Acquired Resistance to Alectinib in ALK-Rearranged Lung Cancer Due

Total Page:16

File Type:pdf, Size:1020Kb

Acquired Resistance to Alectinib in ALK-Rearranged Lung Cancer Due Published OnlineFirst March 26, 2020; DOI: 10.1158/1535-7163.MCT-19-0649 MOLECULAR CANCER THERAPEUTICS | CANCER BIOLOGY AND TRANSLATIONAL STUDIES Acquired Resistance to Alectinib in ALK-Rearranged Lung Cancer due to ABCC11/MRP8 Overexpression in a Clinically Paired Resistance Model Tomoko Funazo1, Takahiro Tsuji1, Hiroaki Ozasa1, Koh Furugaki2, Yasushi Yoshimura2, Tetsuya Oguri3, Hitomi Ajimizu1, Yuto Yasuda1, Takashi Nomizo1, Yuichi Sakamori1, Hironori Yoshida1, Young Hak Kim1, and Toyohiro Hirai1 ABSTRACT ◥ Alectinib is used as a first-line treatment for anaplastic lympho- to alectinib in vitro. ABCC11-overexpressing cells were estab- ma kinase (ALK)-rearranged non–small cell lung cancer (NSCLC). lished by transfection of an ABCC11 expression vector into Whereas other ALK inhibitors have been reported to be involved in H2228 cells, while control cells were established by transfecting resistance to ATP-binding cassette (ABC) transporters, no data are H2228 cells with an empty vector. ABCC11-overexpressing cells available regarding the association between resistance to alectinib exhibited decreased sensitivity to alectinib compared with that of and ABC-transporters. To investigate whether ABC-transporters control cells in vitro. Moreover, the tumor growth rate following contribute to alectinib resistance, ABC-transporter expression in alectinib treatment was higher in ABCC11-overexpressing cells alectinib-resistant cell lines derived from a patient with ALK- than that in control cells in vivo. In addition, the intracellular rearranged NSCLC and from H2228 lung cancer cells was evaluated alectinib concentration following exposure to 100 nmol/L alec- and compared with that in each parent cell type. ATP-binding tinib was significantly lower in the ABCC11-overexpressing cell cassette subfamily C member 11 (ABCC11) expression was signif- line compared with that in control cells. This is the first pre- icantly increased in alectinib-resistant cell lines compared with that clinical evidence showing that ABCC11 expression may be in alectinib-sensitive lines. ABCC11 inhibition increased sensitivity involved in acquired resistance to alectinib. Introduction expression of drug efflux pumps such as ATP-binding cassette (ABC) transporters (5). Previous studies showed that the presence of sec- In 2007, a novel driver oncogene, EML4–ALK fusion gene, in ondary mutations such as I1171T/N/S, V1180L, L1196M, and G1202R which the echinoderm microtubule-associated protein-like 4 in the kinase domain of ALK conferred resistance to alectinib (6, 7). (EML4) gene is fused to the anaplastic lymphoma kinase (ALK) Another major resistance mechanism involves bypass salvage signal- gene, was identified in patients with non–small cell lung cancer ing that maintains downstream signaling pathways to activate survival, (NSCLC;refs.1,2).Notably,thesecond-generation ALK inhibitor, antiapoptotic, and proliferation signals. In particular, activation of alectinib, showed superior efficacy in primary treatment of ALK- EGFR has reported to maintain survival signaling that induces alecti- positive NSCLC compared with that of crizotinib, a first-generation nib resistance, and we have reported that coactivation of c-Src and ALK inhibitor (3, 4). However, although alectinib is used as the MET functions as salvage signaling under alectinib exposure (8, 9). first-line treatment for ALK-positive NSCLC, approximately 30% of ABC-transporters transport various molecules and are involved in patients treated with alectinib become refractory within a year of multidrug resistance to anticancer agents. In particular, nine ABC- treatment owing to acquired resistance (4). transporters, that is, multidrug resistance protein 1/ABCB1 (ABCB1), Several mechanisms of resistance to molecular-targeted therapeutic multidrug resistance-associated protein 1 (MRP1)/ABCC1 (ABCC1), agents have been reported including: mutations of the drug target; MRP2/ABCC2 (ABCC2), MRP3/ABCC3 (ABCC3), MRP4/ABCC4 activation of bypass signaling pathways; dysregulation of apoptosis; (ABCC4), MRP5/ABCC5 (ABCC5), MRP7/ABCC10 (ABCC10), tumor microenvironment including the extracellular matrix, immune MRP8/ABCC11 (ABCC11), and breast cancer resistance protein/ and inflammatory cells, and blood vessels; and increased protein ABCG2 (ABCG2) have been reported to be associated with anticancer drug resistance (10, 11). Moreover, several tyrosine kinase inhibitors (TKI; e.g., imatinib, nilotinib, dasatinib, ponatinib, gefitinib, erlotinib, 1 Department of Respiratory Medicine, Kyoto University Graduate School lapatinib, vandetanib, sunitinib, and sorafenib) were recently reported 2 of Medicine, Kyoto, Japan. Department of Product Research, Kamakura as substrates for ABC-transporters including ABCB1, ABCC1, Research Laboratories, Chugai Pharmaceutical, Kanagawa, Japan. 3Department of Education and Research Center for Community Medicine, Nagoya City ABCG2, and ABCC10 (12). Notably, overexpression of ABCB1 was University Graduate School of Medical Sciences, Nagoya, Japan. shown to be involved in the resistance to crizotinib and ceritinib, which constitute other ALK-TKIs, but not to alectinib (13). In addition, it was Note: Supplementary data for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/). demonstrated that alectinib is not a substrate for ABCB1 and ABCG2 (14, 15). Thus, unlike other TKIs, the association between Corresponding Author: Hiroaki Ozasa, Kyoto University, 54 Shogoin Kawahara- cho, Sakyo-ku, Kyoto 606-8507, Japan. Phone: 817-5751-3830; Fax: 817-5751- alectinib resistance and ABC-transporter expression is not fully 4643; E-mail: [email protected] understood. Therefore, the aim of this study was to determine the ABC-transporters that are associated with alectinib resistance in lung Mol Cancer Ther 2020;19:1320–7 cancer. doi: 10.1158/1535-7163.MCT-19-0649 We previously reported the establishment of a clinical paired Ó2020 American Association for Cancer Research. resistant model (CPRM) comprised of patient-derived ALK- AACRJournals.org | 1320 Downloaded from mct.aacrjournals.org on October 1, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst March 26, 2020; DOI: 10.1158/1535-7163.MCT-19-0649 ABCC11/MRP8 may Confer Alectinib Resistance rearranged NSCLC cell lines from a treatment-na€ve and subsequently, Immunoblotting alectinib-refractory patient (9). In this study, we evaluated the expres- SDS-PAGE and immunoblotting were performed as described sion of the nine chemoresistance-associated ABC-transporters in these previously (16). Briefly, antibodies against ABCC11 and GAPDH cell lines, identifying that ABCC11 expression was significantly were purchased from Invitrogen. pALK (pY 1604) and secondary increased in alectinib-resistant cells compared with that in alecti- antibodies were purchased from Cell Signaling Technology. b-actin nib-sensitive cells. Therefore, in this study we investigated whether was purchased from Sigma-Aldrich (details are provided in Supple- increased ABCC11 expression may constitute a mechanism underly- mentary Table S1). Antibodies against ABCC11 (1:2,000), GAPDH (1: ing the acquired resistance to alectinib. 10,000), pALK (1:1,000), and b-actin (1: 10,000), and secondary (1: 2,000) antibodies were dissolved in 2.5% BSA/TBS with Tween 20. BSA was purchased from Nacalai Tesque. Quantification of protein bands Materials and Methods was performed using ImageJ software (https://imagej.nih.gov/ij/). Clinical information and procedures for obtaining informed consent Quantitative reverse transcription-PCR The study protocol was prepared in accordance with the Declaration Total RNA was extracted from cultured cells using the PureLink of Helsinki and approved by the Kyoto University Graduate School RNA Mini Kit (Thermo Fisher Scientific). Gene expression was and Faculty of Medicine Ethics Committee (Kyoto, Japan; certification evaluated by quantitative reverse transcription-PCR (qRT-PCR) using number: R0996). The patient provided written informed consent to 100 ng of total RNA, the TaqMan RNA-to-Ct 1-Step Kit (Applied participate in this study. Biosystems), and a primer pair. A list of the primers purchased from Thermo Fisher Scientific is shown in Supplementary Table S2. Reac- Establishment of patient-derived lung cancer cells tions were quantified using the 7300 Real-Time PCR System (Applied KTOR1 and KTOR1-RE (EML4-ALK variant 1 E13; A20) cells Biosystems). were established from a 29-year-old female patient with ALK- rearranged NSCLC, who regularly visited Kyoto University Hospital Transfection with siRNA (Kyoto, Japan). The method used to establish the patient-derived ABCC11 siRNA oligonucleotides were purchased from Thermo cells was described previously (9). Briefly, 200 mL of pleural Fisher Scientific (Stealth RNAi siRNA; Supplementary Table S3). A effusion was obtained from the patient with ALK-rearranged lung total of 3.0 Â 105 cells were transfected with siRNA oligonucleotides at cancer. Tumor cells were separated by centrifugation at 800 rpm for a final RNA concentration of 21 nmol/L using Lipofectamine RNAi- 5 minutes, and then cultured and maintained in alectinib-free MAX Transfection Reagent (Invitrogen). The reverse transfection RPMI1640 Medium (Nacalai Tesque) supplemented with 8% method was performed according to the manufacturer's protocol. heat-inactivated FBS (Sigma-Aldrich) and 1% penicillin/streptomy- RNA and total protein were extracted at 30 and 54 hours, respectively, cin (Gibco) at 37.0 Cin5%CO2. Information
Recommended publications
  • Alectinib Provides a New Option for ALK-Positive NSCLC Patients After Progression on Crizotinib See Commentary on Page 239
    Community Translations Edited by Jame Abraham, MD, FACP Alectinib provides a new option for ALK-positive NSCLC patients after progression on crizotinib See Commentary on page 239 n December 2015, alectinib became the third ALK inhibitor approved by the United States Food and What’s new, what’s important IDrug Administration for the treatment of non-small- The US Food and Drug Administration approved alectinib to cell lung cancer (NSCLC) that displays rearrangements of treat patients with metastatic ALK-positive non-small-cell lung the anaplastic lymphoma kinase (ALK) gene. Alectinib is cancer whose disease had progressed or who could not toler- a second-generation small molecule inhibitor of the ALK ate treatment with crizotinib. In clinical trials, alectinib showed a protein that joins ceritinib in providing a useful treatment partial response of 38%-44% and an average progression-free option for patients who have progressed on crizotinib, as survival of 11.2 months. In all, 61% of patients experienced a a result of its ability to target crizotinib-resistant mutant complete or partial reduction in their brain metastatic lesions, forms of the ALK protein. Alectinib also displays enhanced with a progression-free survival of of 9.1 months. The recom- penetrance of the blood-brain barrier, which improves ef- mended dose is 600 mg orally twice daily. cacy against central nervous system (CNS) metastases. The most common side effects are fatigue, constipation, swell- Te FDA awarded alectinib accelerated approval on the ing (edema), and muscle pain (myalgia). Treatment with alec- basis of 2 phase 2, single-arm clinical trials in patients tinib may cause sunburn when patients are exposed to sunlight, with ALK-positive NSCLC who had progressed on and pregnant women should be notifed of the possible risk to crizotinib therapy, a group of patients who have few avail- the fetus, and to use contraception throughout treatment and for able treatment options.
    [Show full text]
  • Pharmaceutics of Oral Anticancer Agents and Stimulants
    Pharmaceutics of oral anticancer agents and stimulants Maikel Herbrink The research in this thesis was performed at the Departments of Pharmacy & Pharma- cology and Medical Oncology & Clinical Pharmacology of the Netherlands Cancer Insti- tute – Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands. Printing of this thesis was financially supported by: Netherlands Cancer Institute Chipsoft BV Pfizer BV ISBN: 978-90-393-6997-5 Design, lay-out and print Gildeprint, Enschede © Maikel Herbrink, 2018 Pharmaceutics of oral anticancer agents and stimulants Farmaceutisch onderzoek naar oraal toegediende antikankermiddelen en stimulantia (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op woensdag 27 juni 2018 des middags te 4.15 uur door Maikel Herbrink geboren op 2 februari 1990 te Groningen Promotoren: Prof. dr. J.H. Beijnen Prof. dr. J.H.M. Schellens Copromotor: Dr. B. Nuijen Contents Preface 9 Chapter 1: Introduction 15 1.1 Variability in bioavailability of small molecular tyrosine 17 kinase inhibitors Cancer Treat Rev. 2015 May;41(5):412-422 1.2 Inherent formulation issues of kinase inhibitors 51 J Control Release. 2016 Oct;239:118-127 1.3 High-tech drugs in creaky formulations 81 Pharm Res. 2017 Sep;34(9):1751-1753 Chapter 2: Pharmaceutical analysis of oral anticancer drug substances 89 2.1. Thermal study of pazopanib hydrochloride 91 J Therm Anal Calorim. 2017 Dec;130(3):1491-1499 2.2.
    [Show full text]
  • 07052020 MR ASCO20 Curtain Raiser
    Media Release New data at the ASCO20 Virtual Scientific Program reflects Roche’s commitment to accelerating progress in cancer care First clinical data from tiragolumab, Roche’s novel anti-TIGIT cancer immunotherapy, in combination with Tecentriq® (atezolizumab) in patients with PD-L1-positive metastatic non- small cell lung cancer (NSCLC) Updated overall survival data for Alecensa® (alectinib), in people living with anaplastic lymphoma kinase (ALK)-positive metastatic NSCLC Key highlights to be shared on Roche’s ASCO virtual newsroom, 29 May 2020, 08:00 CEST Basel, 7 May 2020 - Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced that new data from clinical trials of 19 approved and investigational medicines across 21 cancer types, will be presented at the ASCO20 Virtual Scientific Program organised by the American Society of Clinical Oncology (ASCO), which will be held 29-31 May, 2020. A total of 120 abstracts that include a Roche medicine will be presented at this year's meeting. "At ASCO, we will present new data from many investigational and approved medicines across our broad oncology portfolio," said Levi Garraway, M.D., Ph.D., Roche's Chief Medical Officer and Head of Global Product Development. “These efforts exemplify our long-standing commitment to improving outcomes for people with cancer, even during these unprecedented times. By integrating our medicines and diagnostics together with advanced insights and novel platforms, Roche is uniquely positioned to deliver the healthcare solutions of the future." Together with its partners, Roche is pioneering a comprehensive approach to cancer care, combining new diagnostics and treatments with innovative, integrated data and access solutions for approved medicines that will both personalise and transform the outcomes of people affected by this deadly disease.
    [Show full text]
  • Comparative Efficacy and Safety of Lorlatinib and Alectinib for ALK
    cancers Systematic Review Comparative Efficacy and Safety of Lorlatinib and Alectinib for ALK-Rearrangement Positive Advanced Non-Small Cell Lung Cancer in Asian and Non-Asian Patients: A Systematic Review and Network Meta-Analysis Koichi Ando 1,2,* , Ryo Manabe 1, Yasunari Kishino 1, Sojiro Kusumoto 1, Toshimitsu Yamaoka 3 , Akihiko Tanaka 1, Tohru Ohmori 1,4 and Hironori Sagara 1 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; [email protected] (R.M.); [email protected] (Y.K.); [email protected] (S.K.); [email protected] (A.T.); [email protected] (T.O.); [email protected] (H.S.) 2 Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Senzoku Campus, Showa University, 2-1-1 Kita-senzoku, Ohta-ku, Tokyo 145-8515, Japan 3 Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; [email protected] 4 Department of Medicine, Division of Respiratory Medicine, Tokyo Metropolitan Health and Hospitals Corporation, Ebara Hospital, 4-5-10 Higashiyukigaya, Ohta-ku, Tokyo 145-0065, Japan * Correspondence: [email protected]; Tel.: +81-3-3784-8532 Citation: Ando, K.; Manabe, R.; Kishino, Y.; Kusumoto, S.; Yamaoka, Simple Summary: The treatment of anaplastic lymphoma kinase (ALK) rearrangement-positive T.; Tanaka, A.; Ohmori, T.; Sagara, H. (ALK-p) advanced non-small cell lung cancer (NSCLC) remains a challenge.
    [Show full text]
  • Alecensa, INN-Alectinib
    Package leaflet: Information for the patient Alecensa 150 mg hard capsules alectinib This medicine is subject to additional monitoring. This will allow quick identification of new safety information. You can help by reporting any side effects you may get. See the end of section 4 for how to report side effects. Read all of this leaflet carefully before you start taking this medicine - because it contains important information for you. ● Keep this leaflet. You may need to read it again. ● If you have any further questions, ask your doctor, pharmacist or nurse. ● This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours. ● If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4. What is in this leaflet 1. What Alecensa is and what it is used for 2. What you need to know before you take Alecensa 3. How to take Alecensa 4. Possible side effects 5. How to store Alecensa 6. Contents of the pack and other information 1. What Alecensa is and what it is used for What Alecensa is Alecensa is a cancer medicine that contains the active substance alectinib. What Alecensa is used for Alecensa is used to treat adults with a type of lung cancer called ‘non-small cell lung cancer’ (‘NSCLC’). It is used if your lung cancer: ● is ‘ALK-positive’ - this means your cancer cells have a fault in a gene that makes an enzyme called ALK (‘anaplastic lymphoma kinase’), see ‘How Alecensa works’, below ● and is advanced.
    [Show full text]
  • Alecensa® (Alectinib) Capsules(Genentech, Approved
    tools Approved Drugs • Janssen Biotech, Inc. (janssenbiotech.com) cal will begin selling the once-a-day pill in announced that the FDA has granted the U.S. on Feb. 1, 2016. • The U.S. Food and Drug Administration accelerated approval to Darzalex™ (FDA) granted accelerated approval to (daratumumab injection) as a single • Millennium Pharmaceuticals (millennium. Alecensa® (alectinib) capsules (Genentech, agent for the treatment of patients with com) announced that the FDA has approved gene.com) for the treatment of patients with multiple myeloma who have received at Ninlaro® (ixazomib) in combination with anaplastic lymphoma kinase (ALK)- least three prior lines of therapy, including lenalidomide and dexamethasone for the positive metastatic non-small cell lung a proteasome inhibitor (PI) and an immuno- treatment of patients with multiple cancer (NSCLC) who have progressed on or are modulatory agent, or who are double- myeloma who have received at least one intolerant to crizotinib. Alecensa is an oral refractory to a PI and an immunomodula- prior therapy. Ixazomib is the first approved medication that blocks the activity of the ALK tory agent. oral proteasome inhibitor. protein, which may prevent NSCLC cells from growing and spreading. • The FDA approved Bristol-Myers Squibb’s • The FDA approved Bristol-Myers Squibb’s (bms.com) Empliciti™ (elotuzumab) in (bms.com) Opdivo® (nivolumab) Injection • Teva Pharmaceuticals Industries Ltd. combination with lenalidomide and for the treatment of advanced renal cell (tevausa.com) and Eagle Pharmaceuticals, Inc. dexamethasone for the treatment of carcinoma in patients who have received (eagleus.com) announced that the FDA has patients with multiple myeloma who have prior anti-angiogenic therapy.
    [Show full text]
  • First-Line Treatment Options for Patients with Stage IV Non-Small Cell Lung Cancer with Driver Alterations
    First-Line Treatment Options for Patients with Stage IV Non-Small Cell Lung Cancer with Driver Alterations Patients with stage IV non-small cell lung cancer Nonsquamous cell carcinoma and squamous cell carcinoma Activating EGFR mutation other Sensitizing (L858R/exon 19 MET exon 14 skipping than exon 20 insertion mutations, EGFR exon 20 mutation ALK rearrangement ROS1 rearrangement BRAF V600E mutation RET rearrangement NTRK rearrangement mutations KRAS alterations HER2 alterations NRG1 alterations deletion) EGFR mutation T790M, L858R or Ex19Del PS 0-2 Treatment Options PS 0-2 Treatment Options PS 0-2 Treatment Options PS 0-2 Treatment Options PS 0-2 Treatment Options Treatment Options PS 0-2 Treatment Options PS 0-2 Treatment Options PS 0-2 Treatment Options Emerging target; no Emerging target; no Emerging target; no Platinum doublet † † † Osimertinib monotherapy S Afatinib monotherapy M M Alectinib S Entrectinib M Dabrafenib/trametinib M Capmatinib M Selpercatinib M Entrectinib M conclusions available conclusions available conclusions available chemotherapy ± bevacizumab Gefitinib with doublet Standard treatment based on Standard treatment based on Standard treatment based on M M M Brigatinib S Crizotinib M M Tepotinib M Pralsetinib* W Larotrectinib M chemotherapy non-driver mutation guideline non-driver mutation guideline non-driver mutation guideline If alectinib or brigatinib are not available If entrectinib or crizotinib are not available Standard treatment based on Standard treatment based on Standard treatment based on Dacomitinib monotherapy M Osimertinib W M M M Ceritinib S Ceritinib W non-driver mutation guideline non-driver mutation guideline non-driver mutation guideline Monotherapy with afatinib M Crizotinib S Lortlatinib W Standard treatment based on Erlotinib/ramucirumab M M non-driver mutation guideline Erlotinib/bevacizumab M Monotherapy with erlotinib M Strength of Recommendation Monotherapy with gefitinib M S Strong M Moderate W Weak Monotherapy with icotinib M Notes.
    [Show full text]
  • CDER Breakthrough Therapy Designation Approvals Data As of December 31, 2020 Total of 190 Approvals
    CDER Breakthrough Therapy Designation Approvals Data as of December 31, 2020 Total of 190 Approvals Submission Application Type and Proprietary Approval Use Number Number Name Established Name Applicant Date Treatment of patients with previously BLA 125486 ORIGINAL-1 GAZYVA OBINUTUZUMAB GENENTECH INC 01-Nov-2013 untreated chronic lymphocytic leukemia in combination with chlorambucil Treatment of patients with mantle cell NDA 205552 ORIGINAL-1 IMBRUVICA IBRUTINIB PHARMACYCLICS LLC 13-Nov-2013 lymphoma (MCL) Treatment of chronic hepatitis C NDA 204671 ORIGINAL-1 SOVALDI SOFOSBUVIR GILEAD SCIENCES INC 06-Dec-2013 infection Treatment of cystic fibrosis patients age VERTEX PHARMACEUTICALS NDA 203188 SUPPLEMENT-4 KALYDECO IVACAFTOR 21-Feb-2014 6 years and older who have mutations INC in the CFTR gene Treatment of previously untreated NOVARTIS patients with chronic lymphocytic BLA 125326 SUPPLEMENT-60 ARZERRA OFATUMUMAB PHARMACEUTICALS 17-Apr-2014 leukemia (CLL) for whom fludarabine- CORPORATION based therapy is considered inappropriate Treatment of patients with anaplastic NOVARTIS lymphoma kinase (ALK)-positive NDA 205755 ORIGINAL-1 ZYKADIA CERITINIB 29-Apr-2014 PHARMACEUTICALS CORP metastatic non-small cell lung cancer (NSCLC) who have progressed on or are intolerant to crizotinib Treatment of relapsed chronic lymphocytic leukemia (CLL), in combination with rituximab, in patients NDA 206545 ORIGINAL-1 ZYDELIG IDELALISIB GILEAD SCIENCES INC 23-Jul-2014 for whom rituximab alone would be considered appropriate therapy due to other co-morbidities
    [Show full text]
  • Newer-Generation EGFR Inhibitors in Lung Cancer: How Are They Best Used?
    cancers Review Newer-Generation EGFR Inhibitors in Lung Cancer: How Are They Best Used? Tri Le 1 and David E. Gerber 1,2,3,* 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8852, USA; [email protected] 2 Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390-8852, USA 3 Division of Hematology-Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8852, USA * Correspondence: [email protected]; Tel.: +1-214-648-4180; Fax: +1-214-648-1955 Received: 15 January 2019; Accepted: 4 March 2019; Published: 15 March 2019 Abstract: The FLAURA trial established osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), as a viable first-line therapy in non-small cell lung cancer (NSCLC) with sensitizing EGFR mutations, namely exon 19 deletion and L858R. In this phase 3 randomized, controlled, double-blind trial of treatment-naïve patients with EGFR mutant NSCLC, osimertinib was compared to standard-of-care EGFR TKIs (i.e., erlotinib or gefinitib) in the first-line setting. Osimertinib demonstrated improvement in median progression-free survival (18.9 months vs. 10.2 months; hazard ratio 0.46; 95% CI, 0.37 to 0.57; p < 0.001) and a more favorable toxicity profile due to its lower affinity for wild-type EGFR. Furthermore, similar to later-generation anaplastic lymphoma kinase (ALK) inhibitors, osimertinib has improved efficacy against brain metastases. Despite this impressive effect, the optimal sequencing of osimertinib, whether in the first line or as subsequent therapy after the failure of earlier-generation EGFR TKIs, is not clear.
    [Show full text]
  • ALK Tyrosine Kinase Inhibitors, 5.01.538
    PHARMACY POLICY – 5.01.538 ALK Tyrosine Kinase Inhibitors Effective Date: June 1, 2021 RELATED MEDICAL POLICIES: Last Revised: May 20, 2021 None Replaces: N/A Select a hyperlink below to be directed to that section. POLICY CRITERIA | CODING | RELATED INFORMATION EVIDENCE REVIEW | REFERENCES | HISTORY ∞ Clicking this icon returns you to the hyperlinks menu above. Introduction The anaplastic lymphoma kinase (ALK) gene provides instructions for making a specific kind of protein called ALK receptor tyrosine kinase. This protein helps cells communicate. When this gene is damaged, cell growth can get stuck in the “on” position and cells grow uncontrollably. Changes to the ALK gene can lead to non-small-cell lung cancer. Tyrosine kinase inhibitors block specific enzymes, essentially working to turn the cell growth to the “off” position. ALK tyrosine kinase inhibitors specifically targets cancers caused by changes to the ALK gene. This policy describes when this specific form of chemotherapy may be considered medically necessary. Note: The Introduction section is for your general knowledge and is not to be taken as policy coverage criteria. The rest of the policy uses specific words and concepts familiar to medical professionals. It is intended for providers. A provider can be a person, such as a doctor, nurse, psychologist, or dentist. A provider also can be a place where medical care is given, like a hospital, clinic, or lab. This policy informs them about when a service may be covered. Policy Coverage Criteria Drug Medical Necessity Alecensa® (alectinib) Alecensa® (alectinib) may be considered medically necessary for the treatment of adult patients with advanced or Drug Medical Necessity metastatic non-small cell lung cancer (NSCLC) that is anaplastic lymphoma kinase (ALK)-positive.
    [Show full text]
  • Self Administered Oncology Agents Prior Authorization with Quantity
    Self Administered Oncology Agents Prior Authorization with Quantity Limit Program Summary BCBSAL does not have the preferred product option. This program applies to Commercial, NetResults A series, SourceRx, and Health Insurance Marketplace formularies. OBJECTIVE The intent of the Self Administered Oncology Agents Prior Authorization (PA) program is to ensure appropriate selection of patients for treatment according to product labeling and/or clinical studies and/or clinical guidelines. The criteria considers appropriate indications as those supported in FDA approved labeling, National Comprehensive Cancer Network (NCCN) with level of evidence 1 or 2A recommendation, AHFS, or Drugdex with level of evidence of 1 or IIa. TARGET DRUGS Afinitor® (everolimus) Nerlynx™ (neratinib) Afinitor® Disperz (everolimus) Nexavar® (sorafenib) Alecensa® (alectinib) Ninlaro® (ixazomib) Alunbrig™ (brigatinib) Odomzo® (sonidegib) Bosulif® (bosutinib) Pomalyst® (pomalidomide) Cabometyx™ (cabozantinib) Revlimid® (lenalidomide) Calquence® (acalabrutinib) RubracaTM (rucaparib) Caprelsa® (vandetanib) Rydapt® (midostaurin) Cometriq™ (cabozantinib) Sprycel® (dasatinib) CotellicTM (cobimetinib) Stivarga® (regorafenib) Erivedge™ (vismodegib) Sutent® (sunitinib) Erleada™ (apalutamide) Sylatron® (peginterferon alfa-2b) Farydak® (panobinostat) Tafinlar® (dabrafenib) Gilotrif® (afatinib) TagrissoTM (osimertinib) Gleevec® (imatinib)a Tarceva® (erlotinib) Hexalen® (altretamine) Targretin® (bexarotene)a Hycamtin® (topotecan) Tasigna® (nilotinib) Ibrance® (palbociclib) Temodar®
    [Show full text]
  • Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound ALK Mutations in ALK-Positive Lung Cancer
    Published OnlineFirst April 12, 2018; DOI: 10.1158/2159-8290.CD-17-1256 RESEARCH ARTICLE Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound ALK Mutations in ALK-Positive Lung Cancer Satoshi Yoda1,2, Jessica J. Lin1,2, Michael S. Lawrence1,2,3, Benjamin J. Burke4, Luc Friboulet5, Adam Langenbucher1,2,3, Leila Dardaei1,2, Kylie Prutisto-Chang1, Ibiayi Dagogo-Jack1,2, Sergei Timofeevski4, Harper Hubbeling1,2, Justin F. Gainor1,2, Lorin A. Ferris1,2, Amanda K. Riley1, Krystina E. Kattermann1, Daria Timonina1, Rebecca S. Heist1,2, A. John Iafrate6, Cyril H. Benes1,2, Jochen K. Lennerz6, Mari Mino-Kenudson6, Jeffrey A. Engelman7, Ted W. Johnson4, Aaron N. Hata1,2, and Alice T. Shaw1,2 Downloaded from cancerdiscovery.aacrjournals.org on September 30, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst April 12, 2018; DOI: 10.1158/2159-8290.CD-17-1256 ABSTRACT The cornerstone of treatment for advanced ALK-positive lung cancer is sequential therapy with increasingly potent and selective ALK inhibitors. The third-generation ALK inhibitor lorlatinib has demonstrated clinical activity in patients who failed previous ALK inhibi- tors. To define the spectrum ofALK mutations that confer lorlatinib resistance, we performed accel- erated mutagenesis screening of Ba/F3 cells expressing EML4–ALK. Under comparable conditions, N-ethyl-N-nitrosourea (ENU) mutagenesis generated numerous crizotinib-resistant but no lorlatinib- resistant clones harboring single ALK mutations. In similar screens with EML4–ALK containing single ALK resistance mutations, numerous lorlatinib-resistant clones emerged harboring compound ALK mutations. To determine the clinical relevance of these mutations, we analyzed repeat biopsies from lorlatinib-resistant patients.
    [Show full text]