Regulated Deficit Irrigation and Partial Rootzone Drying

Total Page:16

File Type:pdf, Size:1020Kb

Regulated Deficit Irrigation and Partial Rootzone Drying NUMBER 4 REGULATED DEFICIT IRRIGATION AND PARTIAL ROOTZONE DRYING An information package on two new irrigation methods for high-input horticulture REGULATED DEFICIT IRRIGATION AND PARTIAL ROOTZONE DRYING An overview of principles and applications by Paul E. Kriedemann Adjunct Professor, National Wine and Grape Industry Centre Charles Sturt University Wagga Wagga NSW and Visiting Fellow, Research School of Biological Sciences, Australian National University, Canberra ACT and Ian Goodwin Senior Irrigation Scientist Department of Primary Industries Tatura, Victoria PUBLISHED BY Land & Water Australia GPO Box 2182 Canberra ACT 2601 Phone: 02 6257 3379 Fax: 02 6257 3420 REGULATED DEFICIT REGULATED ROOTZONE AND IRRIGATION DRYING PARTIAL Email: <[email protected]> © Land & Water Australia DISCLAIMER The information contained in this publication has been published by Land & Water Australia to assist public knowledge and discussion and help improve the sustainable management of land, water and vegetation. Where technical information has been provided by or contributed by authors external to the corporation, readers should contact the author(s) to make their own enquiries before making use of that information. PUBLICATION DATA Irrigation Insights No. 3 REGULATED DEFICIT IRRIGATION AND PARTIAL ROOTZONE DRYING II Product No. PR 020 382 ISBN 0642 76089 6 Edited by Anne Currey Designed and desktop published by Graphiti Design, Lismore Production assistance Joe McKay PREFACE PREFACE This information package was commissioned by the National Program for Sustainable Irrigation, a program of Land & Water Australia, the Cooperative Research Centre for Viticulture and the Grape and Wine Research and Development Corporation to provide an overview of the background, current developments and future prospects for implementing regulated deficit irrigation and partial rootzone drying. In preparing this Irrigation Insights both authors consulted with researchers and growers, visited a number of sites where the systems were being used and participated in seminars on water use and management of horticultural crops. Meetings took place in Mildura and Adelaide, and were sponsored by the Cooperative Research Centre for Viticulture, the Australian Society for Viticulture and Oenology, the Grape and Wine Research and Development Corporation and CSIRO Plant Industry (Horticulture Unit). Many people provided relevant published literature and shared their personal insights as well as unpublished observations. The contribution of these people is acknowledged, in particular: Peter Dry, CRC for Viticulture and University of Adelaide (Waite Campus), SA John Kennedy, (Orlando/Wyndham) Langhorne Creek, SA Neil Lantzke, Agriculture WA, South Perth, WA Brian Loveys, CRC for Viticulture and CSIRO Plant Industry (Horticulture Unit), Adelaide, SA Michael McCarthy, CRC for Viticulture and SARDI, Nuriootpa, SA Shannon Pudney, CRC for Viticulture and SARDI, Waite Campus, SA Graeme Sanderson, Agricultural Research and Advisory Station, Dareton, NSW Craig Thornton, Wingara Wine Group, Karadoc, Victoria Grateful acknowledgment is also made to: Ken Bevington, Agricultural Research and Advisory Station, Dareton, NSW DEFICIT REGULATED ROOTZONE AND IRRIGATION DRYING PARTIAL Jeremy Giddings, Agricultural Research and Advisory Station, Dareton, NSW Ron Hutton, NWGIC and Agriculture NSW, Charles Sturt University, Wagga Wagga, NSW Mark O’Connell, Department of Primary Industries, Tatura, Victoria Peter Scholefield, Scholefield-Robinson, Horticultural Services P/L, Parkside, SA Rob Stevens, SARDI, Loxton, SA Rob Walker, CRC for Viticulture and CSIRO Plant Industry Horticulture Unit, Merbein, Victoria Richard Wells, Grapegrower and NPIRD Steering Committee member, Merbein, Victoria III CONTENTS CONTENTS Chapter 1. Perspectives ..............................................................................................1 Profitability and competition for water ....................................................................................1 A snapshot of regulated deficit irrigation and partial rootzone drying ....................................2 Towards a definition of regulated deficit irrigation and partial rootzone drying ....................3 Deficit irrigation in viticulture ..................................................................................................4 Chapter 2. Regulated deficit irrigation ......................................................................6 Regulated deficit irrigation for pome and stonefruits ..............................................................6 Case study. Peaches in the Goulburn Valley ....................................................................11 Regulated deficit irrigation for wine grapes ............................................................................12 Developing a regulated deficit irrigation strategy for grapevines ........................................13 Vineyard irrigation systems for regulated deficit irrigation ................................................17 Soil type..........................................................................................................................18 Scions and rootstock........................................................................................................19 Case studies..............................................................................................................................19 Regulated deficit irrigation viticulture in Western Australia ..............................................19 Hanwood, Murrumbidgee Irrigation Area, NSW ............................................................22 Regulated deficit irrigation for Okitsu Satsuma mandarin ....................................................24 Chapter 3. Partial rootzone drying............................................................................27 Beginnings................................................................................................................................27 Applications ............................................................................................................................28 Vineyard applications ......................................................................................................28 Case studies....................................................................................................................33 Sunraysia, northwest Victoria..........................................................................................34 Margaret River, southwest Western Australia ..................................................................37 Langhorne Creek, southeast South Australia ..................................................................38 Barossa Valley, South Australia ......................................................................................41 Hanwood, Murumbidgee Irrigation Area, NSW..............................................................43 Goulburn Valley, Victoria – pears....................................................................................45 REGULATED DEFICIT REGULATED ROOTZONE AND IRRIGATION DRYING PARTIAL Chapter 4. Site and system requirements ................................................................48 Implementing Regulated Deficit Irrigation and Partial Rootzone Drying..............................48 Features of regulated deficit irrigation and partial rootzone drying ....................................48 Implementing regulated deficit irrigation ..........................................................................49 Irrigation scheduling for regulated deficit irrigation - practical examples ............................53 Implementing partial rootzone drying ..............................................................................56 Appendix 1. Principles underlying plant water use for growth and cropping ........69 Leaf gas exchange ..........................................................................................................69 Evapotranspiration..........................................................................................................71 Root extraction of soil water ..........................................................................................78 A case for deficit irrigation ..............................................................................................80 Annual versus perennial crops ........................................................................................81 Drought stress ................................................................................................................82 Drought acclimation........................................................................................................83 IV Appendix 2. Practical issues in plant water use for growth and cropping ..............85 Pan evaporation and ETcrop............................................................................................85 From ETcrop in millimetres to litres per plant ..................................................................88 Soil water sensing............................................................................................................90 Irrigation scheduling criteria ............................................................................................92 References ................................................................................................................95 Glossary ....................................................................................................................99
Recommended publications
  • Decision Support Systems for Water Management
    Decision Support Systems for Water Management Mladen Todorović CIHEAM – IAM BARI [email protected] LARI, Tal Amara, Lebanon, 6-10 December 2016 DSSConcept for water of LARI management, EWS Improvement Mladen, Vieri Todorovic Tarchiani INTRODUCTION TO THE COURSE Course objectives • Overall objective: – to provide basic (and advanced) knowledge about the application of decision support systems for water management in Mediterranean environments. • Specific objective: – To explain the structure, approach and purpose of decision support systems (DSS) in general and for water management and agricultural applications in particular; – To give a grounding about Geographical Information System (GIS), its structure, database development, format and management, and GIS/DSS applications and links in agriculture and water management – To expose about the use of new technologies (e.g. remote sensing – satellite and ground-based platforms) and modelling tools and their integration with DSS/GIS applications in agriculture and water management – To present and discuss the examples of DSS/GIS/modern technologies integration and applications in agriculture and water management and especially for risk assessment and alert/emergency management; – To start-up a dialogue and process of development of a DSS for early warning drought risk and irrigation management in Lebanon. The contents of the course 1 • DSS definition, approach, scales of application, components (data and database management, models, software tools, query tool, etc.), optimization criteria, single/multi objective criteria definition, model attributes, objective functions, constraints, quantitative and qualitative risk assessment. • GIS definition, components, benefits, limitations, sources of information, data models (vector, raster), applications in agriculture and precision farming, GPS/GIS integration, database development, operational functionalities, spatial queries, data classification, hydrological balance in GIS, GIS/DSS integration, decision making process, examples of application.
    [Show full text]
  • Deficit Irrigation Management of Maize in the High Plains Aquifer Region: a Review Daran Rudnick University of Nebraska-Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biological Systems Engineering: Papers and Biological Systems Engineering Publications 2-2019 Deficit Irrigation Management of Maize in the High Plains Aquifer Region: A Review Daran Rudnick University of Nebraska-Lincoln, [email protected] Sibel Irmak University of Nebraska - Lincoln, [email protected] C. West Texas Tech University J.L. Chavez Colorado State University I. Kisekka University of California, Davis See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/biosysengfacpub Part of the Bioresource and Agricultural Engineering Commons, Environmental Engineering Commons, and the Other Civil and Environmental Engineering Commons Rudnick, Daran; Irmak, Sibel; West, C.; Chavez, J.L.; Kisekka, I.; Marek, T.H.; Schneekloth, J.P.; Mitchell McCallister, D.; Sharma, V.; Djaman, K.; Aguilar, J.; Schipanski, M.E.; Rogers, D.H.; and Schlegel, A., "Deficit Irrigation Management of Maize in the High Plains Aquifer Region: A Review" (2019). Biological Systems Engineering: Papers and Publications. 629. https://digitalcommons.unl.edu/biosysengfacpub/629 This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biological Systems Engineering: Papers and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Daran Rudnick, Sibel Irmak, C. West, J.L. Chavez, I. Kisekka, T.H. Marek, J.P. Schneekloth, D. Mitchell McCallister, V. Sharma, K. Djaman, J. Aguilar, M.E. Schipanski, D.H. Rogers, and A. Schlegel This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/biosysengfacpub/ 629 JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION Vol.
    [Show full text]
  • The 2020 Vintage in Bordeaux
    The 2020 vintage in Bordeaux Professor Laurence GENY and Professor Axel MARCHAL Institute of Vine and Wine Sciences of Bordeaux University, Oenological Research Unit in conjunction with V. LAVIGNE, E. GUITTARD, N. DANEDE, A. BARSACQ, and A. RABOT After 2019, whereby the presentation and marketing campaign were uniquely altered by the COVID-19 pandemic, the entire 2020 vintage was affected by the health crisis. In particular, the issue of organising the harvest greatly worried winegrowers. Although various adjustments were required, the harvest nevertheless unfolded under good conditions, and wines from the 2020 vintage were produced unhindered. Before analysing the weather conditions in 2020 and the characteristics of wines from this vintage, it is important to bear in mind, as we do so each year, the five prerequisites to create a great red Bordeaux. Please note that they serve only as a guide in our analysis and should not be interpreted as a score chart for the year. 1) and 2) Relatively quick and even flowering and fruit-set during weather that is sufficiently warm and dry to ensure good pollination and predispose towards even ripening. 3) Gradual onset of water stress thanks to a warm, dry month of July in order to slow down and then put a definitive stop to vine growth no later than véraison (colour change). 4) Completely ripe grapes thanks to optimum photosynthesis in the leaves up until the harvest, without any noteworthy resumption of vegetative growth. 5) Fine (relatively dry and medium-warm) weather during the harvest, making it possible to pick the grapes in each plot at optimum ripeness without running the risk of dilution, rot, or loss of fruity aromas.
    [Show full text]
  • Flowering and Fruitset of the Grapevine
    Flowering and fruitset of the grapevine FINAL REPORT to GRAPE AND WINE RESEARCH & DEVELOPMENT CORPORATION Project Number: UA 04/02 Project Supervisor: Associate Professor Peter Dry Principal Investigator: Dr Cassandra Collins Research Organisation: University of Adelaide Start Date: September 2004 Flowering and fruitset of the grapevine GWRDC Final Report Project No. UA 04/02 Project Supervisor: Associate Professor Peter Dry Principal Researchers: Dr Cassandra Collins Dr Susan Wheeler (2007-2008) Dr Mardi Longbottom (PhD) University of Adelaide August 2008 Any recommendations contained in this publication do not necessarily represent current GWRDC policy. No person should act on the basis of the contents of this publication, whether as to matters of fact or opinion or other content, without first obtaining specific independent professional advice in respect of the matters set out in this publication. 2 ABSTRACT .........................................................................................................................5 EXECUTIVE SUMMARY .................................................................................................6 1. BACKGROUND..............................................................................................................9 2. PROJECT AIMS ...........................................................................................................13 3. EFFECT OF SITE AND SEASON ON REPRODUCTIVE PERFORMANCE OF TEN VARIETIES..............................................................................................................15
    [Show full text]
  • Effect of Deficit Irrigation on Yield and Water Use Efficiency of Maize at Selekleka District, Ethiopia
    Deficit irrigation on maize yield by ET Gebreigziabher Journal of Nepal Agricultural Research Council Vol. 6: 127-135, March 2020 ISSN: 2392-4535 (Print), 2392-4543 (Online) DOI: https://doi.org/10.3126/jnarc.v6i0.28124 Effect of Deficit Irrigation on Yield and Water Use Efficiency of Maize at Selekleka District, Ethiopia Ekubay Tesfay Gebreigziabher Shire-Maitsebri Agricultural Research Center, Shire, Tigray, Ethiopia; @:[email protected]; ORCID: https://orcid.org/0000-0003-2329-5991 Received 18 July 2019, Revised 26 Nov 2019, Accepted 12 Jan 2020, Published OPEN ACCESS 17 March 2020 Scientific Editors: Sabir Hussain Shah, Jiban Shrestha Copyright © 2020 NARC. Permits unrestricted use, distribution and reproduction Licensed under the Creative Commons Attribution- in any medium provided the original work is properly cited. NonCommercial 4.0 International (CC BY-NC 4.0) The authors declare that there is no conflict of interest. ABSTRACT Irrigation water availability is diminishing in many areas of the Ethiopian regions, which require many irrigators to consider deficit-irrigation strategy. This study investigated the response of maize (Zea mays L.) to moisture deficit under conventional, alternate and fixed furrow irrigation systems combined with three irrigation amounts over a two years period. The field experiment was conducted at Selekleka Agricultural Research Farm of Shire-Maitsebri Agricultural Research Center. A randomized complete block design (RCBD) with three replications was used. Irrigation depth was monitored using a calibrated 2-inch throat Parshall flume. The effects of the treatments were evaluated in terms of grain yield, dry above-ground biomass, plant height, cob length and water use efficiency.
    [Show full text]
  • Does Deficit Irrigation Give More Crop Per Drop?
    Proceedings of the 22nd Annual Central Plains Irrigation Conference, Kearney, NE., February 24-25, 2010 Available from CPIA, 760 N.Thompson, Colby, Kansas DOES DEFICIT IRRIGATION GIVE MORE CROP PER DROP? Tom Trout, Walter Bausch and Gerald Buchleiter Water Management Research, USDA-Agricultural Research Service Fort Collins, CO 970-492-7419 Email: [email protected]. Past studies have shown that the reduction in yield with deficit irrigation is usually less than the reduction in irrigation water applied - for example, a 30% reduction in irrigation results in only a 10% reduction in yield. This means the marginal productivity of irrigation water applied tends to be low when water application is near full irrigation. This results either from increased efficiency of water applications (less deep percolation, runoff, and evaporation losses from irrigation and better use of precipitation) with deficit irrigation, or from a physiological response in plants that increases productivity per unit water consumed when water is limited. Economically managing limited water supplies will often involve deficit irrigation rather than reducing acreage. Likewise, if water supplies can be transferred or sold for other uses and the value is higher than the value of using the water to produce maximum yields, selling the water can increase the farm income. In Colorado, there is continuing need for additional water supplies for growing cities, groundwater augmentation, and environmental restoration. This water is usually purchased from agriculture through “buy and dry” – purchasing the water rights and fallowing the land. Limited irrigation may be an alternative way to provide for other water needs while sustaining productive agriculture.
    [Show full text]
  • 2016 SWK Vineyard
    2016 SWK Vineyard History Occidental is Steve Kistler’s pinot noir project with a singular focus – to make world-class pinot noir from unique sites on the headlands in the Freestone-Occidental area. Since the early 1990s, Steve Kistler has believed that the climate and soils on the uplifted marine terraces and ridges around the town of Bodega would be ideal for growing distinctive and Burgundian-style pinot noir. He founded Occidental as a small, family brand in 2011, and built a state- of-the-art winery just east of Bodega overlooking the Pacific Ocean. Peak production is planned to reach around 7,500 cases of pinot noir. Steve’s daughters Catherine and Lizzie have joined him at Occidental, along with many members of the original Kistler Vineyards farming and cellar crews. Viticulture The field selections planted in the Occidental vineyards represent years of experimentation and refinement. Back in the early 1990s, the initial field selections were collected from two grand cru vineyards in Vosne Romanée. Steve first propagated these selections as individual mother vines in order to identify which selections had the desired characteristics to be used in future Occidental plantings. Occidental’s approach to farming seeks to develop vineyards that are as naturally self-regulating as possible. Yields average less than two tons per acre. The low crop levels and the meticulous work of the vineyard crews are critically important in farming vineyards so close to the ocean. Winemaking Picking decisions are based on flavor, physiological maturity, and on natural acidity and pH to preserve freshness and energy.
    [Show full text]
  • Modeling of Full and Limited Irrigation Scenarios for Corn in a Semiarid Environment
    MODELING OF FULL AND LIMITED IRRIGATION SCENARIOS FOR CORN IN A SEMIARID ENVIRONMENT K. C. DeJonge, A. A. Andales, J. C. Ascough II, N. C. Hansen ABSTRACT. Population growth in urbanizing areas such as the Front Range of Colorado has led to increased pressure to transfer water from agriculture to municipalities. In some cases, farmers may remain agriculturally productive while practicing limited or deficit irrigation, where substantial yields may be obtained with reduced water applications during non‐water‐sensitive growth stages, and crop evapotranspiration (ET) savings could then be leased by municipalities or other entities as desired. Site‐specific crop simulation models have the potential to accurately predict yield and ET trends resulting from differences in irrigation management. The objective of this study was to statistically determine the ability of the CERES‐Maize model to accurately differentiate between full and limited irrigation treatments in northeastern Colorado in terms of evapotranspiration (ET), crop growth, yield, water use efficiency (WUE), and irrigation use efficiency (IUE). Field experiments with corn were performed near Fort Collins, Colorado, from 2006 to 2008, where four replicates each of full (100% of ET requirement for an entire season) and limited (100% of ET during reproductive stage only) irrigation treatments were evaluated. Observations of soil profile water content, leaf area index, leaf number, and grain yield were used to calibrate (2007) and evaluate (2006 and 2008) the model. Additionally, ET and
    [Show full text]
  • August 2014 Volume 9 Number 2 Origins of Grape and Wine Aroma. Part 1. Chemical Components and Viticultural Impacts Wine Is An
    August 2014 Volume 9 Number 2 grape and wine composition comes from advances in analytical This issue of the ASEV Technical Update contains interpretive and sensory methods for identifying and quantifying the com- abstracts written by authors of articles published in the first and pounds that contribute to flavor. Therefore, Part 2 of this review second issues of the American Journal of Enology and Viticulture, 2014. A link to the online Journal article appears at the end of provides an overview of the chemical and sensory analysis ap- each abstract. proaches that have been used to deconstruct wine flavor into its component parts with an aim toward relating the chemical com- position to the unique sensory properties that are associated with different wine varieties and styles. Origins of Grape and Wine Aroma. Part 1. Chemical Components and Viticultural Impacts Am. J. Enol. Vitic. 65:25-42 (2014) Anthony L. Robinson,1,2 Paul K. Boss,3 Peter S. Solomon,4 1 5 N, P, and K Supply to Pinot noir Grapevines: Robert D. Trengove, Hildegarde Heymann, and Impact on Berry Phenolics and Free Amino Acids Susan E. Ebeler5* 1 1 2 1Separation Science and Metabolomics Laboratory, Murdoch University, R. Paul Schreiner, * Carolyn F. Scagel, and Jungmin Lee Murdoch, WA 6150, Australia; 2Treasury Wine Estates, P.O. Box 396, 1USDA-ARS, Horticultural Crops Research Laboratory, 3420 NW Nuriootpa, SA 5355, Australia; 3CSIRO Plant Industry, P.O. Box 350, Orchard Ave., Corvallis, OR 97330; and 2USDA-ARS, Horticultural Glen Osmond, SA 5064, Australia; 4Plant Science Division, Research Crops Research Laboratory Worksite, 29603 U of I Ln., Parma, ID School of Biology, Australian National University, Canberra, ACT 0200, 83660.
    [Show full text]
  • Influence of Sustained Deficit Irrigation on Physiology and Phenolic Compounds in Winegrapes and Wine
    INFLUENCE OF SUSTAINED DEFICIT IRRIGATION ON PHYSIOLOGY AND PHENOLIC COMPOUNDS IN WINEGRAPES AND WINE Yasmin Michelle Chalmers School of Agriculture and Wine Discipline of Wine and Horticulture The University of Adelaide A thesis submitted to The University of Adelaide in fulfilment of the requirement for the degree of Doctor of Philosophy February 2007 i TABLE OF CONTENTS ABSTRACT iv DECLARATION vii ACKNOWLEDGEMENTS viii LIST OF ABBREVIATIONS ix LIST OF FIGURES xi LIST OF TABLES xvi CHAPTER 1: General Introduction 1 1.1 Background 1 1.2 Deficit Irrigation Strategies for Winegrapes 3 1.3 Water Relations in Grapevines 6 1.3.1 Water deficit effects on grapevine physiology 7 1.4 Grape and Wine Quality 9 1.4.1 Water deficit effects on yield components and berry size 12 1.4.2 Water deficit effects on grape and wine composition 14 1.5 General Conclusions and Aims of the Study 16 CHAPTER 2: General Materials and Methods 17 2.1 Field Sites 17 2.1.1 Trial design 19 2.2 Glasshouse Trials 22 2.3 Definitions 24 2.4 Statistical Analyses 24 CHAPTER 3: Leaf Water Potential, Stomatal Conductance and ABA Responses of Red Winegrapes to Water Deficit 26 3.1 Introduction 26 3.2 Materials and Methods 28 3.2.1 Physiology and hormone measurements 28 3.2.2 Grapevine growth and canopy development 30 3.3 Results 32 3.3.1 Effect of SDI on grapevine physiology and hormonal responses 32 3.3.2 Leaf area index and pruning weights 46 3.4 Discussion 47 3.4.1 Physiological response of grapevine varieties to water deficit 48 3.4.2 Hormonal response of grapevine varieties to water deficit 52 ii 3.4.3 LAI and pruning weights of SDI-treated vines 56 3.5 Conclusions 58 CHAPTER 4: Changes in Yield Components and Berry Composition of Red Wine Grapes Exposed to SDI 59 4.1 Introduction 59 4.2 Materials and Methods 61 4.2.1 Determination of yield components and berry composition parameters.
    [Show full text]
  • Modeling Maize Production Under Growth Stage-Based Deficit Irrigation Management with RZWQM2
    Agricultural Water Management 248 (2021) 106767 Contents lists available at ScienceDirect Agricultural Water Management journal homepage: www.elsevier.com/locate/agwat Modeling maize production under growth stage-based deficit irrigation management with RZWQM2 Huihui Zhang a,*, Liwang Ma b, Kyle R. Douglas-Mankin a, Ming Han c, Thomas J. Trout a a Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO 80526, USA b Rangeland Resources and Systems Research Unit, USDA-ARS, Fort Collins, CO 80526, USA c Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada ARTICLE INFO ABSTRACT Handling Editor: Dr Z. Xiying Farmers are challenged to maintain yield and economic productivity with declining water resources and climatic variability in semi-arid regions worldwide. Growth stage-based deficitirrigation has been suggested as a feasible Keywords: approach to maintain yields with less water. Experiments were conducted in 2012, 2013, and 2015 in which Root Zone Water Quality Model maize (Zea mays L.) was irrigated under twelve treatments with varied levels of deficitirrigation during the late CERES-Maize vegetative (Lveg) and maturation (Mat) growth-stage periods in Northern Colorado. The Root Zone Water Grain yield Quality Model 2 (RZWQM2)-CERES-Maize model was used to simulate the effects of growth stage-based deficit Kernel weight Kernel number irrigation on maize production and yield components. The results showed that RZWQM2 could simulate the impact of temperature on maize phenology but did not simulate the impact of water stress on maize maturity. Both simulated and observed aboveground biomass, grain yield, and kernel weight decreased with the decrease of irrigation water amount during Lveg and Mat periods.
    [Show full text]
  • Green and Blue Water Footprint Reduction in Irrigated Agriculture: Effect of Irrigation Techniques, Irrigation Strategies and Mulching
    Hydrol. Earth Syst. Sci., 19, 4877–4891, 2015 www.hydrol-earth-syst-sci.net/19/4877/2015/ doi:10.5194/hess-19-4877-2015 © Author(s) 2015. CC Attribution 3.0 License. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching A. D. Chukalla, M. S. Krol, and A. Y. Hoekstra Twente Water Centre, University of Twente, Enschede, the Netherlands Correspondence to: A. D. Chukalla ([email protected]) Received: 16 June 2015 – Published in Hydrol. Earth Syst. Sci. Discuss.: 23 July 2015 Revised: 6 November 2015 – Accepted: 7 December 2015 – Published: 21 December 2015 Abstract. Consumptive water footprint (WF) reduction in ir- even though the classical measure of “irrigation efficiency” rigated crop production is essential given the increasing com- for furrow is lower. petition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y ) and thus the consumptive WF of crops (ET / Y ). The manage- 1 Introduction ment practices are four irrigation techniques (furrow, sprin- kler, drip and subsurface drip (SSD)), four irrigation strate- One of the important prospects for relieving increasing water gies (full (FI), deficit (DI), supplementary (SI) and no irri- scarcity is to reduce the consumptive water use in the agri- gation), and three mulching practices (no mulching, organic cultural sector, which makes up the largest share in global (OML) and synthetic (SML) mulching). Various cases were freshwater consumption (Hoekstra and Mekonnen, 2012). In considered: arid, semi-arid, sub-humid and humid environ- crop production substantial gains can be achieved by increas- ments in Israel, Spain, Italy and the UK, respectively; wet, ing yield and reducing water losses, with the latter referring normal and dry years; three soil types (sand, sandy loam and to the non-beneficial consumptive water use at field level and silty clay loam); and three crops (maize, potato and tomato).
    [Show full text]