portions directed inwardly so as to fit hicle in the event of a blast. 5 substantially flush with the flanks of the chassis. In this [0019] The chassis preferably has a substantially con- way the width of the module is progressively increased stant section throughout the length thereof. as a continuation of the chassis so that the lower side [0020] Typically the maximum width of the chassis is portions and flanks provide a substantially flush surface less than 70% of the track of a vehicle for which it is at an angle to the vertical. The driver module may have intended. 10 lower side portions at differing angles. Thus in a preferred [0021] Such a chassis is inherently adapted to protect embodiment the included angle within the wheel region engine and transmission from blast damage, and further- is narrower than in the region between the wheels. Such more to better resist vehicle lift and rollover by deflecting an arrangement gives greater clearance for escape of the blast from the angled flanks. The trough is adapted the pressure pulse and debris following a blast from a as a duct to make maximum use of cooling fluid forced 15 mine. therethrough, for example from a fan and/or air condi- [0027] The driver module is preferably connected to tioner blowing cooled air to a rear facing exhaust. the chassis via the long upper edges thereof so as to [0022] A chassis according to the invention preferably pivot about a fore and aft longitudinal axis in the manner has substantially closed ends, and can thus be inherently of a hinge.
Recommended publications
  • Sidecar Torsion Bar Suspension
    Ural (Урал) - Dnepr (Днепр) Russian Motorcycle Part XIV: Plunger, Swing-Arm and Torsion Bar Evolution ( Ernie Franke [email protected] 09 / 2017 Swing-Arms and Torsion Bars for Heavy Russian Motorcycles with Sidecars • Heavy Russian Motorcycle Rear-Wheel Swing-Arm Suspension –Historical Evolution of Rear-Wheel Suspension Trans-Literated Terms –Rear-Wheel Plunger Suspension • Cornet: Splined Hub • Journal: Shaft –Rear-Wheel Swing-Arm Suspension • Stroller, Pram: Sidecar • Rocker Arm: Between Sidecar Wheel Axle and Torsion Bar • One-Wheel Drive (1WD) • Swing-Arm – Rear-Drive Swing-Arm • Torsion Bar (Rod) • Sway Bar: Mounting Rod • Two-Wheel Drive (2WD) • Suspension Lever: Swing-Arm – Rear-Drive Swing-Arm • Swing Fork: Swing-Arm –Not Covered: Front-Wheel Suspension Torsion Bar • Sidecar Frames and Suspension Systems –Historical Evolution of Sidecar Suspension –Sidecar Rubber Bumper and Leaf-Spring Suspension –Sidecar Torsion Bar Suspension –Sidecar Swing-Arm Suspension • Recent Advances in Ural Suspension Systems –2006: Nylock Nuts Used to Secure Final Drive to Swing-Arm –2007: Bottom-Out Travel Limiter on Sidecar Swing-Arm –2008: Ball Bearings Replace Silent-Block Bushings in Both Front and Rear Swing-Arms Heavy Russian motorcycle suspension started with the plunger (coiled spring) rear-wheel suspension on the M-72. This was replaced with the swing-arm (pendulum) and dual hydraulic shock absorbers on the K-750. Similarly the sidecar suspension was upgraded from the spring-leaf 2 to rubber isolators and a swing-arm approach in the
    [Show full text]
  • Car Construction
    CAR CONSTRUCTION EQUIPMENT DIMENSIONS AND SPECIFICATIONS All specifications apply to all Quarter and Half classes unless otherwise specified. Dimension’s 1. Height Quarter Midgets: ........................50” maximum, including roll cage 2. Length (Measurements include the bumpers) Quarter Midgets: 84” maximum Half Midgets: 76” minimum, 88” maximum 3. Tire Size Front Maximum 11” diameter Rear maximum 12 1/2” diameter.As branded by the manufacturer. 4. Weight Quarter Midgets: Minimum 160 lbs. Half Midgets: Minimum 170 lbs. 5. Wheelbase (Measured center to center of axle. Both sides must be within specifications.) Quarter Midgets: 42” minimum, 56” maximum Half Midgets: 48” minimum, 56” maximum 6. Wheel Tread (Measured center to center of tires.) Quarter Midgets: 28” minimum, 36” maximum Half Midgets: 28” minimum, 36” maximum Car Constrution Axle A. Axle, axle hubs, or axle nuts may not extend beyond the outer edge of the wheel rim. B. All rear axles will be made out of aluminum, titanium or steel only. Battery A. All wet-cell batteries, which are mounted in the cockpit area must be enclosed and vented out of the cockpit area. B. All batteries must be securely mounted to prevent loss during operation. C. Battery and electronic ignition equipment not allowed on or in cars in the Honda and Briggs classes. Belly Pan A. The pan must extend from the front axle to the firewall. B. The ground clearance shall not exceed 3.5”. C. The belly pan must be constructed in such a manner as to comply with D. Aluminum: minimum thickness 0.040” (1) Steel: minimum thickness 0.025” (2) No open holes in the belly pan.
    [Show full text]
  • SUSPENSION SYSTEMS Making Everyday Smoother
    SUSPENSION SYSTEMS making everyday smoother VB-AIRSUSPENSION, THE IDEAL SOLUTION FOR ANY (SUSPENSION) PROBLEM. Product selection assistance Find the perfect solution for you! Product selection assistance I INTRODUCTION 03 TABLE OF CONTENTS 3 INTRODUCTION 5 ABOUT US 7 PRODUCT GROUPS 9 TROUBLESHOOTING WE MAKE EVERY Table 1: Which product group? 11 FULL AIR SUSPENSION JOURNEY A GOOD Table 2: Find the perfect solution for you! 13 VB-NIVOAIR ONE. 15 VB-FULLAIR 2C A good suspension system must provide both spring force and damping, so that the vehicle feels both stable and comfortable to drive. In 17 VB-FULLAIR 4C order to achieve this, each vehicle is fitted with suspension (coil spring suspension, leaf suspension or torsion bar suspension) and shock absorbers. The suspension under the vehicle ensures that passengers and/or the cargo do not feel every bump in the road surface. The 19 VB-ACTIVEAIR shock absorbers dampen the movement of the suspension; without shock absorbers, the vehicle would continue to pitch and roll. 21 SEMI AIR SUSPENSION Unfortunately, the standard suspension fitted to your vehicle often does not provide optimum comfort. If the level of comfort does not Table 3: Find the perfect solution for you! meet your expectations, it can leave you feeling dissatisfied. We offer a suitable solution for every (suspension) problem to help resolve this dissatisfaction. Our innovative air suspension systems and suspension applications help to ensure optimum ride comfort, increased 23 VB-SEMIAIR BASIC SYSTEM stability and greater safety, so that you can enjoy a safe and worry-free journey and be more satisfied with your vehicle.
    [Show full text]
  • Study of the Torsion Bar Passive Suspension System
    Minia Journal of Engineering & Technology (MJET), Vol. 37, No. 1. January 2018 STUDY OF THE TORSION BAR PASSIVE SUSPENSION SYSTEM Mohamed Khairy1, S. Allam1 and M. Rabie2 1Automotive Technology Department, Faculty of Industrial Education, Helwan University. 2Automotive and Tractor Dept., College of Engineering, Minia University. E-mail of corresponding author: [email protected]. Abstract A torsion bar passive suspension is a general term for any vehicle suspension that uses a torsion bar as its main weight bearing spring. The main advantages of a torsion bar passive suspension system are durability, easy adjustability of ride height, and small profile along the width of the vehicle. It takes up less of the vehicle's interior volume than coil springs. The purpose of this study is to investigate the effect of the ride height of a vehicle which adjusted by the torsion bar on the vehicle body vibration in torsion bar passive suspension system. In this work the study, a front suspension of double-wishbone type suspension with upper torsion bar is assigned as quarter car model and is considered for the performance index study. Tire speed, sprung mass weight and presence of the hump are taken into consideration as the operation parameters. The results show the change of the torsion bar bolt position has sufficient effect on the sprung mass acceleration Keywords: vehicle suspension systems, torsion bar, ride comfort. 1. Introduction One of the major subsystems in a modern passenger car is the suspension system. The suspension system of a road vehicle refers to the assembly between the sprung mass and the unsprung mass.
    [Show full text]
  • Trim Height Inspection
    3/11/2016 Document ID: 745583 2004 C adillac Escalade - AWD [1gyek63n34r121918] | Avalanche, Escalade, Suburban, Tahoe, Yukon VIN C /K Service Manual | Suspension | Wheel Alignment | Specifications | Document ID: 745583 Trim Height Inspection Trim Height Measurements Trim height is a predetermined measurement relating to vehicle ride height. Incorrect trim heights can cause bottoming out over bumps, damage to the suspension components and symptoms similar to wheel alignment problems. Check the trim heights when diagnosing suspension concerns and before checking the wheel alignment. Perform the following before measuring the trim heights: Make sure the vehicle is on a level surface, such as an alignment rack. Remove the alignment rack floating pins. Set the tire pressures to the pressure shown on the certification label. Refer to Vehicle Certification Label in General Information. Check the fuel level. Add additional weight if necessary to simulate a full tank. To ensure proper weight distribution make sure the rear storage compartment is empty. Close the doors and hood. Z Height Measurement Important: K models only the Z height must be adjusted before the alignment. The Z height dimension measurement determines the proper ride height for the front end of the vehicle. Vehicles equipped with torsion bars use a adjusting arm in order to adjust the Z height dimension. Vehicles without torsion bars have no adjustment and could require replacement of suspension components. Important: All dimensions are measured vertical to ground. Cross vehicle Z heights should be within 12 mm (0.47 in) to be considered correct. 1. Place hand on the front bumper and jounce the front of the vehicle.
    [Show full text]
  • 2015 PCA Club Racing Rules Page 1 of 54
    2015 PCA CLUB RACING RULES Updated December 1, 2014 DISCLAIMER AND NOTICE THE RULES AND REGULATIONS SET FORTH HEREIN ARE DESIGNED AND PROMULGATED TO PROVIDE FOR THE ORDERLY CONDUCT OF COMPETITIVE EVENTS AND TO FURTHER PARTICIPANT SAFETY. WHEEL TO WHEEL RACING IS AN INHERENTLY DANGEROUS ENDEAVOR THAT CAN RESULT IN SERIOUS INJURY AND DEATH. PCA MAKES NO WARRANTY AS TO THE SAFETY OF A PARTICIPANT EVEN IF ALL SAFETY PRECAUTIONS REQUIRED BY THE RULES ARE FOLLOWED. COMPLIANCE WITH THESE RULES AND REGULATIONS, AS WELL AS PROPER INSTALLATION AND MAINTENANCE OF SAFETY DEVICES AND APPLIANCES, IS SOLELY THE RESPONSIBILITY OF THE PARTICIPANT AND ABSOLUTELY NO RELIANCE SHOULD BE PLACED ON PCA TO DETECT THE ABSENCE OF, OR IMPROPERINSTALLATION OF DEVICES AND APPLIANCES. PCA SPECIFICALLY ADVISES PARTICIPANTS THAT SAFETY DEVICES AND APPLIANCES ARE READILY AVAILABLE ON THE MARKET THAT ARE NOT REQUIRED UNDER THESE RULES AND LEAVES TO EACH PARTICIPANT THE DISCRETION TO INCORPORATE SUCH DEVICES AND APPLIANCES INTO THEIR VEHICLES AND/OR PERSONAL PROTECTIVE GEAR. PCA DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES OF SAFETY OR FITNESS FOR A PARTICULAR PURPOSE THAT MAY ARISE FROM PUBLICATION OF, OR COMPLIANCE WITH, THESE RULES. EACH PARTICIPANT ACKNOWLEDGES THE RISKS INHERENT IN THIS ACTIVITY AND THEIR KNOWLEDGE OF THE CONTENTS OF THIS DISCLAIMER AND NOTICE. PCA Club Racing Committee Chair Bryan Henderson ‐ [email protected] For Questions on PCA Club Racing Licensing Susan Shire ‐ [email protected] Voice ‐ 847.272.7764 Fax ‐ 847.272.7785 For Technical Questions Walt Fricke – [email protected] For Forms and Additional Information https://www.pca.org/rules‐licensing‐forms All proposed rules/revisions submissions and comments (between February 1 and November 1) should be sent to [email protected].
    [Show full text]
  • Analysis of Hollow Torsion Bar Made of E- Glass Fiber Reinforced Composite Material
    Volume III, Issue V, May 2016 IJRSI ISSN 2321 – 2705 Analysis of Hollow Torsion Bar Made of E- Glass Fiber Reinforced Composite Material 1 2 M.Prakash , R.Sureshkumar 1 PG student, Gnanamani College of Technology, Namakkal 2 Assistant Professor, Gnanamani College of Technology, Namakkal Abstract: The purpose of this study is to investigate stress values of composite torsion bar suspension system. In this analytical study, round solid composite bar is taken. The analytical was carried out on a ANSYS, which was built specifically to investigate the static characteristics of torsion bar used in vehicle suspension system. This paper provides fundamental knowledge of structural test and significant parameters such as stress, total deformation, equivalent stress are highlighted. Thus the deflections were obtained analytically. The results of this study could provide a better light weight torsion suspension system. Keywords: Torsion bar, Ansys, Total deformation , Stress I. INTRODUCTION Fig 1 position of torsion bar torsion bar suspension, also known as a torsion spring manufacturing process. Torsion bars are used as automobile A suspension or torsion beam suspension, is a general term suspension. They offer easy adjustment on ride height for any vehicle suspension that uses a torsion bar as its main depending on the weight of the car. Torsion bars are weight bearing spring. One end of a long metal bar is attached essentially metal bars that function as a spring. At one end, firmly to the vehicle chassis; the opposite end terminates in a the torsion bar is fixed firmly in place to the chassis or frame lever, the torsion key, mounted perpendicular to the bar, that is of the vehicle.
    [Show full text]
  • Silverado 1500Hd/2500Hd 2Wd & 4Wd 8-Lug Torsion Bar
    TM107 Revised 7.22.13 400 W. Artesia Blvd. Fax: (310) 747-3912 Compton, CA 90220 Ph: (877) 695-7812 www.trailmastersuspension.com SILVERADO 1500HD/2500HD 2WD & 4WD 8-LUG TORSION BAR SUSPENSION LIFT KIT 1999– 2010 KIT# TM107 WARNING WARNING Installation of a Trail Master suspension lift kit will Many states and municipalities have laws restricting change the vehicle’s center of gravity and handling char- bumper heights and vehicle lifts. Consult state and local acteristics both on- and off-road. You must drive the ve- laws to determine if the changes you intend to make to hicle safely! Extreme care must be taken to prevent vehi- the vehicle comply with the law. cle rollover or loss of control, which could result in seri- ous injury or death. Avoid sudden sharp turns or abrupt maneuvers and always make sure all vehicle occupants WARNING have their seat belts fastened. The installation of larger tires may reduce the effective- ness of the braking system. WARNING Before you install this kit, read and understand all in- WARNING structions, warnings, cautions, and notes in this instruc- tion sheet and in the vehicle owner’s manual. Always wear eye protection when operating power tools. CAUTION WARNING Proper installation of this kit requires knowledge of the factory recommended procedures for removal and instal- Before you install this kit, block the vehicle tires to pre- lation of original equipment components. We recommend vent the vehicle from rolling. that the factory shop manual and any special tools needed to service your vehicle be on hand during the WARNING installation.
    [Show full text]
  • Impala -- New for 2011
    2015 GMC SIERRA 3500HD CHASSIS CAB Vehicle highlights: x New cab and interior designs for 2015 x OnStar with 4G LTE and standard built-in Wi-Fi hotspot (includes 3GB/three-month data trial) x Fully boxed front frame and reinforced C-channel rear frame x Maximum GVWR of 13,200 pounds x Available Duramax diesel with 765 lb-ft of torque 2015 GMC SIERRA 3500HD CHASSIS CAB OFFERS NEW, MORE COMFORTABLE CAB, GREATER CONNECTIVITY The GMC Sierra 3500HD Chassis Cab is strong foundation for work trucks of all types, with a rear frame designed for easy adaptation of bodies. For 2015 it features an all-new cab and interior, along with greater connectivity via OnStar with 4G LTE and a standard built-in Wi-Fi hotspot, building on its reputation for dependability and top-rated performance with more customer- focused features. OnStar with 4G LTE (fall 2014 availability) provides a mobile hub for drivers and passengers to stay connected. The hotspot is on whenever the car is on and comes with a three-month/three-gigabyte data trial. The 2015 Sierra 3500HD Chassis Cab models are based on the redesigned heavy-duty pickups of the same name. Highlights include: x All-new exterior styling with enhanced cooling airflow, which enables the standard 6.0-liter Vortec V-8 and available 6.6-liter Duramax turbo diesel to better maintain full power, even under heavy loads and high ambient temperatures x All-new interior that provides increased space and comfort, with extensive storage space tailored to the way customers use trucks x Integrated cruise control, auto grade braking and diesel exhaust braking (on diesel models) that help make tough towing easier.
    [Show full text]
  • Development of an Automotive Anti-Roll Bar: a Review
    Journal of the Society of Automotive Engineers Malaysia Vol. 1, Issue 1, pp 63-81, January 2017 Development of an Automotive Anti-Roll Bar: A Review M. Mohammad Taha1,2, S. M. Sapuan*1,3, M. R. Mansor2 and N. Abdul Aziz1 1Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 2Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 3Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia *Corresponding author: [email protected] REVIEW Open Access Article History: Abstract – In this study, understanding between the operation and mechanism of an automotive anti-roll bar is reviewed. Design Received consideration of the automotive anti-roll bar is studied from past 15 Dec 2016 researchers with the summarized of current invention of automotive anti- roll bar. In development of the automotive anti-roll bar, interaction Received in between design elements such as material, function analysis, forces revised form analysis, failure analysis and geometry specifications are essentially need 12 Jan 2017 to be considered in development of it without affecting its conventional Accepted function and achieve the performance target. The potential of the fibre 16 Jan 2017 reinforced composite such as natural fibre is likely to be the next future generation of automotive anti-roll bar. Considerations of the Available online aforementioned design elements would help design engineers to outcome 31 Jan 2017 the challenges in design of composite materials. The inventions that patented by the past inventors would help as a guide.
    [Show full text]
  • Tivoli Price List
    ratola.mk Promotional price list Valid for limited quantity of stock vehicles only Gasoline CVVT 128PS/160Nm Diesel VGT 115PS/300Nm Trim level 6 MT 6 AT 6 MT 6 AT Advance 4x2 14'900 15'800 17'000 17'900 Advance 4x4 - 17'100 18'300 19'200 Comfort 4x2 17'900 18'800 20'000 20'900 4x4 Comfort 4x4 - 20'100 21'300 22'200 Premium 4x2 19'500 20'400 21'600 22'500 Premium 4x4 - 21'700 22'900 23'800 MADE IN KOREA 6 MT = 6-speed manual transmission 6 AT = 6-speed automatic transmission AISIN with Direct Shift All prices are in EUR incl. of 18% VAT. Trim level Advance: from 14'900 Eur Engine, drivetrain and brakes eXGi 160 CVVT 4-cylinder, computer controlled gasoline engine - 128PS/160Nm ● 6-speed manual transmission ● 2WD - Front wheel drive ● Front MacPherson suspension, rear torsion bar suspension ● Front ventilated disc brakes, rear disc brakes ● ABS - Anti-lock Braking System, 4-channel ● EBD - Electronic Brakeforce Distribution ● ESP - Electronic Stability Control ● TCS - Traction Control System ● HBA - Hydraulic Brake Assist ● HSA - Hill Start Assist Control ● ARP - Active Rollover Protection ● EPS - Electric Power Steering ● Smart Steer System (normal, comfort and sport mode) ● ESS - Emergency Stop Signal ● Alloy wheels 16" + 205/60R Tires ● Spare tyre ● TPMS - Tyre pressure monitoring system ● Exterior Daytime running lights ● Fashion roof rails, silver ● Fog lamps, front ● Privacy glass: rear door, quarter and tailgate ● Heated and electrically adjustable door mirrors ● Automatic power folding door mirrors with built-in LED repeaters ●
    [Show full text]
  • Ambulance Universal Chassis and Suspension (AUCAS)
    Project Number: MQF-MQP 3101 Ambulance Universal Chassis and Suspension (AUCAS) A Major Qualifying Project Submitted to the Faculty Of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Ambulance Universal Chassis and Suspension (AUCAS) By Nick Gardiner Doug Griesbach Connor McCann Nick McDonald April 26, 2012 Approved Prof. M.S. Fofana, Advisor Mechanical Engineering Department i Abstract The pre-hospital work conducted by EMTs in an ambulance vehicle is very important. Patients of all kinds can receive a wide range of pre-hospital care; from diagnosis, CPR and stabilization to transportation to medical hospitals. Surface road vibrations are known to influence the quality, efficiency and safety of care in an ambulance. This MQP focuses on understanding the mechanics of the chassis of an ambulance in order to design a new chassis that can sustain the weight of a typical ambulance and also be able to suppress the surface road vibrations. We investigate all alternative suspension designs to implement and analyze the most accommodating design. Furthermore, we chose hydropneumatic suspension as the best alternative to current suspension systems in ambulances. We designed a bolt-on kit for aftermarket installation of hydropneumatic suspension into current ambulances using our 2004 Ford F-350 ambulance as a template. Our proposed chassis provides better ambulance ride quality compared to existing ambulance vehicles. Our final prototype kit has the utmost potential to become a marketed and mass produced alternative
    [Show full text]