Online Assessment of Graph Theory

Total Page:16

File Type:pdf, Size:1020Kb

Online Assessment of Graph Theory ONLINE ASSESSMENT OF GRAPH THEORY A thesis submitted for the degree of Doctor of Philosophy By Justin Dale Hatt College of Engineering, Design and Physical Sciences Brunel University August 2016 Abstract The objective of this thesis is to establish whether or not online, objective questions in elementary graph theory can be written in a way that exploits the medium of computer-aided assessment. This required the identification and resolution of question design and programming issues. The resulting questions were trialled to give an extensive set of answer files which were analysed to identify whether computer delivery affected the questions in any adverse ways and, if so, to identify practical ways round these issues. A library of questions spanning commonly-taught topics in elementary graph theory has been designed, programmed and added to the graph theory topic within an online assessment and learning tool used at Brunel University called Mathletics. Distracters coded into the questions are based on errors students are likely to make, partially evidenced by final examination scripts. Questions were provided to students in Discrete Mathematics modules with an extensive collection of results compiled for analysis. Questions designed for use in practice environments were trialled on students from 2007 – 2008 and then from 2008 to 2014 inclusive under separate testing conditions. Particular focus is made on the relationship of facility and discrimination between comparable questions during this period. Data is grouped between topic and also year group for the 2008 – 2014 tests, namely 2008 to 2011 and 2011 to 2014, so that it may then be determined what factors, if any, had an effect on the overall results for these questions. Based on the analyses performed, it may be concluded that although CAA questions provide students with a means for improving their learning in this field of mathematics, what makes a question more challenging is not solely based on the number of ways a student can work out his/her solution but also on several other factors that depend on the topic itself. I Acknowledgements My experience of academic study and research within the United Kingdom has indeed been exhausting and challenging. However, I am very grateful for this experience and especially for all of the support I have received during this time. There are many people I wish to thank for this extensively long experience… also, this is the one part of the thesis where I can speak casually, so I am taking advantage of this opportunity while I can. I must thank the academic staff within the Department of Mathematics at Lakehead University. The academic support I received was incredible and I was treated with great care throughout my undergraduate degree. I especially wish to thank Dr. Liping Liu, who introduced me to the Atlantic Association for Research in the Mathematical Sciences (AARMS), which eventually led me to the opportunity to relocate to the United Kingdom to conduct postgraduate research. I must thank Dr. Anthony and Mrs. Sarah Aldous, whom I met at AARMS, as well as Dr. Manti Mendi for supporting me in my move to the United Kingdom and my transition into a postgraduate research career. Their support has been excellent and I am especially grateful to Dr. and Mrs. Aldous for providing me a place to stay whenever needed, especially more recently when I visited them in Singapore. You will probably notice that I am playing to a particular timeline here, so that is why it is fitting now to thank my Ph.D. supervisor, Dr. Martin Greenhow, for putting up with me all of this time. This has not been such a straightforward Ph.D. degree to complete and neither of us knew what was going to come out of this kind of research. However stressful or difficult the experience may have appeared to be at times, the experience of conducting research and understanding its benefits are absolutely incredible and I am very happy to have been able to use my mathematics training and also a bit of my educational training to create such useful and practical research in mathematics. I want to thank Bloomsbury Central Baptist Church for their incredible support of me since I joined them in 2007. It was quite the stretch for me to travel from Uxbridge in London’s Zone 6 to Holborn in Zone 1 just to attend a church, but to then find fellow Canadians in attendance, along with so many academics… from the Reverend Doctors of Theology to a former President of a postsecondary II institution to medical doctors, Masters students, etc., was simply too good to pass up. The community atmosphere has been incredible and although some difficult times have occurred, there is still a great sense of community care between everyone. I am especially grateful to the ministers, Rev. Dr. Ruth Gouldbourne and Rev. Dr. Simon Woodman, for their extended support, both spiritually and financially (for help in attending an international conference several years ago now), and former minister, Rev. Dr. Simon Perry, for his casual, relaxed view in understanding our place in the world and how God works through us within society. I also wish to thank Tim Jones, Dave and Sandy Porter, Peter How, Elsie Martin, Rosel Schmidt, Ruth Johnson, Barbara Collett, Chris Green, Helen Walsh, Howard Brown, the Filipino Community, Daniel and Bryant Taffou, and especially Ben Haden for the friendship, kindness, and incredible support all of them have provided me within the church during this time. Speaking of Canadians, I really have to thank the London Expat Canadian Meetup community of expatriate Canadians living in the United Kingdom. I have made so many friends through my involvement with this group as co-organiser and the friendships have been absolutely excellent. I especially wish to thank the organiser, Dave Mathews, along with Vicky Whaley, Johnson Tse, Cynthia Fisher, and so many others (Sorry for not being able to mention all of you!) for all of their kindness and gratitude in keeping me calm and sane during this experience as a Canadian living overseas. I also want to thank other people back home, including Darlene Robertson, Theresa Flanagan, Tiffany Johnson, Kimberly Johnson, Misty-Dawn Anderson, Travis Gagné, Pat Norman, Shelley Sowers, Heidi Conrod, Conrad Cline, Shannon Neathway, Helen Woodcock, Sydney Linton, Dominique Scott, Deanna Hanley-Luevano, Kim Lomax, Miranda Jones, Tracy Spear, Jen Campbell, Liz Monks, Jillian Monaghan, Penny Cooke, Stacey Tucker, Jenna Martell, and any others I have forgotten to mention (Again… sorry!) for the help and support provided to me back in Canada when I greatly needed it. During my time in employment as a secondary school teacher, I have made some rather good friends whom I wish to thank. I want to thank Joanne Wright and Jo Franklin for their help in adjusting to teaching in a new educational environment, Ian Tay, Rob Mathers, Hilary Downey, Helene Ng Wheeler, III Stephanie Cuthbertson, Dave Hinchcliffe, Günter Morson, and Cameron Mitchell, with whom I worked outside London. That should be most everyone. Sorry to those who I forgot to mention… again; it’s a Canadian thing to be overly apologetic and, ironically, I’m not apologising for that. IV Table of Contents Chapter 1 Introduction............................................................................................... 1 1.1 Background and Motivation ..................................................................................... 1 1.2 Computer-Aided Assessment and Learning ............................................................... 4 1.2.1 Definitions .................................................................................................................... 4 1.2.2 Software Applications .................................................................................................. 8 1.3 Design of Questions ............................................................................................... 11 1.3.1 Features of QuestionMark Perception ....................................................................... 11 1.3.2 Question Types ........................................................................................................... 14 1.3.2.1 Multiple-Choice Questions ............................................................................................. 14 1.3.2.2 Numerical Input Questions ............................................................................................ 16 1.3.2.3 Word Input Questions .................................................................................................... 17 1.4 Analysis of Questions ............................................................................................. 18 1.5 Research Questions and Hypothesis ....................................................................... 18 1.6 A Note About The References ................................................................................. 21 Chapter 2 Design of Template Codes for Graph Theory in Mathletics ........................ 22 2.1 Question and Template Design: An Introduction ..................................................... 22 2.2 Simple Network ..................................................................................................... 23 2.3 Digraphs ................................................................................................................ 25 2.4 Labelled Digraph .................................................................................................... 26 2.5 Vertex Colouring ...................................................................................................
Recommended publications
  • PDF Reference
    NetworkX Reference Release 1.2 Aric Hagberg, Dan Schult, Pieter Swart August 01, 2010 CONTENTS 1 Introduction 1 1.1 Who uses NetworkX?..........................................1 1.2 The Python programming language...................................1 1.3 Free software...............................................1 1.4 Goals...................................................1 1.5 History..................................................2 2 Overview 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Algorithms 133 4.1 Bipartite................................................. 133 4.2 Blockmodeling.............................................. 135 4.3 Boundary................................................. 136 4.4 Centrality................................................. 137 4.5 Clique.................................................. 145 4.6 Clustering................................................ 147 4.7 Components............................................... 150 4.8 Cores................................................... 158 4.9 Cycles.................................................. 158 4.10 Directed Acyclic Graphs......................................... 159 4.11 Distance Measures............................................ 161 4.12 Eulerian.................................................
    [Show full text]
  • Eindhoven University of Technology BACHELOR the Chinese Postman Problem in Undirected and Directed Graphs Verberk, Lucy P.A
    Eindhoven University of Technology BACHELOR The Chinese postman problem in undirected and directed graphs Verberk, Lucy P.A. Award date: 2019 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Eindhoven University of Technology Applied Mathematics Combinitorial Optimization The Chinese Postman Problem in undirected and directed graphs Bachelor Final project Author: Supervisor: Lucy Verberk Dr. Judith Keijsper July 11, 2019 Abstract In this report the Chinese Postman Problem (CPP) for undirected, directed and mixed graphs will be considered. Solution methods for the undirected and directed CPP will be discussed. For the mixed CPP, some suggestions for further research are mentioned. An application of routing gritters and snow-shovel trucks in the city of Eindhoven in the Netherlands will be con- sidered.
    [Show full text]
  • Delivery Optimization in Logistics Using Advanced Analytics and Interactive Visualization*
    Proceedings_____________________________________________________________________________________________________ of the Central European Conference on Information and Intelligent Systems 35 Delivery Optimization in Logistics Using Advanced Analytics and Interactive Visualization* Leo Mršić Algebra University College Zagreb, Croatia [email protected] Abstract. Paper is based on research and PoC with called a Eulerian Cycle. Finding such a cycle is more goal to unlock business value in delivery optimization, “feasible” and can be used efficiently to create business using advanced analytics and interactive visualization. value. This problem was first solved Mei-Ko Kuan, a There are several common approaches including Chinese mathematician, in 1962 [Kuan, 1962]. He was travelling salesman problem (TSP) that has various first one who consider this problem from the practical applications even in its purest formulation, such as perspective of a postman picking up mail at the post planning or logistics. Knowledge base powered by office, delivering it along a set of streets, and returning large data set is described through development and to the post office. Since he must follow route at least final, interactive, form. Using common principles, once, the problem is referred to as "Chinese" postman paper describe business value that can be extracted problem to investigate how to cover every street along using advanced analytics and interactive visualization, path and return to the post office under the least cost. how to structure steps as best practice to achieve In practice, there are a lot of applications of this success and what additional benefits can be expected technique such as road maintenance, waste collection, by supporting this approach. As part of research, bus scheduling etc.
    [Show full text]
  • Theory of Graph Traversal Edit Distance, Extensions, and Applications
    THESIS THEORY OF GRAPH TRAVERSAL EDIT DISTANCE, EXTENSIONS, AND APPLICATIONS Submitted by Ali Ebrahimpour Boroojeny Department of Computer Science In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Spring 2019 Master’s Committee: Advisor: Hamidreza Chitsaz Asa Ben-Hur Zaid Abdo Copyright by Ali Ebrahimpour Boroojeny 2019 All Rights Reserved ABSTRACT THEORY OF GRAPH TRAVERSAL EDIT DISTANCE, EXTENSIONS, AND APPLICATIONS Many problems in applied machine learning deal with graphs (also called networks), including social networks, security, web data mining, protein function prediction, and genome informatics. The kernel paradigm beautifully decouples the learning algorithm from the underlying geometric space, which renders graph kernels important for the aforementioned applications. In this paper, we give a new graph kernel which we call graph traversal edit distance (GTED). We introduce the GTED problem and give the first polynomial time algorithm for it. Informally, the graph traversal edit distance is the minimum edit distance between two strings formed by the edge labels of respective Eulerian traversals of the two graphs. Also, GTED is motivated by and provides the first mathematical formalism for sequence co-assembly and de novo variation detection in bioinformatics. We demonstrate that GTED admits a polynomial time algorithm using a linear program in the graph product space that is guaranteed to yield an integer solution. To the best of our knowledge, this is the first approach to this problem. We also give a linear programming relaxation algorithm for a lower bound on GTED. We use GTED as a graph kernel and evaluate it by computing the accuracy of an SVM classifier on a few datasets in the literature.
    [Show full text]
  • PDF Reference
    NetworkX Reference Release 1.0 Aric Hagberg, Dan Schult, Pieter Swart January 08, 2010 CONTENTS 1 Introduction 1 1.1 Who uses NetworkX?..........................................1 1.2 The Python programming language...................................1 1.3 Free software...............................................1 1.4 Goals...................................................1 1.5 History..................................................2 2 Overview 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Operators 129 4.1 Graph Manipulation........................................... 129 4.2 Node Relabeling............................................. 134 4.3 Freezing................................................. 135 5 Algorithms 137 5.1 Boundary................................................. 137 5.2 Centrality................................................. 138 5.3 Clique.................................................. 142 5.4 Clustering................................................ 145 5.5 Cores................................................... 147 5.6 Matching................................................. 148 5.7 Isomorphism............................................... 148 5.8 PageRank................................................. 161 5.9 HITS..................................................
    [Show full text]
  • Everystreet Algorithm
    #everystreet algorithm Matej Kerekrety [email protected] www.everystreetchallenge.com August 26, 2020 Abstract A simple application of Chinese postman problem on #everystreet run- ning challenge, where a runner attempts to visit every street of given area at least once. In order to run the challenge optimally and avoid unnec- essary detours and running same street twice (or more often) we used an algorithm based on maximal matching which gives us an induced eulerian multigraph where optimal Euler route exists. Keywords: graph theory, Chinese Postman Problem, maximal matching, every street challenge, running 1 Motivation Over the COVID-19 lockdown many runners and cyclist found themselves cap- tured within their cities. Some of them ended up running or spinning endless hours on virtual races such as Zwift, but some as e.g. Mark Beaumont [1] de- cided to join #everystreet challenge. Every street is a challenge originated by Rickey Gates [2, 3] who run every single street in city of San Francisco in fall 2018 which took him 46 days and run 1,303 miles. Inspired by Mark Beaumont who did this challenge over the lockdown in Edinburgh, place where I spend the lockdown, and literally everybody else who managed to accomplish this challenge.1 We tried to find a algorithm finding an optimal route for given street network area starting and ending in the same point. 2 Every street challenge Rules of every street challenge are run or cycle2 every single street of given (metropolitan) area which is usually a city or a neighborhood. Till this point 1I would have never had the patience and motivation to run that much in the city.
    [Show full text]
  • Introduction to Graph Theory
    DRAFT Introduction to Graph Theory A short course in graph theory at UCSD February 18, 2020 Jacques Verstraete Department of Mathematics University of California at San Diego California, U.S.A. [email protected] Contents Annotation marks5 1 Introduction to Graph Theory6 1.1 Examples of graphs . .6 1.2 Graphs in practice* . .9 1.3 Basic classes of graphs . 15 1.4 Degrees and neighbourhoods . 17 1.5 The handshaking lemmaDRAFT . 17 1.6 Digraphs and networks . 19 1.7 Subgraphs . 20 1.8 Exercises . 22 2 Eulerian and Hamiltonian graphs 26 2.1 Walks . 26 2.2 Connected graphs . 27 2.3 Eulerian graphs . 27 2.4 Eulerian digraphs and de Bruijn sequences . 29 2.5 Hamiltonian graphs . 31 2.6 Postman and Travelling Salesman Problems . 33 2.7 Uniquely Hamiltonian graphs* . 34 2.8 Exercises . 35 2 3 Bridges, Trees and Algorithms 41 3.1 Bridges and trees . 41 3.2 Breadth-first search . 42 3.3 Characterizing bipartite graphs . 45 3.4 Depth-first search . 45 3.5 Prim's and Kruskal's Algorithms . 46 3.6 Dijkstra's Algorithm . 47 3.7 Exercises . 50 4 Structure of connected graphs 52 4.1 Block decomposition* . 52 4.2 Structure of blocks : ear decomposition* . 54 4.3 Decomposing bridgeless graphs* . 57 4.4 Contractible edges* . 58 4.5 Menger's Theorems . 58 4.6 Fan Lemma and Dirac's Theorem* . 61 4.7 Vertex and edge connectivity . 63 4.8 Exercises . 64 5 Matchings and Factors 67 5.1 Independent sets and covers . 67 5.2 Hall's Theorem .
    [Show full text]
  • D1 Route Inspection.Rtf
    D1 Route inspection PhysicsAndMathsTutor.com 1. (a) Explain why a network cannot have an odd number of vertices of odd degree. (2) The figure above shows a network of paths in a public park. The number on each arc represents the length of that path in metres. Hamish needs to walk along each path at least once to check the paths for frost damage starting and finishing at A. He wishes to minimise the total distance he walks. (b) Use the route inspection algorithm to find which paths, if any, need to be traversed twice. (4) (c) Find the length of Hamish’s route. [The total weight of the network in Figure 4 is 4180m.] (1) (Total 7 marks) Edexcel Internal Review 1 D1 Route inspection PhysicsAndMathsTutor.com 2. [The total weight of the network is 73.3 km] The diagram above models a network of tunnels that have to be inspected. The number on each arc represents the length, in km, of that tunnel. Malcolm needs to travel through each tunnel at least once and wishes to minimise the length of his inspection route. He must start and finish at A. (a) Use the route inspection algorithm to find the tunnels that will need to be traversed twice. You should make your method and working clear. (5) (b) Find a route of minimum length, starting and finishing at A. State the length of your route. (3) Edexcel Internal Review 2 D1 Route inspection PhysicsAndMathsTutor.com A new tunnel, CG, is under construction. It will be 10 km long. Malcolm will have to include the new tunnel in his inspection route.
    [Show full text]
  • Global Journal of Engineering Science And
    [FRTSSDS- June 2018] ISSN 2348 – 8034 DOI: 10.5281/zenodo.1288413 Impact Factor- 5.070 GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES TO FIND THE SOLUTION FOR A GRAPHICAL LOGISTICAL MODEL USING THE COMBINATION OF CHINESE POSTMAN PROBLEM, TRAVELLING SALESMAN PROBLEM AND ASSIGNMENT PROBLEM Priyanka Bhalerao1* & Seema Bagora2 *1&2Shri Vaishnav Vidyapeeth Vishvidyalaya, Indore ABSTRACT Graph theory is the study of the properties and applications of graphs. This particular field of mathematics studies and finds solutions by the study of graphs that are mathematical structures. Mathematical modeling is an activity in which we make mathematical structures to describe the behavior of various activities of our interest in many ways using words, drawing or sketches, computer programs, mathematical formulae etc. We are proposing a business logistics model where the distance travelled by goods and merchandise is minimized along with the allotment of minimum time for each activity we are using the combination of Travelling Salesman Problem, Chinese Postman Problem and Assignment Model to create this least time least distance model. In order to create this solutions, we evaluate the individual solutions of the above stated problems and make a combinatorial structure which represents a real life situation of a Logistics Industry to create a mathematical model for assigning a least distance least time model. Keywords- Mathematical modeling, Chinese Postman Problem, Travelling Salesman Problem, Assignment Problem, Logistics. I. INTRODUCTION Graph theory Graph theory is the study of the properties and applications of graphs. This particular field of mathematics studies and finds solutions by the study of graphs that are mathematical structures. These structures are used to model pair- wise relationships between objects by the method of graphical representations and mathematical derivations.
    [Show full text]
  • International Research a Note on Application International Journal Of
    International Journal of Trend in Scientific Research and Development (IJTSRD) International Open Access Journal ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume - 2 | Issue – 4 A Note On Applications of Cycles & Trees Chandrajeet Singh Yadav Assistant Professor, Department of Mathematics Vadodara Institute of Engineering, Vadodara, Gujarat, India ABSTRACT Graph theory ia a branch of mathematics which deals vertices. Such graphs are known as traversable with networks of points connected by lines called graphs. edges. The subject of graph theory had its beginnings in recreational math problems, but it has grown into a significant area of mathematical research with applications in chemistry, operations research, social sciences, and computer science. In this paper, we studied applications of path and circuits to the real world, so that author can understand the usefulness and importance of these things. Purpose of this paper is to provide an brief overview of applications area of cycles and trees. Figure : 1.1 IMS Subject Classification : 05C30, 94C15 Keywords: Path, Eulerian circuit, Hamiltonian cycle, network topology 1. INTRODUCTION Graph Theory’s[2] origin was the very famous Köingsberg seven bridges problem which was first found in 1735. Köingsberg was a city in Prussia situated on the Pregel River, which was served as the Figure : 1.2 residence of the dukes’ of Prussia in 16thcentury. Today the city is named Kaliningrad.The Problem is It took 200 and odd years before the first book on “Does a walk n such a way that one can walk through graph theory was written, namely, “The orie der all the seven bridges exactly once?” [5 ] endlichen and unendlichenGraphen”(Ten buer, Leipzig 1736) by Köing in 1736.
    [Show full text]
  • UNIT V COPING with the LIMITATIONS of ALGORITHM POWER 1. What Are the Limitations of Algorithm Power? There Are Many Algorithms
    29 CS6402 DESIGN AND ANALYSIS OF ALGORITHM 2 mark Q&A UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 1. What are the limitations of algorithm power? There are many algorithms for solving a variety of different problems. They are very powerful instruments, especially when they are executed by modern computers. The power of algorithms is because of the following reasons: There are some problems cannot be solved by any algorithm. There are some problems can be solved algorithmically but not in polynomial time. There are some problems can be solved in polynomial time by some algorithms, but there are usually lower bounds on their efficiency. Algorithms limits are identified by the following: Lower-Bound Arguments Decision Trees P, NP and NP-Complete Problems 2. What are lower-bound arguments? We can look at the efficiency of an algorithm two ways. We can establish its asymptotic efficiency class (say, for the worst case) and see where this class stands with respect to the hierarchy of efficiency classes. Lower bounds means estimating the minimum amount of work needed to solve the problem. We present several methods for establishing lower bounds and illustrate them with specific examples. 1. Trivial Lower Bounds 2. Information-Theoretic Arguments 3. Adversary Arguments 4. Problem Reduction In analyzing the efficiency of specific algorithms in the preceding, we should distinguish between a lower-bound class and a minimum number of times a particular operation needs to be executed. 3. Define Trivial Lower Bounds. The simplest method of obtaining a lower-bound class is based on counting the number of items in the problem’s input that must be processed and the number of output items that need to be produced.
    [Show full text]
  • Graph Theory Games and Real Life Applications. CONTENTS • Graph Theory Definition • the Three Types of Graphs
    Graph Theory games and real life applications. CONTENTS • Graph Theory Definition • The three types of Graphs • Degree of the vertex • Handshake Theorem • Eulerian Graphs • Weighted Graphs • Algorithm of Chinese post man. • Planar graphs and Euler formula 2 Graph theory: Is the formal study of a symbolic representation, based on the connectivity of vertices and edges. (concerns the relationship among lines and points) Many problems of practical interest can be represented by graphs. Example: The following table shows the flights from various European airports. Larnaca Thessaloniki Larnaca Thessaloniki, Athens Thessaloniki Larnaca, London London Thessaloniki, Athens Athens Larnaca, Thessaloniki, London Rome Paris Athens London a) Is there a way to travel from Larnaca to Paris? b) What do the vertices represent? Rome Paris c) What do the edges represent? 3 There are three types of graphs: Undirected Directed Mixed graphs For example, if vertices represents people. • Undirected: if the shake hands, if a person A shake hands with a person B, then person B also shook hand with person A. • Directed: if one person knows another, does not necessarily implies the reverse (one person is famous). Degree of a vertex is the number of edges incident to it. Exercise 1 a) Write down the degree of each vertex Degree 2 because 2 lines meet here. Β Vertex Degree Α A 3 B 4 Degree 4 Degree 4 C 4 C D D 4 E 2 Degree 3 E H F Degree 3 3 b) Write down the sum of the degrees of all vertices. 3+4+4+4+2+4=20 5 Exercise 2 a) Can you draw a graph with the sum of degree of vertices to be an odd number? b) Is it possible for 5 people to shake hand with exactly 3 of them ? Handshaking Theorem Since every edge connect two vertices one for each of its end points, the total sum of degree of vertices must be twice the sum of the edges.
    [Show full text]