A Comprehensive Review of Applications of Drone Technology in the Mining Industry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Design of Social Drones a Review of Studies on Autonomous Flyers in Inhabited Environments
CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK The Design of Social Drones A Review of Studies on Autonomous Flyers in Inhabited Environments Mehmet Aydın Baytaş Damla Çay Yuchong Zhang Koç University KUAR Chalmers University of Technology Istanbul, Turkey Koç University Gothenburg, Sweden Qualisys AB Istanbul, Turkey [email protected] Gothenburg, Sweden [email protected] [email protected] Mohammad Obaid Asım Evren Yantaç Morten Fjeld UNSW Art & Design KUAR Chalmers University of Technology University of New South Wales Koç University Gothenburg, Sweden Sydney, Australia Istanbul, Turkey [email protected] [email protected] [email protected] ABSTRACT CCS CONCEPTS The design space of social drones, where autonomous flyers • Human-centered computing → Interaction design; operate in close proximity to human users or bystanders, Empirical studies in interaction design; is distinct from use cases involving a remote human opera- tor and/or an uninhabited environment; and warrants fore- KEYWORDS grounding human-centered design concerns. Recently, re- Drones, social drones, drone design, empirical studies, user search on social drones has followed a trend of rapid growth. studies, design knowledge, human-drone interaction, au- This paper consolidates the current state of the art in human- tonomous agents centered design knowledge about social drones through a ACM Reference Format: review of relevant studies, scaffolded by a descriptive frame- Mehmet Aydın Baytaş, Damla Çay, Yuchong Zhang, Mohammad work of design knowledge creation. Our analysis identified Obaid, Asım Evren Yantaç, and Morten Fjeld. 2019. The Design three high-level themes that sketch out knowledge clusters of Social Drones: A Review of Studies on Autonomous Flyers in in the literature, and twelve design concerns which unpack Inhabited Environments. -
Ornithopter Wing Optimization
Ornithopter Wing Optimization Sandra Mau Institute for Aerospace Studies, University of Toronto Downsview, Ontario, Canada Aug. 2003 Abstract A new ornithopter wing was designed using analytical software to theoretically produce enough lift and thrust to propel an engine-powered piloted aircraft into steady flight. Nomenclature GJtotal Total torsional stiffness of segment GJspar Torsional stiffness of segment spar GJf+r Torsional stiffness of segment fabric and ribs Xea Distance from leading edge to elastic axis Xs Distance from leading edge to spar mass centre mspar Mass of segment spar mf+r Mass of segment fabric and ribs Ispar Moment of inertia of segment spar If+r Moment of inertia of segment fabric and ribs EI Bending stiffness at elastic axis α Inboard sweep (inner crank angle) β Crank angle (outer) AR Aspect ratio Introduction After centuries of dreaming to fly with the birds, the Wright brothers gave flight to those dreams in 1903 when they built and flew the first successful powered and piloted aircraft. However, the dream of flying like the birds still eludes us to this day. Ornithopters are what innovators like Leonardo DaVinci have imagined since before the 1500s; before rigid-wing aircrafts like that of the Wrights. They are mechanical, powered, flapping-wing aircrafts – to imitate the flapping wings of a bird. This type of flight has continually been pursued throughout the ages. Some notable developments in flapping-wing flight included Alphonse Penaud’s rubber-powered model ornithopter in 1984, the gliding human-powered ornithopter of Alexander Lippisch in 1929, and Percival Spencer’s series of engine-powered, free-flight models in the 1960s. -
Counterinsurgency in the Iraq Surge
A NEW WAY FORWARD OR THE OLD WAY BACK? COUNTERINSURGENCY IN THE IRAQ SURGE. A thesis presented to the faculty of the Graduate School of Western Carolina University in partial fulfillment of the requirements for the degree of Master of Arts in US History. By Matthew T. Buchanan Director: Dr. Richard Starnes Associate Professor of History, Dean of the College of Arts and Sciences. Committee Members: Dr. David Dorondo, History, Dr. Alexander Macaulay, History. April, 2018 TABLE OF CONTENTS List of Abbreviations . iii Abstract . iv Introduction . 1 Chapter One: Perceptions of the Iraq War: Early Origins of the Surge . 17 Chapter Two: Winning the Iraq Home Front: The Political Strategy of the Surge. 38 Chapter Three: A Change in Approach: The Military Strategy of the Surge . 62 Conclusion . 82 Bibliography . 94 ii ABBREVIATIONS ACU - Army Combat Uniform ALICE - All-purpose Lightweight Individual Carrying Equipment BDU - Battle Dress Uniform BFV - Bradley Fighting Vehicle CENTCOM - Central Command COIN - Counterinsurgency COP - Combat Outpost CPA – Coalition Provisional Authority CROWS- Common Remote Operated Weapon System CRS- Congressional Research Service DBDU - Desert Battle Dress Uniform HMMWV - High Mobility Multi-Purpose Wheeled Vehicle ICAF - Industrial College of the Armed Forces IED - Improvised Explosive Device ISG - Iraq Study Group JSS - Joint Security Station MNC-I - Multi-National-Corps-Iraq MNF- I - Multi-National Force – Iraq Commander MOLLE - Modular Lightweight Load-carrying Equipment MRAP - Mine Resistant Ambush Protected (vehicle) QRF - Quick Reaction Forces RPG - Rocket Propelled Grenade SOI - Sons of Iraq UNICEF - United Nations International Children’s Fund VBIED - Vehicle-Borne Improvised Explosive Device iii ABSTRACT A NEW WAY FORWARD OR THE OLD WAY BACK? COUNTERINSURGENCY IN THE IRAQ SURGE. -
Design, Fabrication and Testing of Flapping Wing Micro Air Vehicle
K.P.Preethi et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 6, Issue 1, (Part – 3) January 2016, pp.133-150 RESEARCH ARTICLE OPEN ACCESS Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle K. P. Preethi Manohari Sai1, K. Bharadwaj2, K. Ravi Teja3, Kalyan Dagamoori4, 5 6 Kasiraju Venkata Sai Tarun , Vishnu Vijayan 1,2,3,6B.Tech Student, Department Of Aeronautical Engineering, MLR Institute Of Technology, Dundigal, Hyderabad. INDIA. 4 B.Tech Student, Department Of Aeronautical Engineering, MLR Institute Of Technology and Management, Dundigal, Hyderabad. INDIA. 5B.Tech Student, Department Of Aeronautical Engineering, GITAM UNIVERSITY, Hyderabad. INDIA. ABSTRACT: Flapping flight has the potential to revolutionize micro air vehicles (MAVs) due to increased aerodynamic performance, improved maneuverability and hover capabilities. The purpose of this project is to design and fabrication of flapping wing micro air vehicle. The designed MAV will have a wing span of 40cm. The drive mechanism will be a gear mechanism to drive the flapping wing MAV, along with one actuator. Initially, a preliminary design of flapping wing MAV is drawn and necessary calculation for the lift calculation has been done. Later a CAD model is drawn in CATIA V5 software. Finally we tested by Flying. Keywords : Flapping wing mav, Ornithopter, Components of MEMS etc. I. INTRODUCTION : An ornithopter( from Greek ornithos "bird" and are not actually aircraft. Some early manned flight pteron "wing") is an aircraft that flies by flapping its attempts may have been intended to achieve wings. Designers tend to imitated by the flapping- flapping-wing flight though probably only a glide wing flight of birds, bats, and insects. -
Phantom 4 Spec Sheet
Phantom 4 Spec Sheet: Aircraft Weight (including battery and propellers) 1380 g Max Ascent Speed 6 m/s (Sport mode) Max Descent Speed 4 m/s (Sport mode) Max Speed 20 m/s (Sport mode) Max Service Ceiling Above Sea Level 19685 feet (6000 m) Max Flight Time Approx. 28 minutes Operating Temperature 32° to 104° F (0° to 40° C) GPS Mode GPS / GLONASS Vertical: +/- 0.1 m (when Vision Positioning is active) or +/-0.5 m Hover Accuracy Horizontal: +/- 0.3 m (when Vision Positioning is active) or +/-1.5 m Diagonal Size (Excluding Propellers) 350 mm Obstacle Sensing System Obstacle Sensory Range 2 - 49 feet (0.7 - 15 m) Operating Environment Surface with clear pattern and adequate lighting (lux > 15) Camera Sensor 1/2.3” Effective pixels:12.4 M Lens FOV 94° 20 mm (35 mm format equivalent) f/2.8, focus at ∞ 100-3200 (video) ISO Range 100-1600 (photo) Shutter Speed 8s -1/8000s Image Max Size 4000×3000 Single shot Burst shooting: 3 / 5 / 7 frames Still Photography Modes Auto Exposure Bracketing ( AEB ): 3 / 5 bracketed frames at 0.7 EV Bias Time-lapse HDR UHD: 4096×2160 (4K) 24 / 25p 3840×2160 (4K) 24 / 25 / 30p Video Recording Modes 2704×1520 (2.7K) 24 / 25 / 30p FHD: 1920×1080 24 / 25 / 30 / 48 / 50 / 60 / 120p HD: 1280×720 24 / 25 / 30 / 48 / 50 / 60p Max Video Bitrate 60 Mbps Supported File Formats FAT32 ( ≤ 32 GB ); exFAT ( > 32 GB ) Photo JPEG, DNG ( RAW ) Video MP4, MOV (MPEG-4 AVC/H.264) Supported SD Card Types Micro SD Max capacity: 64 GB. -
Phantom Services: Deflecting Migrant Workers in China
Phantom Services: Deflecting Migrant Workers in China Alexsia T. Chan and Kevin J. O’Brien* ABSTRACT As China urbanizes, more migrants need and expect public services. Many municipalities, however, resist and undermine elements of the central government’s urbanization strategy by deflecting demands for benefits instead of meeting them or denying them outright. Urban authorities sometimes do so by establishing nearly impossible eligibility requirements or re- quiring paperwork that outsiders struggle to obtain. At times they also nudge migrants to seek health care or education elsewhere by enforcing dormant rules or by shutting down a locally available service provider. Local officials use these ploys for both political and practical reasons. Limiting access isolates and disempowers migrants and is cheaper than offering ben- efits. Phantom services are a consequence of the localization of the household registration system (hukou 户口) and a sign that new axes of inequality and gradations of second-class citizenship have emerged. ince the early 1980s, a desire for a better life has enticed more than 280 million S people to move to China’s cities. But after the migrants secure jobs, other needs and wants emerge one by one. Newcomers who are not assigned beds in company dormitories must quickly find a place to live. Workers require medical care when they get sick. Migrants out of work cannot count on unemployment benefits. Par- ents need affordable schooling for their children. Aging workers often lack portable pensions or any social security at all. As migrants put down roots in cities and the years go by, they tend to expect more and the demand for public services grows. -
Review on System Identification and Mathematical Modeling of Flapping
applied sciences Review Review on System Identification and Mathematical Modeling of Flapping Wing Micro-Aerial Vehicles Qudrat Khan 1 and Rini Akmeliawati 2,* 1 Center for Advanced Studies in Telecommunications, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan; [email protected] 2 School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia * Correspondence: [email protected] Featured Application: The paper provides a comprehensive review on various system identifi- cation and modeling techniques for flapping wing micro-aerial vehicles (FWMAVs) that will be useful for researchers in order to obtain mathematical modeling of FWMAVs. Abstract: This paper presents a thorough review on the system identification techniques applied to flapping wing micro air vehicles (FWMAVs). The main advantage of this work is to provide a solid background and domain knowledge of system identification for further investigations in the field of FWMAVs. In the system identification context, the flapping wing systems are first categorized into tailed and tailless MAVs. The most recent developments related to such systems are reported. The system identification techniques used for FWMAVs can be classified into time-response based identification, frequency-response based identification, and the computational fluid-dynamics based computation. In the system identification scenario, least mean square estimation is used for a beetle mimicking system recognition. In the end, this review work is concluded and some recommendations for the researchers working in this area are presented. Citation: Khan, Q.; Akmeliawati, R. Keywords: system identification; mathematical modeling; aerodynamics; flapping wing micro- Review on System Identification and aerial vehicles Mathematical Modeling of Flapping Wing Micro-Aerial Vehicles. -
Development of Small Sized Fixed Wing Unmanned Aerial System
Development of Small Sized Fixed Wing Unmanned Aerial System PI: Professor A.K. Ghosh, Department of Aerospace Engineering Co-PI: Professor Deepu Philip, Department of Industrial and Management Engineering Professor J. Ramkumar, Department of Mechanical Engineering Professor Nishchal Vema, Department of Electrical Engineering Sponsor: IIT Kanpur and Prabhu Goel Foundation Product Characteristics he project aimed at developing a small sized Unmanned Aerial î Easy to assemble – modular approach, can System (UAS) based on the fixed wing platform, having long be carried on the back of a Jeep or Gypsy endurance, in a pusher configuration; capable of both civil and î Short take-off and landing: approximately T defense applications. The platform was chosen specifically to 50 feet of flat surface as runway î Autonomous flight capability – controlled accommodate future modifications to the design; larger wingspan by on-board autopilot, allows for multiple and heavier payloads. flight modes î Navigation and Flight modes: GPS based The developed UAS has long endurance - greater than seven hours, Waypoint navigation as well as loitering and good all-up weight - about 16 - 21 kilograms, in which payload flight mode for target tracking capacity varies from 2-6 kilograms. The UAS propulsion system can be î Payloads: Multiple surveillance and either electrical or gasoline, both mounted in a pusher configuration. environmental sensing payloads. The pusher configuration was chosen keeping in mind futuristic Example: EO camera, IR camera, Dual, Aerosol sensors, CO₂ sensors, etc. application of the UAS in sensitive areas where exhaust fumes from î Maximum Take Off Weight (MTOW): 16 to puller engine may affect different environmental sensors. -
Unmanned Aerial Vehicle Forensic Investigation Process: DJI Phantom 3 Drone As a Case Study
2018 Annual ADFSL Conference on Digital Forensics, Security and Law Proceedings May 17th, 10:40 AM - 11:15 AM Unmanned Aerial Vehicle Forensic Investigation Process: DJI Phantom 3 Drone As a Case Study Alan Roder [email protected] Kim-Kwang Raymond Choo University of Texas at San Antonio, [email protected] Nhien-A Le-Khac University College Dublin, Ireland, [email protected] Follow this and additional works at: https://commons.erau.edu/adfsl Part of the Aviation Safety and Security Commons, Computer Law Commons, Defense and Security Studies Commons, Forensic Science and Technology Commons, Information Security Commons, National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, and the Social Control, Law, Crime, and Deviance Commons Scholarly Commons Citation Roder, Alan; Choo, Kim-Kwang Raymond; and Le-Khac, Nhien-A, "Unmanned Aerial Vehicle Forensic Investigation Process: DJI Phantom 3 Drone As a Case Study" (2018). Annual ADFSL Conference on Digital Forensics, Security and Law. 1. https://commons.erau.edu/adfsl/2018/presentations/1 This Peer Reviewed Paper is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in Annual ADFSL Conference on Digital Forensics, Security and Law by an (c)ADFSL authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Unmanned Aerial Vehicle Forensic ... CDFSL Proceedings 2018 UNMANNED AERIAL VEHICLE FORENSIC INVESTIGATION PROCESS: DJI PHANTOM 3 DRONE AS A CASE STUDY1 Alan Roder [email protected] Kim-Kwang Raymond Choo Department of Information Systems and Cyber Security, University of Texas at San Antonio, TX 78258, USA [email protected] Nhien-An Le-Khac School of Computer Science, University College Dublin, Ireland [email protected] ABSTRACT Drones (also known as 'Unmanned Aerial Vehicles' - UAVs) are a potential source of evidence in a digital investigation, partly due to their increasing popularity in our society. -
Bionic Ornithopter Owl (Stealth Flight)
International Research Journal of Advanced Engineering and Science ISSN (Online): 2455-9024 Bionic Ornithopter Owl (Stealth Flight) G. Hemalatha1, S. Arulgnanasundari2, R. Prithviraj3, D. Godwin Sam4 1Assistant Professor, Department of Mechatronics Engineering, PPG Institute of Technology, Coimbatore, Tamilnadu, India 2, 3, 4UG Scholar, Department of Mechatronics Engineering, PPG Institute of Technology, Coimbatore, Tamilnadu, India Abstract—The present world has been reached to a stage wherever been designed and also the style limitation is illustrated during most of the subtle and sensitive tasks square measure largely done by this thesis. artificial hands. Drones, robots have been replaced the place of human with their uncompromised accuracy and efficiency. Regards II. BLOCK DIAGRAM this development the importance of study regarding robots or pilotless vehicles to perform sensitive works beneath human management may be a high demand of your time. We square measure concentrating on the aerial vehicles wish to integrate our ideas and works to develop a replacement kind of flight system to boost the management and manoeuvring talents of flying UAVs or drones. Our experiments will open a port for next generation flight development for drone applications. Our logic is nothing can fly efficient as the birds do. So copying from the flying behaviour of bird is possible to gain all the abilities like the bird. We developed a model that flaps its wings in fastened amplitude with variable frequencies. To do this we introduced a crank shaft mechanism to drive the wings. The model is Fig. 1. Block diagram high-powered by a 100watt dc motor with necessary case assemblies. Making it light weight was always a big challenge from the A. -
Modernizing Environmental Mapping with Unmanned Aerial Vehicles
Department of Environmental Quality Unmanned Aerial Systems Programs Business Process Innovations North Carolina Initiated: March 2018 Completed: March 2020 Contact: Mike Griffin, DEQ Division of Marine Fisheries (252-808-8069, [email protected]) 1 EXECUTIVE SUMMARY The North Carolina Department of Environmental Quality (DEQ), in conjunction with the Department of Information Technology, devised and is actively using an Unmanned Aerial Systems (UAS) drone program to modernize and improve efficiencies in data collection and mapping processes. This program has allowed divisions within DEQ to considerably improve their business processes, increase productivity, save staff time, and decrease costs. The UAS program’s goal is to implement, where feasible, the use of drones for field data collection. DEQ had made marked improvements in data collection with tablets and Geographic Information Systems (GIS) apps over the last five years. The Environmental Systems Research Institute (ESRI) has recognized the state for these efforts. While tablets with built-in GPS were a great improvement over pad and paper, they did not significantly change the work processes or the amount of time it took to collect the data. To make significant process improvements, the teams needed disruptive change. Thus, the introduction of drones. Initial case studies carried out in collaboration with the University of North Carolina Wilmington started in the spring and summer of 2018. These initial efforts produced compelling results and garnered buy-in from the state. Initial flights and analysis efforts were predominately focused on the Division of Marine Fisheries (DMF) Estuarine Benthic Habitat Mapping (EBHM) program. The cost savings and accuracy gains afforded by the implementation of a DJI Phantom 4 Pro drone were astonishing. -
Dronesar: Extending Physical Spaces in Spatial Augmented Reality Using Projection on a Drone
DroneSAR: Extending Physical Spaces in Spatial Augmented Reality using Projection on a Drone Rajkumar Darbar, Joan Sol Roo, Thibault Lainé, Martin Hachet Inria Bordeaux, France {rajkumar.darbar,joan-sol.roo,thibault.laine,martin.hachet}@inria.fr Figure 1: An example scenario of DroneSAR. (A) A physical house mock-up. (B) A drone is mounted with two white paper panels. (C) The house is augmented using projection, and the main menu composed of a set of virtual tools projected on the drone panel. (D) A user selected the ‘measuring tool’ application using a controller. Then, the user positions the drone at the desired location in the 3D space (i.e., on top of the house) and draws a line shown in blue color on the augmented house to measure its width. Finally, the measured length is displayed on the drone panel. ABSTRACT ACM Reference Format: Spatial Augmented Reality (SAR) transforms real-world objects into Rajkumar Darbar, Joan Sol Roo, Thibault Lainé, Martin Hachet. 2019. Drone- SAR: Extending Physical Spaces in Spatial Augmented Reality using Projec- interactive displays by projecting digital content using video pro- tion on a Drone. In MUM 2019: 18th International Conference on Mobile and jectors. SAR enables co-located collaboration immediately between Ubiquitous Multimedia (MUM 2019), November 26–29, 2019, Pisa, Italy. ACM, multiple viewers without the need to wear any special glasses. Un- New York, NY, USA, 7 pages. https://doi.org/10.1145/3365610.3365631 fortunately, one major limitation of SAR is that visual content can only be projected onto its physical supports. As a result, displaying 1 INTRODUCTION User Interfaces (UI) widgets such as menus and pop-up windows in SAR is very challenging.