21.8 N&V PJ BG.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development of an Electron Gun for the Kek Positron Generator
Particle Accelerators, 1990, Vol. 27, pp. 145-149 © 1990 Gordon and Breach, Science Publishers, Inc. Reprints available directly from the publisher Printed in the United States of America Photocopying permitted by license only DEVELOPMENT OF AN ELECTRON GUN FOR THE KEK POSITRON GENERATOR HIDEKI IWATA, YUJIRO OOAWA*, SATOSIll OHSAWA*, HITOSHI KOBAYASHI*, MITUHIRO YOKOTA*, SHIGEKI FUKUDA* and AKIRA ASAMI* Ishikawajima-harima Heavy Industries Co., Ltd. * National Laboratory for High Energy Physics(KEK) 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305 Japan Abstract In the KEK Positron Generator, a semi-long pulsed beam (-40ns) has turned out to be suitable for effective positron injection into the PF storage ring. However, to use the semi-long pulsed beam, there was a problem concerning the cathode lifetime of the gun. Thus, a new gun has been developed with a dispenser cathode, Y-796(EIMAC); the characteristics of this gun have been investigated. This new gun has been used since October 1988 and has continued to produce constant current of about 12 A without having to exchange its cathode. Thus, the cathode lifetime has been remarkably improved. INTRODUCTION Positrons had so far been utilized only in the e+-e- colliding experiments of TRISTAN, which began in November 1986. Since 1988, however, it had started to use positrons also in the Photon Factory storage ring. It had been confinned that a positron beam with a width of -40 ns was suitable for the PF ring to reduce the injection time. t ,2,3 However, to use this semi-long pulsed beam, there was a problem regarding the cathode lifetime of the old gun, the cathode of which was an oxide-coated type.4 Therefore, a new gun with a dispenser cathode, Y-796(EIMAC), has been developed to achieve a long lifetime of the cathode and to obtain a larger anode current. -
Radiochemical Solar Neutrino Experiments, "Successful and Otherwise"
BNL-81686-2008-CP Radiochemical Solar Neutrino Experiments, "Successful and Otherwise" R. L. Hahn Presented at the Proceedings of the Neutrino-2008 Conference Christchurch, New Zealand May 25 - 31, 2008 September 2008 Chemistry Department Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. -
Participants
PARTICIPANTS Abbott, Richard [email protected] California Institute of Technology Aldach, Jackie [email protected] Stanford Linear Accelerator Center Allen, Christopher [email protected] Los Alamos National Laboratory Allison, Stephanie [email protected] Stanford Linear Accelerator Center Allison, Trent [email protected] Thomas Jefferson National Accelerator Facility Anicic, Damir [email protected] Paul Scherrer Institut PSI Armstrong, Dennis [email protected] Isaac Newton Group Bacher, Reinhard [email protected] DESY Backman, Raymond H. [email protected] Mega Industries, L.L.C. Baek, Sulhee [email protected] Samsung Advanced Institute of Technology Baer, Ralph C. [email protected] GSI Darmstadt Bartlett, J. Frederick [email protected] Fermi National Accelerator Laboratory Bec, Matthieu [email protected] Gemini Observatory Bernstein, Dorel [email protected] Stanford Linear Accelerator Center Bevins, Brian [email protected] Thomas Jefferson National Accelerator Facility Bickley, Matthew [email protected] Thomas Jefferson National Accelerator Facility Biocca, Alan [email protected] Lawrence Berkeley National Laboratory Birke, Thomas [email protected] Los Alamos National Laboratory PARTICIPANTS 8th International Conference on Accelerator & Large Experimental Physics Control Systems Bjorklund, Eric [email protected] Spallation Neutron Source Blumer, Thomas [email protected] Paul Scherrer Institut PSI Bolkhovityanov, Dmitry [email protected] Budker Institute of Nuclear Physics Bolshakov, Timofei [email protected] Fermi National Accelerator Laboratory Bookwalter, Valerie [email protected] Thomas Jefferson National Accelerator Facility Boriskin, Victor [email protected] Kharkov Institute Physics & Technology Bork, Rolf [email protected] California Institute of Technology Brazier, John [email protected] Brazier Systems & Consultants Ltd. -
On the Road to the Solution of the Solar Neutrino Problem RECEIVED
LBNL-39099 UC-414 C6AiF- ERNEST DRLANDD LAWRENCE BERKELEY NATIONAL LABORATORY I BERKELEY LAB| On the Road to the Solution of the Solar Neutrino Problem E.B. Norman Nuclear Science Division RECEIVED August 1995 SEP 20 1996 Presented at the OSTI Fourth International Workshop on Relativistic Aspects of Nuclear Physics, Rio de Janeiro, Brazil, August28-30,1995, and to be published in the Proceedings DISTRIBUTION OF THIS DOCUMENT IS UNUMITiD DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. -
Neutrinos and Beyond — Opening a New Era of Cosmic-Ray Research
ADVERTISEMENT FEATURE THE UNIVERSITY OF TOKYO Neutrinos and beyond — Opening a new era of cosmic-ray research Takaaki Kajita, a recipient of the 2015 that neutrinos are massless. These discov- Nobel Prize in Physics, and other re- eries, which resulted in Kajita’s 2015 Nobel searchers at the University of Tokyo’s Prize in Physics, were made a team led by Institute for Cosmic Ray Research (ICRR) him in 1998. have been exploring new realms in par- Kajita acknowledged his success owed ticle physics research. Kajita’s work on a lot to the strong support he received neutrinos and related research at ICRR from two mentors and former supervisors is leading the world in this field. — Masatoshi Koshiba and Yoji Totsuka. Koshiba was awarded the 2002 Nobel Prize The path to a Nobel prize in Physics for detecting neutrinos pro- Particle physics and astrophysics are duced in supernovae using Kamiokande, among the most active research fields at the predecessor of Super-Kamiokande. the University of Tokyo, and its Institute for Totsuka led the Super-Kamiokande proj- Cosmic Ray Research (ICRR) is leading the ect as Koshiba’s successor. Totsuka’s con- world with explorations in these areas. ICRR tribution was so great that many believe is best known for its research on neutrinos he would have shared the Nobel Prize with using the world’s largest underground neu- Kajita if he were alive. trino detector, Super-Kamiokande. The de- Kajita’s award-winning work dates tector is located in a mine in central Japan back to 1986 when he earned his PhD for and is filled with 50,000 tons of pure water. -
Searching for Lightweight Dark Matter in Nova Near Detector
Searching for Lightweight Dark Matter in NOvA Near Detector PoS(FPCP2017)056 Filip Jediný* Czech Technical University in Prague Brehova 7, Prague, Czech Republic E-mail: [email protected] Athanasios Hatzikoutelis University of Tennessee Knoxville Knoxville, TN, USA E-mail: [email protected] Sergey Kotelnikov Fermi National Accelerator Laboratory Kirk and Pine st., Batavia, IL, USA E-mail: [email protected] Biao Wang Southern Methodist University Dallas, TX, USA E-mail: [email protected] The NOvA long-baseline neutrino oscillation experiment is receiving record numbers of 120GeV protons on target from Fermilab's NuMI neutrino beam. We take advantage of our experiment’s sophisticated particle identification algorithms to search for Lightweight Dark Matter (LDM) in the first year of data from the Near Detector of NOvA (300-ton low-Z mass, placed off the beam axis) during the experiment’s first physics runs. Theoretical models of LDM predict that bellow- 10GeV candidates produced in the NuMI target might scatter or decay in the NOvA Near Detector. We simulate an example of the Neutral Vector Portal model with the sensitivity estimate of 10-39 cm2, which corresponds to O(10) LDM candidates per three years of data, looking at single electromagnetic showers between 5 and 15 GeV in a model independent way. The 15th International Conference on Flavor Physics & CP Violation 5-9 June, 2017 Prague, Czech Republic * Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ Searching for LDM in NOvA ND Filip Jediný 1. -
FROM KEK-PS to J-PARC Yoshishige Yamazaki, J-PARC, KEK & JAEA, Japan
FROM KEK-PS TO J-PARC Yoshishige Yamazaki, J-PARC, KEK & JAEA, Japan Abstract target are located in series. Every 3 s or so, depending The user experiments at J-PARC have just started. upon the usage of the main ring (MR), the beam is JPARC, which stands for Japan Proton Accelerator extracted from the RCS to be injected to the MR. Here, it Research Complex, comprises a 400-MeV linac (at is ramped up to 30 GeV at present and slowly extracted to present: 180 MeV, being upgraded), a 3-GeV rapid- Hadron Experimental Hall, where the kaon-production cycling synchrotron (RCS), and a 50-GeV main ring target is located. The experiments using the kaons are (MR) synchrotron, which is now in operation at 30 GeV. conducted there. Sometimes, it is fast extracted to The RCS will provide the muon-production target and the produce the neutrinos, which are sent to the Super spallation-neutron-production target with a beam power Kamiokande detector, which is located 295-km west of of 1 MW (at present: 120 kW) at a repetition rate of 25 the J-PARC site. In the future, we are conceiving the Hz. The muons and neutrons thus generated will be used possibility of constructing a test facility for an in materials science, life science, and others, including accelerator-driven nuclear waste transmutation system, industrial applications. The beams that are fast extracted which was shifted to Phase II. We are trying every effort from the MR generate neutrinos to be sent to the Super to get funding for this facility. -
Design Study of a Superconducting Insertion Quadrupole Magnet for the Large Hadron Collider
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 75 DESIGN STUDY OF A SUPERCONDUCTING INSERTION QUADRUPOLE MAGNET FOR THE LARGE HADRON COLLIDER G. Kirby, R. Ostojic, and T. M. Taylor A. Yamamoto*, K. Tsuchiya*, N. Higashi*, T. Nakamoto*, T. Ogitsu*, N. Ohuchi*, T. Shintomi*, and A. Terashima* Abstract The conceptual design study of a high gradient superconducting insertion quadrupole magnet has been carried out in collaboration between KEK and CERN for the Large Hadron Collider (LHC) to be built at CERN. A model magnet design has been optimized to provide a nominal design field gradient of 240 T/m with a bore aperture of 70 mm and an operational field gradient of 225 T/m at 1.9 K under radiation environment with a beam energy deposit of several watts per meter in the superconducting coils. The design and its optimization process are discussed. LHC Division *National Laboratory for High Energy Physics (KEK), Tsukuba, Ibaraki, 305, Japan ASC Pittsburg ‘96 Administrative Secretariat LHC Division CERN CH - 1211 Geneva 23 Switzerland Geneva, 12 November 1996 Design Study of a Superconducting Insertion Quadrupole Magnet for The Large Hadron Collider A. Yamamoto, K. Tsuchiya, N. Higashi, T. Nakamoto T. Ogitsu, N. Ohuchi, T. Shintomi, and A. Terashima National Laboratory [or High Energy Physics (KEK), Tsukuba, Ibaraki, 305, Japan G. Kirby*, R. Ostojic, and T. M. Taylor European Laboratory for Particle Physics (CERN), 23 Geneva, CH-1211, Switzerland Abstract---The conceptual design study of a 111. MODEL MAGNET DESIGN high gradient superconducting insertion quadrupole magnet has been carried out i n A. -
Session: Neutrino Astronomy
Session: Neutrino Astronomy Chair: Takaaki Kajita, Institute for Cosmic Ray Research, Univ. of Tokyo Basic natures of neutrinos Neutrino was introduced in 1930 by W. Pauli in order to save the energy conservation law in nuclear beta decay processes, in which the emitted electron exhibits a continuous energy spectrum. It was assumed that the penetration power of neutrinos is much higher than that of the gamma rays. More than 20 years later, the existence of neutrinos was experimentally confirmed by an experiment that measured neutrinos produced by a nuclear power reactor. Since then, the basic nature of neutrinos has been understood through various theoretical and experimental studies: Neutrinos interact with matter extremely weakly. The number of neutrino species is three. They are called electron-neutrino, muon-neutrino and tau-neutrino. In addition, recent neutrino experiments discovered that neutrinos have very small masses. Observing the Universe by neutrinos (1) Because of the extremely high penetration power of neutrinos, neutrinos produced at the center of a star easily penetrate to the outer space. Theories of astrophysics predict that there are various processes that neutrinos play an essential role at the center of stars. For example, the Sun is generating its energy by nuclear fusion processes in the central region. In these processes, low energy electron neutrinos with various energy spectra are generated. Thus the observation of solar neutrinos directly probes the nuclear fusion reactions in the Sun. Another example is the supernova explosion. While the optical measurements observe an exploding star, what is happening in the central region of the star is the collapse of the core of a massive star. -
Carsten Rott Curriculum Vitae Feb 2018
Carsten Rott Curriculum Vitae Feb 2018 Department of Physics, Sungkyunkwan University, Suwon 16419, Korea Tel: +82-31-290-5902 E-mail:[email protected] Experimental astro-particle physics, particle physics, geophysics, neutri- Research nos physics Focus Languages German, English; Elementary: French, Japanese, and Korean Employment 2017 { 2018 Honorary Fellow at Wisconsin IceCube Particle Astrophysics Center (WIPAC) (Sabbatical), University of Wisconsin Madison, USA 2017 { now Associate Professor, Sungkyunkwan University, Korea 2013 { 2017 Assistant Professor, Sungkyunkwan University, Korea 2016 Visiting Researcher (3-month), University of Tokyo, Japan 2009 { 2013 Senior Fellow of the Center for Cosmology and AstroParticle Physics (CCAPP) (5-year term), The Ohio State University, USA 2008 { 2009 CCAPP Fellow (3-year term), The Ohio State University, USA 2005 { 2008 Postdoctoral Fellow, Pennsylvania State University, USA Education 1998 { 2004 Purdue University, Indiana, USA Ph.D in Experimental Particle Physics (December 2004) Title : \Search for Scalar Bottom Quarks from Gluino Decays" at CDF Thesis Adviser : Prof. Daniela Bortoletto 1995 { 1998 Universit¨atHannover, Hannover, Germany Honors and Awards 2011 Recipient of NSF Antarctica Service Medal 2005 \Fermilab's Result of the Week" (FermiNews, August 11, 2005) 2004 George W. Tautfest Award, Purdue University 1998 { 1999 University of Hannover { Purdue University direct exchange fellowship Funds and Grants 2017 { present NRF Midscale Research Fund (PI), Korea { NRF-2017R1A2B2003666 2017 { present Foreign Facility Fund (PI of 7 sub-PIs) { NRF-2017K1A3A7A09015973 2016 { present NRF SRC Korea Neutrino Research Center (KNRC) (Co-I), Korea 2016 { 2017 NRF Individual Researcher (PI), Korea { NRF-2016R1D1A1B03931688 2013 { present BrainKorea (BK21plus) participant, Korea 2013 { 2016 NRF Individual Researcher (PI), Korea { NRF-2013R1A1A1007068 2013 { 2014 SKKU Intramural Faculty Fund Award, Korea 2013 { 2014 Fermi GI Cycle 6 (Co-I with Prof. -
Strengthening Global Coordination on Large Neutrino Infrastructures”
July 8, 2016 Press Release concerning the 3rd International Neutrino Meeting on Large Neutrino Infrastructures hosted by KEK on the 30-31st of May 2016 “Strengthening global coordination on large neutrino infrastructures” Funding-agency1 and laboratory representatives2 gathered at the 3rd International Meeting on Large Neutrino Infrastructures3 on May 30-31, 2016 at KEK in Tsukuba, Japan to gauge the progress in the global coordination of projects that had been launched during the first and second international meetings4 and to discuss the next steps in the global coordination. The meeting was opened by the 2015 Nobel Prize winner Takaaki Kajita who commented that “Very large-scale experiments will be needed to fully explore neutrino properties. These large-scale experiments will also naturally have astrophysics potential and increase the sensitivity of searches for proton disintegration.” He went on to note that to realise the necessary very large-scale facilities would require “… international coordination and collaboration” and defined the goals of the meeting to be to “… discuss the physics cases and global strategy, including astrophysics and proton decays, which are the part of the aim of this series of meetings; have follow-up discussions of the ICFA Neutrino Panel’s5 roadmap discussion document”6 and to discuss “… the various neutrino experiments, including Hyper- Kamiokande7, toward the realization of an efficient and productive global neutrino program.” In this meeting, the funding-agency and laboratory representatives welcomed the important steps that had been made towards the realisation of the Hyper-Kamiokande (Hyper-K) experiment7. The international proto-collaboration has developed new, high- sensitivity, large-aperture photomultiplier tubes that substantially reduce the total project cost without unduly compromising its potential to address important questions in particle and astroparticle physics and in nucleon decay. -
Resolving the Solar Neutrino Problem
FEATURES Resolving the solar neutrino problem: Evidence for massive neutrinos in the Sudbury Neutrino Observatory Karsten M. Heeger for the SNO collaboration ............................................................................................................................................................................................................................................................ The solar neutrino problem are not features of the Standard Model of particle physics. In or more than 30 years, experiments have detected neutrinos quantum mechanics, an initially pure flavor (e.g. electron) can Pproduced in the thermonuclear fusion reactions which power change as neutrinos propagate because the mass components that the Sun. These reactions fuse protons into helium and release neu made up that pure flavor get out of phase. The probability for trinos with an energy of up to 15 MeY. Data from these solar neutrino oscillations to occurmayeven be enhanced in the Sun in neutrino experiments were found to be incompatible with the an energy-dependent and resonant manner as neutrinos emerge predictions of solar models. More precisely, the flux ofneutrinos from the dense core of the Sun. This effect of matter-enhanced detected on Earthwas less than expected, and the relative intensi neutrino oscillations was suggested by Mikheyev, Smirnov, and ties ofthe sources ofneutrinos in the sun was incompatible with Wolfenstein (MSW) and is one of the most promising explana those predicted bysolar models. By the mid-1990's the data