Generalized 2-Vector Spaces and General Linear 2-Groups

Total Page:16

File Type:pdf, Size:1020Kb

Generalized 2-Vector Spaces and General Linear 2-Groups View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 212 (2008) 2069–2091 www.elsevier.com/locate/jpaa Generalized 2-vector spaces and general linear 2-groups Josep Elgueta∗ Dept. Matematica` Aplicada II, Universitat Politecnica` de Catalunya, Spain Received 28 February 2007; received in revised form 28 October 2007 Available online 29 February 2008 Communicated by I. Moerdijk Abstract A notion of generalized 2-vector space is introduced which includes Kapranov and Voevodsky 2-vector spaces. Various kinds of such objects are considered and examples are given. The corresponding general linear 2-groups are explicitly computed in a special case which includes Kapranov and Voevodsky 2-vector spaces. c 2008 Elsevier B.V. All rights reserved. MSC: 18E05; 18D35; 18D20 1. Introduction In the last decade and a half, the need to introduce a categorical analog of the notion of vector space over a field K , usually called a 2-vector space over K , has become more and more obvious. This need was made explicit, for example, when looking for the right framework to study the generalizations of the Yang–Baxter equation to higher dimensions. It was indeed in this setting that the notion of (finite-dimensional) 2-vector space over a field K was first introduced by Kapranov and Voevodsky [14]. The main point in Kapranov and Voevodsky’s definition was to take the category VectK of finite-dimensional vector spaces over K as the analog of the field K and to define a (finite-dimensional) n ≥ 2-vector space over K as a “VectK -module category” equivalent in the appropriate sense to VectK for some n 0 (see [14] for details). Inspired by previous drafts of this work and more or less at the same time, Yetter [22] also studied the theory of VectK -module categories with the purpose of providing “an algebraic footing for the extension to higher dimensions of the successful interaction between 3-manifold topology, quantum field theory and monoidal category theory”. Shortly after, motivated by the study of the representation theory of Hopf categories (the higher-dimensional analog of Hopf algebras), Neuchl [18] introduced a notion of 2-vector space over K that is simpler but basically equivalent to Kapranov and Voevodsky’s: a (finite-dimensional) 2-vector space over K is a K -linear additive category V that admits a (finite) “basis of absolutely simple objects”, i.e., a (finite) family of simple objects whose vector spaces of endomorphisms are 1-dimensional and such that any object is a finite biproduct of them in an essentially unique way. n When such a basis B exists, it can be shown that V is indeed K -linearly equivalent to the category VectK for some ∗ Corresponding address: Universitat Politecnica de Catalunya, Department of Mathematica Aplicada II (UPC), Edifici Omega-Campus NordC/ Jordi Girona, 1-3, 08034 Barcelona, Spain. E-mail address: [email protected]. 0022-4049/$ - see front matter c 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2007.12.010 2070 J. Elgueta / Journal of Pure and Applied Algebra 212 (2008) 2069–2091 n ≥ 0 (called its rank). Later on, in their attempt to define a higher-dimensional analog of a Lie algebra, Baez and Crans [2] gave a completely different notion of 2-vector space over K , namely, as an (internal) category in VectK . They proved that the appropriately defined 2-category of such 2-vector spaces is in fact equivalent to the familiar 2-category of length one complexes of vector spaces over K . Recently, we addressed ourselves to a “linear” representation theory of 2-groups, the categorical analog of the usual groups. This theory also requires some notion of 2-vector space. In particular, in [10] we have studied the 2- category of representations of an arbitrary 2-group G as self-equivalences of a Kapranov and Voevodsky 2-vector space. However, some generalization of this notion of 2-vector space seems to be needed. Thus, on the one hand, the representation theory considered in [10] seems good only for (pro)finite 2-groups. Indeed, a self-equivalence of a Kapranov and Voevodsky 2-vector space of rank n is basically given by an element of the permutation group Σn. Hence, modulo some more data described in [10], such a representation of G is given by a group morphism from the group of isomorphism classes of objects of G to Σn. On the other hand, the setup of Kapranov and Voevodsky allows us to define a natural analog of the group algebra only when the 2-group G is discrete (with only identity morphisms) and hence, given by just a group G. However, a notion of “2-group 2-algebra” VectK [G] for a generic 2-group G seems of interest in order to prove a reconstruction theorem of the Tannaka–Krein type for 2-groups. Hence, one would really like to extend the notion to arbitrary 2-groups, not necessarily discrete. This requires a way to replace VectK [X] for X a set with VectK [C] for a category C. The purpose of this paper is to introduce such a generalization of the notion of 2-vector space that includes Kapranov and Voevodsky definition as a particular case. Instead of categorizing the notion of K -vector space, with K replaced by VectK , we turn our attention to the fact that any vector space is isomorphic to the vector space K [X] of all finite formal linear combinations of elements of some set X with coefficients in K , and categorize this construction. The starting point now is going to be not a set X but a category C.A generalized 2-vector space over K is then defined as a K -linear additive category V which is K -linearly equivalent to the free K -linear additive category generated by C, for some category C. By analogy with K [X], such a freely generated K -linear additive category is denoted by VectK [C]. When C is a finite discrete category, we recover (up to equivalence) Kapranov and Voevodsky 2-vector n ≥ [ ] spaces VectK for all n 0. However, not all K -linear additive categories VectK C are of this type for some category C. As it is shown below with examples, in some cases there exists a basis, but not of absolutely simple objects, and arguments are also given which suggest that there may exist no basis at all. There is an important difference between the category setting and the vector spaces setting. Given a set X, in addition to K [X] there is another vector space naturally associated to X. Namely, the vector space K X of all functions on X with values in K . For finite sets, both vector spaces are isomorphic. In fact, both are functorial and define X naturally isomorphic functors from the category FinSet of finite sets to VectK . The analog of K in the category Cop Cop setting is the functor category VectK for C a (finite) category. But even for finite categories C, VectK [C] and VectK Cop are no longer equivalent. As it is discussed below, VectK [C] is equivalent to just a certain (full) subcategory of VectK (cf. Theorem 20). Besides this, the above notion of generalized 2-vector space has some additional drawbacks with respect to Kapranov and Voevodsky 2-vector spaces. For instance, generalized 2-vector spaces are non-Karoubian (hence, nonabelian) categories in general (see Section 3.1). Moreover, they have no dual object in the usual sense except when they are Kapranov and Voevodsky 2-vector spaces. Indeed, let denote the tensor product of K -linear additive categories (see [9]). If for a given K -linear additive category A there exists a K -linear additive category A∗ and ∗ ∗ K -linear functors ev : A A → VectK and coev : VectK → AA satisfying the usual axioms which define a (left or right) dual object, it may be shown that A is necessarily a Kapranov and Voevodsky 2-vector space (see [18], = n where the result is attributed to P. Schauenburg). When A VectK , such a dual object indeed exists, and it is given by the category of K -linear functors A → VectK and natural transformations between these. By analogy with the situation for vector spaces, such a dual object is again a Kapranov and Voevodsky 2-vector space of rank n. Yet another drawback concerns the categories of morphisms between arbitrary generalized 2-vector spaces. Thus, generalized 2- vector spaces are naturally organized into a 2-category 2GVECTK with the K -linear functors as 1-morphisms and all natural transformations between these as 2-morphisms. It then turns out that the categories of morphisms between arbitrary generalized 2-vector spaces are not always generalized 2-vector spaces. However, as a matter of fact this new notion accomplishes our above-mentioned goal, as it provides a natural analog of the group algebras in the category setting. Thus, the free vector space construction K [X] is not just functorial. It J. Elgueta / Journal of Pure and Applied Algebra 212 (2008) 2069–2091 2071 actually defines a monoidal functor K [−] : Sets → VECTK which is left adjoint to the forgetful functor U : VECTK → Sets. The fact that K [−] is monoidal implies that it indeed induces a functor K [−] : Monoids → AlgK between the category of monoids and that of associative K -algebras with unit and hence, also from the category Grps of groups to AlgK . In a completely analogous way, a monoidal structure on 2GVECTK can be defined such that the construction VectK [C] extends to a monoidal 2-functor VectK [−] : Cat → 2GVECTK which is left 2-adjoint to the forgetful 2-functor U : 2GVECTK → Cat (see [9]).
Recommended publications
  • A General Theory of Localizations
    GENERAL THEORY OF LOCALIZATION DAVID WHITE • Localization in Algebra • Localization in Category Theory • Bousfield localization Thank them for the invitation. Last section contains some of my PhD research, under Mark Hovey at Wesleyan University. For more, please see my website: dwhite03.web.wesleyan.edu 1. The right way to think about localization in algebra Localization is a systematic way of adding multiplicative inverses to a ring, i.e. given a commutative ring R with unity and a multiplicative subset S ⊂ R (i.e. contains 1, closed under product), localization constructs a ring S−1R and a ring homomorphism j : R ! S−1R that takes elements in S to units in S−1R. We want to do this in the best way possible, and we formalize that via a universal property, i.e. for any f : R ! T taking S to units we have a unique g: j R / S−1R f g T | Recall that S−1R is just R × S= ∼ where (r; s) is really r=s and r=s ∼ r0=s0 iff t(rs0 − sr0) = 0 for some t (i.e. fractions are reduced to lowest terms). The ring structure can be verified just as −1 for Q. The map j takes r 7! r=1, and given f you can set g(r=s) = f(r)f(s) . Demonstrate commutativity of the triangle here. The universal property is saying that S−1R is the closest ring to R with the property that all s 2 S are units. A category theorist uses the universal property to define the object, then uses R × S= ∼ as a construction to prove it exists.
    [Show full text]
  • Complete Objects in Categories
    Complete objects in categories James Richard Andrew Gray February 22, 2021 Abstract We introduce the notions of proto-complete, complete, complete˚ and strong-complete objects in pointed categories. We show under mild condi- tions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This to- gether with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explana- tion behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. 1 Introduction Recall that Carmichael [19] called a group G complete if it has trivial cen- ter and each automorphism is inner. For each group G there is a canonical homomorphism cG from G to AutpGq, the automorphism group of G. This ho- momorphism assigns to each g in G the inner automorphism which sends each x in G to gxg´1. It can be readily seen that a group G is complete if and only if cG is an isomorphism. Baer [1] showed that a group G is complete if and only if every normal monomorphism with domain G is a split monomorphism. We call an object in a pointed category complete if it satisfies this latter condi- arXiv:2102.09834v1 [math.CT] 19 Feb 2021 tion.
    [Show full text]
  • Category of G-Groups and Its Spectral Category
    Communications in Algebra ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagb20 Category of G-Groups and its Spectral Category María José Arroyo Paniagua & Alberto Facchini To cite this article: María José Arroyo Paniagua & Alberto Facchini (2017) Category of G-Groups and its Spectral Category, Communications in Algebra, 45:4, 1696-1710, DOI: 10.1080/00927872.2016.1222409 To link to this article: http://dx.doi.org/10.1080/00927872.2016.1222409 Accepted author version posted online: 07 Oct 2016. Published online: 07 Oct 2016. Submit your article to this journal Article views: 12 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lagb20 Download by: [UNAM Ciudad Universitaria] Date: 29 November 2016, At: 17:29 COMMUNICATIONS IN ALGEBRA® 2017, VOL. 45, NO. 4, 1696–1710 http://dx.doi.org/10.1080/00927872.2016.1222409 Category of G-Groups and its Spectral Category María José Arroyo Paniaguaa and Alberto Facchinib aDepartamento de Matemáticas, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico, D. F., México; bDipartimento di Matematica, Università di Padova, Padova, Italy ABSTRACT ARTICLE HISTORY Let G be a group. We analyse some aspects of the category G-Grp of G-groups. Received 15 April 2016 In particular, we show that a construction similar to the construction of the Revised 22 July 2016 spectral category, due to Gabriel and Oberst, and its dual, due to the second Communicated by T. Albu. author, is possible for the category G-Grp.
    [Show full text]
  • Lecture 4 Supergroups
    Lecture 4 Supergroups Let k be a field, chark =26 , 3. Throughout this lecture we assume all superalgebras are associative, com- mutative (i.e. xy = (−1)p(x)p(y) yx) with unit and over k unless otherwise specified. 1 Supergroups A supergroup scheme is a superscheme whose functor of points is group val- ued, that is to say, valued in the category of groups. It associates functorially a group to each superscheme or equivalently to each superalgebra. Let us see this in more detail. Definition 1.1. A supergroup functor is a group valued functor: G : (salg) −→ (sets) This is equivalent to have the following natural transformations: 1. Multiplication µ : G × G −→ G, such that µ ◦ (µ × id) = (µ × id) ◦ µ, i. e. µ×id G × G × G −−−→ G × G id×µ µ µ G ×y G −−−→ Gy 2. Unit e : ek −→ G, where ek : (salg) −→ (sets), ek(A)=1A, such that µ ◦ (id ⊗ e)= µ ◦ (e × id), i. e. id×e e×id G × ek −→ G × G ←− ek × G ց µ ւ G y 1 3. Inverse i : G −→ G, such that µ ◦ (id, i)= e ◦ id, i. e. (id,i) G −−−→ G × G µ e eyk −−−→ Gy The supergroup functors together with their morphisms, that is the nat- ural transformations that preserve µ, e and i, form a category. If G is the functor of points of a superscheme X, i.e. G = hX , in other words G(A) = Hom(SpecA, X), we say that X is a supergroup scheme. An affine supergroup scheme X is a supergroup scheme which is an affine superscheme, that is X = SpecO(X) for some superalgebra O(X).
    [Show full text]
  • Research.Pdf (1003.Kb)
    PERSISTENT HOMOLOGY: CATEGORICAL STRUCTURAL THEOREM AND STABILITY THROUGH REPRESENTATIONS OF QUIVERS A Dissertation presented to the Faculty of the Graduate School, University of Missouri, Columbia In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by KILLIAN MEEHAN Dr. Calin Chindris, Dissertation Supervisor Dr. Jan Segert, Dissertation Supervisor MAY 2018 The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled PERSISTENT HOMOLOGY: CATEGORICAL STRUCTURAL THEOREM AND STABILITY THROUGH REPRESENTATIONS OF QUIVERS presented by Killian Meehan, a candidate for the degree of Doctor of Philosophy of Mathematics, and hereby certify that in their opinion it is worthy of acceptance. Associate Professor Calin Chindris Associate Professor Jan Segert Assistant Professor David C. Meyer Associate Professor Mihail Popescu ACKNOWLEDGEMENTS To my thesis advisors, Calin Chindris and Jan Segert, for your guidance, humor, and candid conversations. David Meyer, for our emphatic sharing of ideas, as well as the savage question- ing of even the most minute assumptions. Working together has been an absolute blast. Jacob Clark, Brett Collins, Melissa Emory, and Andrei Pavlichenko for conver- sations both professional and ridiculous. My time here was all the more fun with your friendships and our collective absurdity. Adam Koszela and Stephen Herman for proving that the best balm for a tired mind is to spend hours discussing science, fiction, and intersection of the two. My brothers, for always reminding me that imagination and creativity are the loci of a fulfilling life. My parents, for teaching me that the best ideas are never found in an intellec- tual vacuum. My grandparents, for asking me the questions that led me to where I am.
    [Show full text]
  • Some Questions on Subgroups of 3-Dimensional Poincar\'E Duality Groups
    SOME QUESTIONS ON SUBGROUPS OF 3-DIMENSIONAL POINCARE´ DUALITY GROUPS J.A.HILLMAN Abstract. Poincar´eduality complexes model the homotopy types of closed manifolds. In the lowest dimensions the correspondence is precise: every con- 1 nected PDn-complex is homotopy equivalent to S or to a closed surface, when n = 1 or 2. Every PD3-complex has an essentially unique factorization as a connected sum of indecomposables, and these are either aspherical or have virtually free fundamental group. There are many examples of the lat- ter type which are not homotopy equivalent to 3-manifolds, but the possible groups are largely known. However the question of whether every aspherical PD3-complex is homotopy equivalent to a 3-manifold remains open. We shall outline the work which lead to this reduction to the aspherical case, mention briefly remaining problems in connection with indecomposable virtually free fundamental groups, and consider how we might show that PD3- groups are 3-manifold groups. We then state a number of open questions on 3-dimensional Poincar´eduality groups and their subgroups, motivated by considerations from 3-manifold topology. The first half of this article corresponds to my talk at the Luminy conference Structure of 3-manifold groups (26 February – 2 March, 2018). When I was first contacted about the conference, it was suggested that I should give an expository talk on PD3-groups and related open problems. Wall gave a comprehensive survey of Poincar´eduality in dimension 3 at the CassonFest in 2004, in which he con- sidered the splitting of PD3-complexes as connected sums of aspherical complexes and complexes with virtually free fundamental group, and the JSJ decomposition 2 of PD3-groups along Z subgroups.
    [Show full text]
  • Separable Commutative Rings in the Stable Module Category of Cyclic Groups
    SEPARABLE COMMUTATIVE RINGS IN THE STABLE MODULE CATEGORY OF CYCLIC GROUPS PAUL BALMER AND JON F. CARLSON Abstract. We prove that the only separable commutative ring-objects in the stable module category of a finite cyclic p-group G are the ones corresponding to subgroups of G. We also describe the tensor-closure of the Kelly radical of the module category and of the stable module category of any finite group. Contents Introduction1 1. Separable ring-objects4 2. The Kelly radical and the tensor6 3. The case of the group of prime order 14 4. The case of the general cyclic group 16 References 18 Introduction Since 1960 and the work of Auslander and Goldman [AG60], an algebra A over op a commutative ring R is called separable if A is projective as an A ⊗R A -module. This notion turns out to be remarkably important in many other contexts, where the module category C = R- Mod and its tensor ⊗ = ⊗R are replaced by an arbitrary tensor category (C; ⊗). A ring-object A in such a category C is separable if multiplication µ : A⊗A ! A admits a section σ : A ! A⊗A as an A-A-bimodule in C. See details in Section1. Our main result (Theorem 4.1) concerns itself with modular representation theory of finite groups: Main Theorem. Let | be a separably closed field of characteristic p > 0 and let G be a cyclic p-group. Let A be a commutative and separable ring-object in the stable category |G- stmod of finitely generated |G-modules modulo projectives.
    [Show full text]
  • Of F-Points of an Algebraic Variety X Defined Over A
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 14, Number 3, Pages 509{534 S 0894-0347(01)00365-4 Article electronically published on February 27, 2001 R-EQUIVALENCE IN SPINOR GROUPS VLADIMIR CHERNOUSOV AND ALEXANDER MERKURJEV The notion of R-equivalence in the set X(F )ofF -points of an algebraic variety X defined over a field F was introduced by Manin in [11] and studied for linear algebraic groups by Colliot-Th´el`ene and Sansuc in [3]. For an algebraic group G defined over a field F , the subgroup RG(F )ofR-trivial elements in the group G(F ) of all F -pointsisdefinedasfollows.Anelementg belongs to RG(F )ifthereisa A1 ! rational morphism f : F G over F , defined at the points 0 and 1 such that f(0) = 1 and f(1) = g.Inotherwords,g can be connected with the identity of the group by the image of a rational curve. The subgroup RG(F )isnormalinG(F ) and the factor group G(F )=RG(F )=G(F )=R is called the group of R-equivalence classes. The group of R-equivalence classes is very useful while studying the rationality problem for algebraic groups, the problem to determine whether the variety of an algebraic group is rational or stably rational. We say that a group G is R-trivial if G(E)=R = 1 for any field extension E=F. IfthevarietyofagroupG is stably rational over F ,thenG is R-trivial. Thus, if one can establish non-triviality of the group of R-equivalence classes G(E)=R just for one field extension E=F, the group G is not stably rational over F .
    [Show full text]
  • 3-MANIFOLDS with ABELIAN EMBEDDINGS in S4 Every Integral
    3-MANIFOLDS WITH ABELIAN EMBEDDINGS IN S4 J.A.HILLMAN Abstract. We consider embeddings of 3-manifolds in S4 such that each of the two complementary regions has an abelian fundamental group. In particular, we show that an homology handle M has such an embedding if and only if 0 π1(M) is perfect, and that the embedding is then essentially unique. Every integral homology 3-sphere embeds as a topologically locally flat hyper- surface in S4, and has an essentially unique \simplest" such embedding, with con- tractible complementary regions. For other 3-manifolds which embed in S4, the complementary regions cannot both be simply-connected, and it not clear whether they always have canonical \simplest" embeddings. If M is a closed hypersurface 4 ∼ in S = X [M Y then H1(M; Z) = H1(X; Z) ⊕ H1(Y ; Z), and so embeddings such that each of the complementary regions X and Y has an abelian fundamental group might be considered simplest. We shall say that such an embedding is abelian. Al- though most 3-manifolds that embed in S4 do not have such embeddings, this class is of particular interest as the possible groups are known, and topological surgery in dimension 4 is available for abelian fundamental groups. Homology 3-spheres have essentially unique abelian embeddings (although they may have other embeddings). This is also known for S2 × S1 and S3=Q(8), by results of Aitchison (published in [21]) and Lawson [16], respectively. In Theorems 10 and 11 below we show that if M is an orientable homology handle (i.e., such ∼ that H1(M; Z) = Z) then it has an abelian embedding if and only if π1(M) has per- fect commutator subgroup, and then the abelian embedding is essentially unique.
    [Show full text]
  • Adams Operations and Symmetries of Representation Categories Arxiv
    Adams operations and symmetries of representation categories Ehud Meir and Markus Szymik May 2019 Abstract: Adams operations are the natural transformations of the representation ring func- tor on the category of finite groups, and they are one way to describe the usual λ–ring structure on these rings. From the representation-theoretical point of view, they codify some of the symmetric monoidal structure of the representation category. We show that the monoidal structure on the category alone, regardless of the particular symmetry, deter- mines all the odd Adams operations. On the other hand, we give examples to show that monoidal equivalences do not have to preserve the second Adams operations and to show that monoidal equivalences that preserve the second Adams operations do not have to be symmetric. Along the way, we classify all possible symmetries and all monoidal auto- equivalences of representation categories of finite groups. MSC: 18D10, 19A22, 20C15 Keywords: Representation rings, Adams operations, λ–rings, symmetric monoidal cate- gories 1 Introduction Every finite group G can be reconstructed from the category Rep(G) of its finite-dimensional representations if one considers this category as a symmetric monoidal category. This follows from more general results of Deligne [DM82, Prop. 2.8], [Del90]. If one considers the repre- sentation category Rep(G) as a monoidal category alone, without its canonical symmetry, then it does not determine the group G. See Davydov [Dav01] and Etingof–Gelaki [EG01] for such arXiv:1704.03389v3 [math.RT] 3 Jun 2019 isocategorical groups. Examples go back to Fischer [Fis88]. The representation ring R(G) of a finite group G is a λ–ring.
    [Show full text]
  • Homological Algebra Lecture 1
    Homological Algebra Lecture 1 Richard Crew Richard Crew Homological Algebra Lecture 1 1 / 21 Additive Categories Categories of modules over a ring have many special features that categories in general do not have. For example the Hom sets are actually abelian groups. Products and coproducts are representable, and one can form kernels and cokernels. The notation of an abelian category axiomatizes this structure. This is useful when one wants to perform module-like constructions on categories that are not module categories, but have all the requisite structure. We approach this concept in stages. A preadditive category is one in which one can add morphisms in a way compatible with the category structure. An additive category is a preadditive category in which finite coproducts are representable and have an \identity object." A preabelian category is an additive category in which kernels and cokernels exist, and finally an abelian category is one in which they behave sensibly. Richard Crew Homological Algebra Lecture 1 2 / 21 Definition A preadditive category is a category C for which each Hom set has an abelian group structure satisfying the following conditions: For all morphisms f : X ! X 0, g : Y ! Y 0 in C the maps 0 0 HomC(X ; Y ) ! HomC(X ; Y ); HomC(X ; Y ) ! HomC(X ; Y ) induced by f and g are homomorphisms. The composition maps HomC(Y ; Z) × HomC(X ; Y ) ! HomC(X ; Z)(g; f ) 7! g ◦ f are bilinear. The group law on the Hom sets will always be written additively, so the last condition means that (f + g) ◦ h = (f ◦ h) + (g ◦ h); f ◦ (g + h) = (f ◦ g) + (f ◦ h): Richard Crew Homological Algebra Lecture 1 3 / 21 We denote by 0 the identity of any Hom set, so the bilinearity of composition implies that f ◦ 0 = 0 ◦ f = 0 for any morphism f in C.
    [Show full text]
  • Categories of Projective Spaces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF PURE AND APPLIED ALGEBRA Journal of Pure and Applied Algebra 110 (1996) 241-258 Categories of projective spaces Aurelio Carboni *, Marco Grandis Dipartimento di Matematica, Universitri di Genova, Via L.B. Alberti 4, 16132 Geneva, Italy Communicated by by F.W. Lawvere; received 1 December 1994 Abstract Starting with an abelian category d, a natural construction produces a category Pd such that, when d is an abelian category of vector spaces, llp& is the corresponding category of projective spaces. The process of forming the category P& destroys abelianess, but not completely, and the precise measure of what remains of it gives the possibility to reconstruct d out from PzZ, and allows to characterize categories of the form Pd, for an abelian d (projective categories). The characterization is given in terms of the notion of “Puppe exact category” and of an appropriate notion of “weak biproducts”. The proof of the characterization theorem relies on the theory of “additive relations”. 0. Introduction Starting with an abelian category &, a natural construction described in [5] produces a category P& such that, when & is an abelian category of vector spaces, Pd is the corresponding category of projective spaces. This construction is based on the subobject fimctor on d, which in the linear context we call “Grassmannian finctor”. Clearly, categories of the form P&’ for an abelian category ~4 are to be thought of as “categories of projective spaces”, and the natural question arises of their intrinsic characterization.
    [Show full text]