Ejhg2014205.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Ejhg2014205.Pdf European Journal of Human Genetics (2015) 23, 907–914 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg ARTICLE Expanding the mutation spectrum in 182 Spanish probands with craniosynostosis: identification and characterization of novel TCF12 variants Beatriz Paumard-Hernández1, Julia Berges-Soria1, Eva Barroso1,2, Carlos I Rivera-Pedroza1, Virginia Pérez-Carrizosa1, Sara Benito-Sanz1,2, Eva López-Messa1, Fernando Santos1,2, Ignacio I García-Recuero3, Ana Romance3, María Juliana Ballesta-Martínez2,4, Vanesa López-González2,4, Ángel Campos-Barros1,2, Jaime Cruz5, Encarna Guillén-Navarro2,4,6, Jaime Sánchez del Pozo5, Pablo Lapunzina1,2, Sixto García-Miñaur1,2 and Karen E Heath*,1,2 Craniosynostosis, caused by the premature fusion of one or more of the cranial sutures, can be classified into non-syndromic or syndromic and by which sutures are affected. Clinical assignment is a difficult challenge due to the high phenotypic variability observed between syndromes. During routine diagnostics, we screened 182 Spanish craniosynostosis probands, implementing a four-tiered cascade screening of FGFR2, FGFR3, FGFR1, TWIST1 and EFNB1. A total of 43 variants, eight novel, were identified in 113 (62%) patients: 104 (92%) detected in level 1; eight (7%) in level 2 and one (1%) in level 3. We subsequently screened additional genes in the probands with no detected mutation: one duplication of the IHH regulatory region was identified in a patient with craniosynostosis Philadelphia type and five variants, four novel, were identified in the recently described TCF12, in probands with coronal or multisuture affectation. In the 19 Saethre–Chotzen syndrome (SCS) individuals in whom a variant was detected, 15 (79%) carried a TWIST1 variant, whereas four (21%) had a TCF12 variant. Thus, we propose that TCF12 screening should be included for TWIST1 negative SCS patients and in patients where the coronal suture is affected. In summary, a molecular diagnosis was obtained in a total of 119/182 patients (65%), allowing the correct craniosynostosis syndrome classification, aiding genetic counselling and in some cases provided a better planning on how and when surgical intervention should take place and, subsequently the appropriate clinical follow up. European Journal of Human Genetics (2015) 23, 907–914; doi:10.1038/ejhg.2014.205; published online 1 October 2014 INTRODUCTION distinctive as females and male mosaics are more affected than Craniosynostosis, the premature fusion of one or more cranial sutures, males.6,7 Mutations in TWIST1 (MIM 601622) result in haploinsuffi- affects 1 in 2000–2500 children.1 It may occur due to genetic ciency of the transcription factor TWIST1, and are associated with mutations or secondarily, due to mechanical, environmental and Saethre–Chotzen syndrome (SCS). In the early development of the hormonal factors during pregnancy. The most frequently involved coronal suture, TWIST1 is expressed in the sutural mesenchyme single suture is the sagittal suture followed by the coronal, metopic and between the proliferating osteoblasts of the frontal and parietal bone lambdoid sutures, or multiple sutures. Craniosynostosis can be edges, and overlapping with these two populations, consistent with classified into non-syndromic (isolated) or syndromic when associated roles in separating the two bone-forming tissues and with initiating with other clinical features. and maintaining transcription of FGFR2.8 Three of the genes associated with craniosynostosis encode proteins Recently, mutations in another gene,TCF12(MIM 600480), have belonging to the fibroblast growth factor receptor (FGFR) family; been identified in patients with coronal synostosis, many of which FGFR1 (MIM 136350), FGFR2 (MIM 176943) and FGFR3 (MIM were initially referred with SCS, and in whom no TWIST1 mutation 134934). The most commonly mutated gene is FGFR2, whereas the p. had been identified.9 TCF12 encodes transcription factor 12 (TCF12), Pro250Arg mutation in FGFR3 is the most frequent mutation,2 a member of the basic helix-loop-helix (bHLH) E-protein family. It is characteristic of the Muenke syndrome.3 EFNB1 (Ephrin B1, MIM expressed in many tissues, among them bone, skeletal muscle, thymus, 300035) encodes for a ligand, ephrin-B1, which binds to EphB B- and T cells, and may participate in regulating lineage-specificgene receptors and has an important role in cell adhesion and the expression through the formation of heterodimers with other bHLH development and maintenance of the nervous system.4 Mutations in E-proteins, such as TWIST1. In a study of 347 patients with this gene, located on Xq13.1, are associated with craniofrontonasal craniosynostosis, 36 TCF12 mutations were detected, the majority of dysplasia.5 The syndrome associated with mutations in EFNB1 is which resulted in exon splicing or altered the reading frame.9 1Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain; 2Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain; 3Maxilofacial Surgery Unit, Hospital 12 de Octubre, Madrid, Spain; 4Medical Genetics Unit, Department of Pediatrics, Hospital Clínico Universitario Virgen de la Arrixaca, Madrid, Spain; 5Dysmorphology Unit, Hospital Universitario Doce de Octubre, Madrid, Spain; 6Cátedra de Genética Médica. UCAM-Universidad Católica San Antonio de Murcia, Madrid, Spain *Correspondence: Dr KE Heath, Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Pº Castellana 261, 28046 Madrid, Spain. Tel: +34 91 207 1010 Ext.269; Fax: +34 91 207 1040; E-mail: [email protected] Received 23 April 2014; revised 26 August 2014; accepted 29 August 2014; published online 1 October 2014 Mutation spectrum in craniosynostosis B Paumard-Hernández et al 908 More recently, a patient with coronal craniosynostosis and intellectual high incidence of mosaicism,6 all samples were analysed for this gene by HRM disability was found to have a complex balanced maternal chromo- and sequencing. The sequences and PCR conditions for FGFR1, FGFR2, somal rearrangement combining the reciprocal translocation of the FGFR3, TWIST1 and EFNB1 are shown in Supplementary Table 1, for TCF12 ERF region and an insertion which resulted in the deletion of TCF12.10 (Supplementary Table 2) and for (Supplementary Table 3). Any abnormal fi Another gene recently implicated in craniosynostosis, ERF (MIM HRM pro le was subsequently sequenced using the Big-Dye Terminator v3.1 kit (Applied Biosystems, Foster City, CA, USA) on an ABI3730XL DNA 611888), encodes for the transcription factor ERF (Ets2 repressor ERF fi Sequencer (Applied Biosystems, Carlsbad, CA, USA). The results were analysed factor). Mutations in were identi ed in 12/411 patients with a using Sequencher v5.10 (Gene Codes Corporation, Ann Arbour, MI, USA). 11 complex form of craniosynostosis. MLPA (Multiplex Ligation-dependant Probe Amplification) P080B1 (MRC Phenotypic variability in craniosynostosis makes the clinical diag- Holland, The Netherlands) was used to detect copy number alterations. nosis difficult; thus, genetic testing can support or aid the clinical diagnosis and improve genetic counselling in these families. Evidence Pathogenicity assessment also suggests that molecular diagnosis can help to define the treatment The pathogenicity of the detected alterations was assessed by determining: (1) If or surgery necessary in the short to medium term and predict the the mutation had been previously reported; (2) If not, the variations were clinical evolution.12,13 Patients with an identified TWIST1 mutation assessed using the programs Ensembl and NCBI dbSNP to determine if the have a high rate of reoperation due to intracranial hypertension,12 alteration has been described as a polymorphism. Allelic frequencies were whereas mutations in TCF12 do not.9 Thus, the knowledge of the obtained using NHLBI Exome Sequencing Project (ESP) Exome Variant Server genetic mutation permits greater monitoring of the intracranial (EVS) and the 1000 genomes, and where necessary in 300 Spanish healthy controls; (3) Amino acid conservation analysis; (4) Prediction of the function hypertension in these patients. Likewise, other studies have confirmed and pathogenicity using the bioinformatics package, Alamut 2.4.1 which that the frequency of transcranial surgery performed to reduce includes PolyPhen, SIFT, MutationTaster and various splicing predictor tools intracranial pressure is much higher in patients with Muenke (Human Splicing Finder (HSF), MaxEntScan, Splice Site Finder (SSF), 14 syndrome. It is also important to check for hearing loss in patients GeneSplicer, Splice Site Prediction by Neural Network (NNsplice); (5) with Muenke, as it has been reported that 20% require hearing aids.15 Functional analysis of splicing variants using minigene assays. In 2010, Wilkie et al,2 presented a prospective cohort of 326 patients All variants and individuals have been submitted to the gene variant database with craniosynostosis, where the molecular aetiology was identified in at www.LOVD.nl/CAV3. 84, 86% of the mutations were monogenic alterations, whereas 14% were chromosomal abnormalities. The employed molecular screening Minigenes assay for TCF12 splicing variants strategy was a two-tier cascade screening protocol, including the Minigene constructions based on the pSPL3 exon trapping vector (kind analysis of various exons of FGFR1, FGFR2, FGFR3, TWIST1 and donation from Dr
Recommended publications
  • E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Cell Review E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease Lan-Hsin Wang1 and Nicholas E. Baker1,2,3,* 1Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA 2Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA 3Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.devcel.2015.10.019 The basic Helix-Loop-Helix (bHLH) proteins represent a well-known class of transcriptional regulators. Many bHLH proteins act as heterodimers with members of a class of ubiquitous partners, the E proteins. A widely expressed class of inhibitory heterodimer partners—the Inhibitor of DNA-binding (ID) proteins—also exists. Genetic and molecular analyses in humans and in knockout mice implicate E proteins and ID proteins in a wide variety of diseases, belying the notion that they are non-specific partner proteins. Here, we explore relationships of E proteins and ID proteins to a variety of disease processes and highlight gaps in knowledge of disease mechanisms. E proteins and Inhibitor of DNA-binding (ID) proteins are widely conferring DNA-binding specificity and transcriptional activation expressed transcriptional regulators with very general functions. on heterodimers with the ubiquitous E proteins (Figure 1). They are implicated in diseases by evidence ranging from Another class of pervasive HLH proteins acts in opposition to confirmed Mendelian inheritance, association studies, and E proteins.
    [Show full text]
  • Fusion of the NH2-Terminal Domain of the Basic Helix-Loop-Helix Protein TCF12 to TEC in Extraskeletal Myxoid Chondrosarcoma with Translocation T(9;15)(Q22;Q21)1
    [CANCER RESEARCH 60, 6832–6835, December 15, 2000] Advances in Brief Fusion of the NH2-Terminal Domain of the Basic Helix-Loop-Helix Protein TCF12 to TEC in Extraskeletal Myxoid Chondrosarcoma with Translocation t(9;15)(q22;q21)1 Helene Sjo¨gren, Barbro Wedell, Jeanne M. Meis Kindblom, Lars-Gunnar Kindblom, and Go¨ran Stenman2 Lundberg Laboratory for Cancer Research, Department of Pathology, Go¨teborg University, SE-413 45 Go¨teborg, Sweden Abstract domain of TLS/FUS is linked to the entire coding region of the transcription factor CHOP as a result of a t(12;16)(q13;p11) (reviewed Extraskeletal myxoid chondrosarcomas (EMCs) are characterized by in Ref. 9). Thus, the NH -terminal transactivation domains of the recurrent t(9;22) or t(9;17) translocations resulting in fusions of the 2 EWS family of RNA binding proteins are regularly fusion partners of NH2-terminal transactivation domains of EWS or TAF2N to the entire TEC protein. We report here an EMC with a novel translocation t(9; various transcription factors in sarcomas, suggesting that they might 15)(q22;q21) and a third type of TEC-containing fusion gene. The chi- have important oncogenic properties. Indeed, it has been shown that meric transcript encodes a protein in which the first 108 amino acids of EWS-FLI1, TAF2N-FLI1, TLS-CHOP, and EWS-CHOP can trans- the NH2-terminus of the basic helix-loop-helix (bHLH) protein TCF12 is form 3T3 cells and that the transforming activity is dependent on linked to the entire TEC protein. The translocation separates the NH2- the presence of the NH2-terminal parts of EWS, TAF2N, and TLS terminal domain of TCF12 from the bHLH domain as well as from a (10–12).
    [Show full text]
  • Basic Helix-Loop-Helix Transcription Factor TCF21 Is a Downstream Target of the Male Sex Determining Gene SRY
    Basic Helix-Loop-Helix Transcription Factor TCF21 Is a Downstream Target of the Male Sex Determining Gene SRY Ramji K. Bhandari, Ingrid Sadler-Riggleman, Tracy M. Clement, Michael K. Skinner* Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America Abstract The cascade of molecular events involved in mammalian sex determination has been shown to involve the SRY gene, but specific downstream events have eluded researchers for decades. The current study identifies one of the first direct downstream targets of the male sex determining factor SRY as the basic-helix-loop-helix (bHLH) transcription factor TCF21. SRY was found to bind to the Tcf21 promoter and activate gene expression. Mutagenesis of SRY/SOX9 response elements in the Tcf21 promoter eliminated the actions of SRY. SRY was found to directly associate with the Tcf21 promoter SRY/SOX9 response elements in vivo during fetal rat testis development. TCF21 was found to promote an in vitro sex reversal of embryonic ovarian cells to induce precursor Sertoli cell differentiation. TCF21 and SRY had similar effects on the in vitro sex reversal gonadal cell transcriptomes. Therefore, SRY acts directly on the Tcf21 promoter to in part initiate a cascade of events associated with Sertoli cell differentiation and embryonic testis development. Citation: Bhandari RK, Sadler-Riggleman I, Clement TM, Skinner MK (2011) Basic Helix-Loop-Helix Transcription Factor TCF21 Is a Downstream Target of the Male Sex Determining Gene SRY. PLoS ONE 6(5): e19935. doi:10.1371/journal.pone.0019935 Editor: Ferenc Mueller, University of Birmingham, United Kingdom Received December 13, 2010; Accepted April 22, 2011; Published May 17, 2011 Copyright: ß 2011 Bhandari et al.
    [Show full text]
  • Mutant P53 Drives Invasion in Breast Tumors Through Up-Regulation of Mir-155
    Oncogene (2013) 32, 2992–3000 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Mutant p53 drives invasion in breast tumors through up-regulation of miR-155 PM Neilsen1,2,5, JE Noll1,2,5, S Mattiske1,2,5, CP Bracken2,3, PA Gregory2,3, RB Schulz1,2, SP Lim1,2, R Kumar1,2, RJ Suetani1,2, GJ Goodall2,3,4 and DF Callen1,2 Loss of p53 function is a critical event during tumorigenesis, with half of all cancers harboring mutations within the TP53 gene. Such events frequently result in the expression of a mutated p53 protein with gain-of-function properties that drive invasion and metastasis. Here, we show that the expression of miR-155 was up-regulated by mutant p53 to drive invasion. The miR-155 host gene was directly repressed by p63, providing the molecular basis for mutant p53 to drive miR-155 expression. Significant overlap was observed between miR-155 targets and the molecular profile of mutant p53-expressing breast tumors in vivo. A search for cancer-related target genes of miR-155 revealed ZNF652, a novel zinc-finger transcriptional repressor. ZNF652 directly repressed key drivers of invasion and metastasis, such as TGFB1, TGFB2, TGFBR2, EGFR, SMAD2 and VIM. Furthermore, silencing of ZNF652 in epithelial cancer cell lines promoted invasion into matrigel. Importantly, loss of ZNF652 expression in primary breast tumors was significantly correlated with increased local invasion and defined a population of breast cancer patients with metastatic tumors. Collectively, these findings suggest that miR-155 targeted therapies may provide an attractive approach to treat mutant p53-expressing tumors.
    [Show full text]
  • De Novo Mutations in Inhibitors of Wnt, BMP, and Ras/ERK Signaling
    De novo mutations in inhibitors of Wnt, BMP, and PNAS PLUS Ras/ERK signaling pathways in non-syndromic midline craniosynostosis Andrew T. Timberlakea,b, Charuta G. Fureya,c,1, Jungmin Choia,1, Carol Nelson-Williamsa,1, Yale Center for Genome Analysis2, Erin Loringa, Amy Galmd, Kristopher T. Kahlec, Derek M. Steinbacherb, Dawid Larysze, John A. Persingb, and Richard P. Liftona,f,3 aDepartment of Genetics, Yale University School of Medicine, New Haven, CT 06510; bSection of Plastic and Reconstructive Surgery, Yale University School of Medicine, New Haven, CT 06510; cDepartment of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510; dCraniosynostosis and Positional Plagiocephaly Support, New York, NY 10010; eDepartment of Radiotherapy, The Maria Skłodowska Curie Memorial Cancer Centre and Institute of Oncology, 44-101 Gliwice, Poland; and fLaboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065 Contributed by Richard P. Lifton, July 13, 2017 (sent for review June 6, 2017; reviewed by Yuji Mishina and Jay Shendure) Non-syndromic craniosynostosis (NSC) is a frequent congenital ing pathways being implicated at lower frequency (5). Examples malformation in which one or more cranial sutures fuse pre- include gain-of-function (GOF) mutations in FGF receptors 1–3, maturely. Mutations causing rare syndromic craniosynostoses in which present with craniosynostosis of any or all sutures with humans and engineered mouse models commonly increase signaling variable hypertelorism, proptosis, midface abnormalities, and of the Wnt, bone morphogenetic protein (BMP), or Ras/ERK path- syndactyly, and loss-of-function (LOF) mutations in TGFBR1/2 ways, converging on shared nuclear targets that promote bone that present with craniosynostosis in conjunction with severe formation.
    [Show full text]
  • Effect of Β-Hydroxy-Β-Methylbutyrate on Mirna Expression in Differentiating Equine Satellite Cells Exposed to Hydrogen Peroxide Karolina A
    Chodkowska et al. Genes & Nutrition (2018) 13:10 https://doi.org/10.1186/s12263-018-0598-2 RESEARCH Open Access Effect of β-hydroxy-β-methylbutyrate on miRNA expression in differentiating equine satellite cells exposed to hydrogen peroxide Karolina A. Chodkowska, Anna Ciecierska, Kinga Majchrzak, Piotr Ostaszewski and Tomasz Sadkowski* Abstract Background: Skeletal muscle injury activates satellite cells to initiate processes of proliferation, differentiation, and hypertrophy in order to regenerate muscle fibers. The number of microRNAs and their target genes are engaged in satellite cell activation. β-Hydroxy-β-methylbutyrate (HMB) is known to prevent exercise-induced muscle damage. The purpose of this study was to evaluate the effect of HMB on miRNA and relevant target gene expression in differentiating equine satellite cells exposed to H2O2. We hypothesized that HMB may regulate satellite cell activity, proliferation, and differentiation, hence attenuate the pathological processes induced during an in vitro model of H2O2-related injury by changing the expression of miRNAs. Methods: Equine satellite cells (ESC) were isolated from the samples of skeletal muscle collected from young horses. ESC were treated with HMB (24 h) and then exposed to H2O2 (1 h). For the microRNA and gene expression assessment microarrays, technique was used. Identified miRNAs and genes were validated using real-time qPCR. Cell viability, oxidative stress, and cell damage were measured using colorimetric method and flow cytometry. Results: Analysis of miRNA and gene profile in differentiating ESC pre-incubated with HMB and then exposed to H2O2 revealed difference in the expression of 27 miRNAs and 4740 genes, of which 344 were potential target genes for identified miRNAs.
    [Show full text]
  • A SARS-Cov-2 Protein Interaction Map Reveals Targets for Drug Repurposing
    Article A SARS-CoV-2 protein interaction map reveals targets for drug repurposing https://doi.org/10.1038/s41586-020-2286-9 A list of authors and affiliations appears at the end of the paper Received: 23 March 2020 Accepted: 22 April 2020 A newly described coronavirus named severe acute respiratory syndrome Published online: 30 April 2020 coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than Check for updates 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efcacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and eforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identifed the human proteins that physically associated with each of the SARS-CoV-2 proteins using afnity-purifcation mass spectrometry, identifying 332 high-confdence protein–protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors.
    [Show full text]
  • The Oncogenic Role of Mir-155
    The Oncogenic Role of miR-155 Samuel Mattiske B. Medical and Pharmaceutical Biotechnology (Honours) Thesis submitted for the Degree of Masters of Philosophy (Medical Science) Cancer Therapeutics Laboratory, Faculty of Health Sciences, Discipline of Medicine, University of Adelaide, South Australia August 2013 Contents Declaration ............................................................................................................................... IV List of Publications ................................................................................................................... V Acknowledgements .................................................................................................................. VI Overview .................................................................................................................................... 1 References .............................................................................................................................. 3 Chapter 1 – The Oncogenic Role of miR-155 in Breast Cancer ................................................ 4 Statement of Authorship ........................................................................................................ 5 Abstract .................................................................................................................................. 6 Introduction ............................................................................................................................ 7 Clinical Relevance
    [Show full text]
  • Genome-Wide Trans-Ethnic Meta-Analysis Identifies 2 Novel Susceptibility Loci for Childhood Acute 3 Lymphoblastic Leukemia 4 Soyoung Jeon1,2, Adam J
    medRxiv preprint doi: https://doi.org/10.1101/2021.05.07.21256849; this version posted May 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Genome-wide trans-ethnic meta-analysis identifies 2 novel susceptibility loci for childhood acute 3 lymphoblastic leukemia 4 Soyoung Jeon1,2, Adam J. de Smith1, Shaobo Li1,2, Minhui Chen1, Ivo S. Muskens1, Libby M. 5 Morimoto3, Andrew T. DeWan4,5, Nicholas Mancuso1,6,7, Catherine Metayer3, Xiaomei Ma5,8, 6 Joseph L. Wiemels1, Charleston W.K. Chiang1,6 7 Affiliations: 8 1. Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, 9 University of Southern California, Los Angeles, CA 10 2. Cancer Biology and Genomics Graduate Program, Program in Biological and Biomedical Sciences, 11 Keck School of Medicine, University of Southern California, Los Angeles, CA 12 3. Division of Epidemiology & Biostatistics, School of Public Health, University of California, 13 Berkeley, CA 14 4. Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, 15 New Haven, CT 16 5. Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 17 6. Department of Quantitative and Computational Biology, University of Southern California, Los 18 Angeles, CA 19 7. Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 20 Los Angeles, CA 21 8. Yale Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale 22 University, New Haven, CT 23 Correspondence: J.L.W.
    [Show full text]
  • In Vitro Generation of Pancreatic B-Cells for Diabetes Treatment. I. B-Like Cells Derived from Human Pluripotent Stem Cells
    FOLIA HISTOCHEMICA REVIEW ET CYTOBIOLOGICA Vol. 57, No. 1, 2019 pp. 1–14 In vitro generation of pancreatic b-cells for diabetes treatment. I. b-like cells derived from human pluripotent stem cells Katarzyna Cierpka-Kmiec1, Agata Wronska2, Zbigniew Kmiec2 1Department of Hypertension and Diabetology, Medical University of Gdansk, Poland 2Department of Histology, Medical University of Gdansk, Poland Abstract Diabetes mellitus is a chronic disease that affects hundreds of millions of people worldwide. Type 1 diabetes (T1D) is characterized by the lack of pancreatic b-cells that had been destroyed as a result of an autoimmune response. Therefore, in patients with T1D, the replacement therapy with functional b-cells derived from extrinsic sources could be a preferable option as compared to insulin treatment. Unfortunately, successful transplantation of whole pancreata or pancreatic islets into patients with diabetes is available only to a fraction of them due to the scarcity of donors. The rapid development of cell reprogramming methods made it possible to generate large numbers of human b-like cells derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). This review describes the basis of in vitro differentiaton protocols of b-like cells that mimic changes of the main signaling pathways during the key stages of human and murine pancreas development, which are described first. During the last 15 years it was found that there are no important differences between hESCs and hiPSCs in their differentiation capacities into b-like cells and the expression profiles of the key tran- scription factors. The in vitro produced b-like cells are immature as demonstrated by functional tests in rodents and single-cell transcriptomic and proteomic analyses.
    [Show full text]
  • Open Full Page
    Author Manuscript Published OnlineFirst on May 24, 2016; DOI: 10.1158/0008-5472.CAN-15-1664 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity Yi-Fen Chen1, Cheng-Chieh Yang1-3, Shou-Yen Kao2,3, Chung-Ji Liu2,4, Shu-Chun Lin1-3*, Kuo-Wei Chang1-3* 1Institute of Oral Biology and 2Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. 3Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan 4Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan *Corresponding authors: Shu-Chun Lin, PhD Kuo-Wei Chang, DDS, PhD Institute of Oral Biology Department of Dentistry School of Dentistry School of Dentistry National Yang-Ming University National Yang-Ming University No. 155, Li-Nong St., Section 2 No. 155, Li-Nong St., Section 2 Taipei, Taiwan 112 Taipei, Taiwan 112 Fax: +8862-28264053 Fax: +8862-28264053 E-mail: [email protected] E-mail: [email protected] Running title: miR-211-TCF12-FAM213A activation in OSCC Conflict of interest: The authors declare no conflict of interest. Grant support: Shu-Chun Lin received grant MOST102-2628-B-010-006-MY3 from Ministry of Science and Technology. Kuo-Wei Chang received grant V103C-070 from Taipei Veterans General Hospital and grant 104AC-P504 from Aim for the Top University Plan from Department of Education. Shou-Yen Kao, Kuo-Wei Chang, and Cheng-Chieh Yang received grant for Health and Welfare Surcharge of tobacco products number MOHW104-TD-B-111-02 from Ministry of Health and Welfare for Excellence for Cancer Research.
    [Show full text]
  • Datasheet: VMA00184 Product Details
    Datasheet: VMA00184 Description: MOUSE ANTI TCF12 Specificity: TCF12 Format: Purified Product Type: PrecisionAb™ Monoclonal Clone: OTI4D6 Isotype: IgG2b Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Product Form Purified IgG - liquid Preparation Mouse monoclonal antibody purified by affinity chromatography from ascites. Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin 50% Glycerol Immunogen Recombinant protein corresponding to amino acids 1-250 of human TCF12 (NP_996919) produced in E. coli External Database UniProt: Links Q99081 Related reagents Entrez Gene: 6938 TCF12 Related reagents Synonyms BHLHB20, HEB, HTF4 Page 1 of 2 Specificity Mouse anti Human TCF12 antibody recognizes TCF12, also known as DNA-binding protein HTF4, E-box-binding protein, class B basic helix-loop-helix protein 20, helix-loop-helix transcription factor 4 and transcription factor HTF-4. The protein encoded by the TCF12 gene is a member of the basic helix-loop-helix (bHLH) E-protein family that recognizes the consensus binding site (E-box) CANNTG.
    [Show full text]