Biology, Behavior and Resources of Resident

Total Page:16

File Type:pdf, Size:1020Kb

Biology, Behavior and Resources of Resident Biology, Behavior, and Resources of Resident and Anadromous Fish in the Lower Willamette River Final Report of Research, 2000-2004 Edited by Thomas A. Friesen Oregon Department of Fish and Wildlife 17330 Southeast Evelyn Street Clackamas, Oregon 97015 March 2005 Contracted by City of Portland Bureau of Environmental Services Endangered Species Act Program 1120 Southwest Fifth Avenue, Suite 1000 Portland, Oregon 97204 TABLE OF CONTENTS PREFACE………………………………………………………………………………………. 5 ACKNOWLEDGMENTS……………………………………………………………………… 5 SUMMARY……………………………………………………………………………………. .7 RECOMMENDATIONS ………………………………………………………………………12 Paper 1 – Description and Categorization of Nearshore Habitat in the Lower Willamette River…………………………………………………………………………………17 Paper 2 - Migratory Behavior, Timing, Rearing, and Habitat Use of Juvenile Salmonids in the Lower Willamette River..…………………………………………………….. 63 Paper 3 – Population Structure, Movement, Habitat Use, and Diet of Resident Piscivorous Fishes in the Lower Willamette River……………………………………………. .139 Paper 4 – Diets of Juvenile Salmonids and Introduced Fishes of the Lower Willamette River………………………………………………………………………………..185 Paper 5 – A Brief Survey of Aquatic Invertebrates in the Lower Willamette River….………223 3 4 PREFACE This document is the final report of research for a project funded by the City of Portland (COP) and conducted by the Oregon Department of Fish and Wildlife (ODFW). The general objective was to evaluate aquatic habitat and biotic communities in the lower Willamette River, and provide guidance for protecting species of threatened and endangered salmonids. Our report includes five research papers that describe how we addressed project hypotheses and objectives, how we reached our conclusions, and why we made our recommendations. The papers are listed and numbered in the Table of Contents, and the numbers are used to reference each paper in the Summary. The Summary integrates the results, conclusions, and recommendations, and provides the best overall picture of the status of aquatic resources in the lower Willamette River. The recommendations presented here were developed by the principal investigators, and will not necessarily be adopted as policies or guidelines by the Oregon Department of Fish and Wildlife. ACKNOWLEDGMENTS Many thanks to all the people who helped us accomplish our objectives over the past four years. The Portland Development Commission, the Portland Bureau of Environmental Services, the Portland Bureau of Development Services, and the Lower Willamette Group each contributed financial support for the project. Josh Allen, Chris Burnside, Sarah Courbis, Travis Eoff, Erin Phillips-Fincher, Ben Galuardi, Alex Gonyaw, J. T. Hesse, Michele Hughes, Jenny Kauffman, Jim Koloszar, Kathy Lisa, Casey Myers, Jodene Summers, Jason Vassar, Brian Vaughn, Mike Wallace, and Virgil Lee Watts of ODFW conducted much of the field sampling. Lisa Burner, Bonnie Cunningham, Ruth Farr, Jennifer Graham, and Howard Takata of ODFW co-authored annual reports and conducted field work. Matthew Powell and Joshua Tompkins of ODFW and Chad Smith of COP also assisted with field sampling. George Reed of ODFW purchased and maintained project equipment. Dave Ward of ODFW administered the project and provided expertise and guidance. John North of ODFW was instrumental in implementing the project, and served as project leader through 2001. Jim Middaugh, Mike Reed, and Chris Prescott of COP were project partners and provided detailed reviews of project design. Noah Adams, Scott Evans, John Plumb, Dennis Rondorf, Jamie Sprando, and Kenneth Tiffan of the U.S. Geological Survey provided expertise on radio telemetry design and techniques. Rick Boatner, Ken Bourne, Dick Caldwell, Milton Hill, Chris Kern, and Tom Rien of ODFW contributed time, supplies, equipment, and expertise. LTJG Katie Blanchard, CWO Robert Coster, and Captain G. F. Greene (U. S. Coast Guard); Karen Guntly (H. Naito Properties); Tony Lester, Brenda Strombo, and Alan Young (Multnomah County Department of Environmental Services-Transportation Division); Gene Loffler (Cargill Inc.); Jennifer Martinez (COP); and Mac Robinson (U. S. Army Corps of Engineers) provided facility access for radio telemetry fixed site locations; Skip and Joann White provided access at their residence for a radio telemetry fixed site. Dan Domina and Howard Bess (Portland General Electric); Captain Glenn Eisner (COP Fire Bureau); Jeff Jennings (Staff Jennings); and Sergeant Paul Steigleder (Clackamas County Sheriff Department) provided facility access for collection and holding of juvenile salmonids. Neil Bower, Terry Key, and Mike van den Tillaart of Lotek Engineering provided valuable assistance with radio telemetry. Mike Reed of COP, Dave Ward of ODFW, and Roger Peters of the U.S. Fish and Wildlife Service provided many helpful comments on earlier drafts of this report. 5 6 SUMMARY Paper 1 - Description and Categorization of Nearshore Habitat in the Lower Willamette River Our objective in this paper was to define and catalog existing nearshore fish habitat. We also identified habitat categories for subsequent analyses of fish use (Papers 2 and 3). Habitats were initially separated into six categories (beach, alcove, riprap, seawall, rock outcrop, and mixed) and 12 sub-categories based on their appearance and function. The majority (59.2%) of riverbank habitat in the study area (mouth to Willamette Falls) was undeveloped (“natural”), with no obvious modifications such as seawalls, riprap, or piers. Beaches were the most prevalent habitat type in the upper (above Ross Island Bridge; 38.8%) and lower (29.1%) sections of the study area, but the distribution of other types was considerably different. Undeveloped habitats composed 81.1% of the habitat in the upper section, but only 32.8% in the lower section. Nearshore structures (e.g., piers, docks, pilings) were associated with 18.7% of the total shoreline area. To provide a more quantitative approach to habitat categorization, we intensively surveyed 27 sites during spring, summer, autumn, and winter. We measured 60 physical or chemical parameters at each site, both instream and onshore. We then used cluster analysis and principal components analysis to group habitats and identify the parameters that contributed most to their separation. Sampling sites separated into five or six clusters in each season. Sites initially classified as seawall or rock outcrop always segregated into distinct groups. Sites described as beaches often occurred together in a group; riprap, rock, and mixed habitat types often appeared in multiple groups. These patterns increased our confidence that the initial groupings based on appearance were relatively accurate, and the multivariate analyses were useful in determining categories based on measured parameters. Bank vegetation, bottom substrate type, hydrology, and bank substrate type explained the majority of the variation in habitat data, and contributed most to the separation of sites into clusters. The percent of the bottom substrate composed of sand and onshore vegetation were important explanatory variables in every season; parameters important in at least two seasons included: river level, water depth, distance to the thalweg, transparency, bank slope, percent beach, percent small riprap, and percent bedrock. River chemistry (temperature, dissolved oxygen, and conductivity) varied little among sites during individual seasons, and did not contribute appreciably to site groupings. Paper 2 - Migratory Behavior, Timing, Rearing, and Habitat Use of Juvenile Salmonids in the Lower Willamette River Using electrofishing, beach seines, and radio telemetry, we assessed components of juvenile salmonid biology that would lead to a better understanding of their behavior in the lower Willamette River. We focused largely on nearshore habitat use, but also explored outmigration timing, size structure, growth, migration rate, and residence time. 7 Most (87%) juvenile salmonids we captured were Chinook salmon. Coho salmon and steelhead composed relatively small proportions of the catch (9% and 3%), and we occasionally observed mountain whitefish, sockeye salmon, and cutthroat trout. Hatchery-produced fish dominated the catch, composing 54% of the Chinook salmon, 66% of the coho salmon, and 91% of the steelhead. The electrofishing catch was dominated by large (>100 mm fork length) hatchery Chinook salmon; beach seines captured mostly small (≤100 mm fork length) Chinook salmon. Based on this gear selectivity and natural breaks in length frequencies, we assumed that Chinook salmon >100 mm fork length were yearlings (age 1) and smaller fish were subyearlings (age 0). Because we observed a large number of subyearling fish, and the abundance of fall Chinook salmon in the Willamette Basin is low, we concluded most small Chinook salmon in the lower Willamette River are spring-run fish that outmigrate as subyearlings. The outmigration period for Chinook salmon, both hatchery and unmarked, was surprisingly long. The presence of juvenile fish often increased in late autumn and persisted into the next summer, and juvenile salmonids were present in every month we sampled from May 2000 to July 2003. Winter and spring were clearly the periods of greatest abundance, though the presence of different races (spring and fall), size classes, and stocks undoubtedly confounded our ability to completely assess timing. Coho salmon and steelhead were generally present only during winter and spring. Median fork lengths and weights of hatchery
Recommended publications
  • Geologic Map of the Sauvie Island Quadrangle, Multnomah and Columbia Counties, Oregon, and Clark County, Washington
    Geologic Map of the Sauvie Island Quadrangle, Multnomah and Columbia Counties, Oregon, and Clark County, Washington By Russell C. Evarts, Jim E. O'Connor, and Charles M. Cannon Pamphlet to accompany Scientific Investigations Map 3349 2016 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Suggested citation: Evarts, R.C., O'Connor, J.E., and Cannon, C.M., 2016, Geologic map of the Sauvie Island quadrangle, Multnomah and Columbia Counties, Oregon, and Clark County, Washington: U.S. Geological Survey Scientific Investigations Map 3349, scale 1:24,000, pamphlet 34 p., http://dx.doi.org/10.3133/sim3349. ISSN 2329-132X (online) Contents Introduction ...................................................................................................................................................................
    [Show full text]
  • Timing of In-Water Work to Protect Fish and Wildlife Resources
    OREGON GUIDELINES FOR TIMING OF IN-WATER WORK TO PROTECT FISH AND WILDLIFE RESOURCES June, 2008 Purpose of Guidelines - The Oregon Department of Fish and Wildlife, (ODFW), “The guidelines are to assist under its authority to manage Oregon’s fish and wildlife resources has updated the following guidelines for timing of in-water work. The guidelines are to assist the the public in minimizing public in minimizing potential impacts to important fish, wildlife and habitat potential impacts...”. resources. Developing the Guidelines - The guidelines are based on ODFW district fish “The guidelines are based biologists’ recommendations. Primary considerations were given to important fish species including anadromous and other game fish and threatened, endangered, or on ODFW district fish sensitive species (coded list of species included in the guidelines). Time periods were biologists’ established to avoid the vulnerable life stages of these fish including migration, recommendations”. spawning and rearing. The preferred work period applies to the listed streams, unlisted upstream tributaries, and associated reservoirs and lakes. Using the Guidelines - These guidelines provide the public a way of planning in-water “These guidelines provide work during periods of time that would have the least impact on important fish, wildlife, and habitat resources. ODFW will use the guidelines as a basis for the public a way of planning commenting on planning and regulatory processes. There are some circumstances where in-water work during it may be appropriate to perform in-water work outside of the preferred work period periods of time that would indicated in the guidelines. ODFW, on a project by project basis, may consider variations in climate, location, and category of work that would allow more specific have the least impact on in-water work timing recommendations.
    [Show full text]
  • Portland Harbor RI/FS Draft Final Remedial Investigation Report April 27, 2015
    Portland Harbor RI/FS Draft Final Remedial Investigation Report April 27, 2015 3.0 ENVIRONMENTAL SETTING This section describes the current and historical physical characteristics and human uses of the Portland Harbor Superfund Site. Physical characteristics of the site include meteorology, regional geology and hydrogeology, surface water hydrology, the physical system (which includes bathymetry, sediment characteristics, and hydrodynamics and sediment transport), habitat, and surface features. Human characteristics of the site that are discussed here include historical and current land and river use, the municipal sewer system, and human access and use. In addition to providing context to the RI sampling and analysis, the factors presented in this section are considered in the refinement of the Study Area-wide CSM, which is presented in Section 10. Sections 3.1 through 3.7 focuses primarily on the physical setting within the Study Area (RM 1.9 to 11.8). However, the physical features of the Willamette River from Willamette Falls (RM 26) to the Columbia River (RM 0), as well as the upstream portion of Multnomah Channel, are discussed as needed to place the Study Area’s physical characteristics into a regional context. The Willamette River basin has a drainage area of 11,500 square miles and is bordered by foothills and mountains of the Cascade and Coast ranges up to 10,000 feet high to the south, east, and west (Trimble 1963). The main channel of the Willamette forms in the southern portion of the valley near Eugene, at the convergence of the Middle and Coast forks. It flows through the broad and fertile Willamette Valley region and at Oregon City flows over the Willamette Falls and passes through Portland before joining the Columbia River (Map 3.1-1).
    [Show full text]
  • TMDL Implementation Plan Annual Report
    City of Portland, Oregon Total Maximum Daily Load (TMDL) Implementation Plan Fourth Annual Status Report Fiscal Year 2011-2012 (July 1, 2011 – June 30, 2012) Submitted to: Oregon Department of Environmental Quality November 1, 2012 TMDL Implementation Plan Fourth Annual Status Report November 1, 2012 Introduction This Total Maximum Daily Load (TMDL) Implementation Plan Fourth Annual Status Report summarizes key activities and accomplishments for the City of Portland (City) during fiscal year (FY) 2011-2012 (July 1, 2011 to June 30, 2012). This is the fourth annual status report submitted by the City following the approval of the Total Maximum Daily Load (TMDL) Implementation Plan (IP) on March 6, 2009, in accordance with the Willamette Basin TMDL Water Quality Management Plan (WQMP). The IP was updated in FY11-12 to reflect the revised National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Stormwater Management Plan (SWMP), and the updated portion was included in the third annual status report. This report does not encompass all elements of the TMDL Implementation Plan, but rather focuses on the most important implementation actions. It also does not quantify the pollutant load reduction of every activity because reliable, consistent, and universally accepted tools are currently not available to assess pollutant load reduction effectiveness of many of the actions (e.g., pollution prevention, education, stream restoration). For parameters with EPA-approved stormwater-related TMDL Waste Load Allocations (WLAs), pollutant load reductions from structural facilities within the City’s MS4 area are estimated as part of NPDES MS4 permit compliance. That evaluation was most recently conducted as part of the 2008 NPDES MS4 Permit Renewal Submittal (http://www.portlandonline.com/bes/index.cfm?c=50333&a=246071).
    [Show full text]
  • 3.2 Flood Level of Risk* to Flooding Is a Common Occurrence in Northwest Oregon
    PUBLIC COMMENT DRAFT 11/07/2016 3.2 Flood Level of Risk* to Flooding is a common occurrence in Northwest Oregon. All Flood Hazards jurisdictions in the Planning Area have rivers with high flood risk called Special Flood Hazard Areas (SFHA), except Wood High Village. Portions of the unincorporated area are particularly exposed to high flood risk from riverine flooding. •Unicorporated Multnomah County Developed areas in Gresham and Troutdale have moderate levels of risk to riverine flooding. Preliminary Flood Insurance Moderate Rate Maps (FIRMs) for the Sandy River developed by the Federal Emergency Management Agency (FEMA) in 2016 •Gresham •Troutdale show significant additional risk to residents in Troutdale. Channel migration along the Sandy River poses risk to Low-Moderate hundreds of homes in Troutdale and unincorporated areas. •Fairview Some undeveloped areas of unincorporated Multnomah •Wood Village County are subject to urban flooding, but the impacts are low. Developed areas in the cities have a more moderate risk to Low urban flooding. •None Levee systems protect low-lying areas along the Columbia River, including thousands of residents and billions of dollars *Level of risk is based on the local OEM in assessed property. Though the probability of levee failure is Hazard Analysis scores determined by low, the impacts would be high for the Planning Area. each jurisdiction in the Planning Area. See Appendix C for more information Dam failure, though rare, can causing flooding in downstream on the methodology and scoring. communities in the Planning Area. Depending on the size of the dam, flooding can be localized or extreme and far-reaching.
    [Show full text]
  • Appendix E: the City's Natural Environment
    APPENDIX E The City’s Natural Environment APPENDIX E The City’s Natural Environment The City’s Environmental Setting General Characteristics Portland is situated at 20 feet above sea level, near the confluence of the Columbia and Willamette rivers, about 65 miles inland from the Pacific Ocean. It lies midway between the lower Coast Range to the west and the high Cascades Range to the east, each about 30 miles distant. Portland’s varied topography includes steep hills, isolated volcanic cones, low rolling hills and extensive flat areas. The area is composed primarily of alluvial deposits and Columbia River basalts. Much of the city is located in the Willamette Valley Plains ecoregion, although steeper portions of the Tualatin Hills on the west side are characteristic of Willamette Valley Hills and Coastal Mountains ecoregions (Clarke and others 1991). Portland has a mild marine climate that is heavily influenced by the mountain ranges east and west of the city. The Coast Range protects the Portland area from Pacific storms, while the Cascades prevent colder continental air masses from invading western Oregon. In winter, the average temperature is 40°F and the average minimum temperature is 34°F. In summer the average temperature is 65°F with an average daily maximum of 74 to 78°F (Rockey 2002). The Cascades also lift moisture-laden westerly winds from the Pacific, driving local rainfall patterns. Average annual rainfall in the Portland area is approximately 37 inches. Nearly 90 percent of the annual rainfall occurs from October through May. Only 9 percent of the annual rainfall occurs between June and September, with 3 percent in July and August.
    [Show full text]
  • Final Portland Harbor Programmatic EIS and Restoration Plan
    Final Portland Harbor Programmatic EIS and Restoration Plan Volume 1 of 2 Prepared by National Oceanic and Atmospheric Administration May 2017 With support from Final Portland Harbor Programmatic EIS and Restoration Plan May 24, 2017 Prepared by National Oceanic and Atmospheric Administration NOAA Restoration Center 1201 NE Lloyd Boulevard, Suite 1100 Portland, OR 97232 With support from Parametrix 700 NE Multnomah, Suite 1000 Portland, OR 97232-4110 T. 503.233.2400 T. 360.694.5020 F. 503.233.4825 www.parametrix.com CITATION NOAA. May 2017. Final Portland Harbor Programmatic EIS and Restoration Plan. Portland, Oregon. May 2017 │ 273-3975-023 Final Portland Harbor Programmatic EIS and Restoration Plan National Oceanic and Atmospheric Administration PORTLAND HARBOR NRDA PROGRAMMATIC EIS AND RESTORATION PLAN Final Draft Project Location: Portland Harbor NRDA Study Area (Willamette River, River Mile 0.8 to River Mile 12.3) and broader focus area (see Figure 1-1) Lead Federal Agency: The National Oceanic and Atmospheric Administration (NOAA) Lead Administrative Trustee: NOAA Cooperating Agencies and Tribes: U.S. Department of the Interior, Fish and Wildlife Service (DOI, USFWS) State of Oregon, acting through the Oregon Department of Fish and Wildlife Confederated Tribes of the Grand Ronde Community of Oregon Confederated Tribes of Siletz Indians Confederated Tribes of the Umatilla Indian Reservation Confederated Tribes of the Warm Springs Reservation of Oregon Nez Perce Tribe Contact Person: Megan Callahan Grant, NOAA NOAA Restoration Center 1201 NE Lloyd Blvd. #1100 Portland, OR 97232 Email: [email protected] Abstract: Part I of this Programmatic Environmental Impact Statement and Restoration Plan evaluates the potential environmental impacts of three restoration planning alternatives and selects an integrated habitat restoration approach as the preferred alternative.
    [Show full text]
  • Abundance and Distribution of Fish Species in City of Portland Streams
    ABUNDANCE AND DISTRIBUTION OF FISH SPECIES IN CITY OF PORTLAND STREAMS COMPLETION REPORT 2009 Project Period: 1 March 2008 to 30 June 2009 Prepared by: Erick S. Van Dyke Adam J. Storch Oregon Department of Fish and Wildlife Ocean Salmon and Columbia River Program Clackamas, OR Prepared for: City of Portland Bureau of Environmental Services Portland, OR 97204-1912 IGA Number 020-8038 December 2009 TABLE OF CONTENTS ABSTRACT........................................................................................................................................ i INTRODUCTION ..............................................................................................................................1 STUDY AREA ...................................................................................................................................2 METHODS .........................................................................................................................................5 Seasonal Fish Assemblage and Abundance...............................................................................6 Fish Presence in Summer Habitat Units ....................................................................................8 Index of Biotic Integrity.............................................................................................................9 RESULTS .........................................................................................................................................10 Seasonal Fish Assemblage and Abundance.............................................................................10
    [Show full text]
  • Shoreline Erosion on Sauvie Island, Oregon: Perceptions and Management Practices
    Shoreline Erosion on Sauvie Island, Oregon: Perceptions and Management Practices by Season Long, MS Candidate (Non-thesis) Marine Resource Management Program College of Oceanic and Atmospheric Science Oregon State University Corvallis Oregon, 97331 Presented June18th,2007 Funding of this project was provided by OSU Sea Grant MASTER'S PROJECT APPROVAL FORM Student information Student na Address: Redacted for Privacy Telephone m Project title:Shoreline Erosion on Sauvie Island, Oregon: Perceptions and Management Practices Defense date: 6/18/07 Project committee members 1) Major project advisor: uE S.Ci'ii'?Al Department:/s - / (j1J /, 1e C / c Signature: Redacted for Privacy 2) Committee member Redacted for Privacy Department:C-ic c Redacted for Privacy Signature: 3) Committee member: J%7/ ,?4/ 2O1- Department: C2/5- a2o2C 77T' Redacted for Privacy ACKNOWLEDGEMENTS I am grateful for the knowledge and support that I have received while perusing my master degree at Oregon State University. I would first like to thank my major advisor Sam Chan for his support, guidance, and encouragement which allowed me to excel in this Master Program. In addition, I would like to thank Jim Good for contributing to my knowledge in the area of Marine Resource Management and for the direction he provided in shaping my project write-up. I would also like to thank Michael Harte for his insight and perspective on the many professional paths that are ahead in my career. I would also like to extend a warm thanks to the residents of Sauvie island, many of whom opened there homes to me, as well as, enriched this project with there personal stories.
    [Show full text]
  • Portland Metro Levee System Feasibility Study
    Portland Metro Levee System Feasibility Study Integrated Feasibility Report and Environmental Assessment Appendix H – Cultural Resources January 2020 Page left blank to facilitate 2-sided copying. Contents Contents 1. Introduction ................................................................................................................................. 1 1.1. Purpose Statement ................................................................................................................ 1 1.2. Study Scope ......................................................................................................................... 1 2. Project Area Description and Background ............................................................................... 10 2.1. Environmental Setting ....................................................................................................... 10 2.2. Environmental History ....................................................................................................... 12 2.3. Precontact Context ............................................................................................................. 20 2.4. Previous Archaeological Investigations ............................................................................. 21 2.5. Archaeological Potential .................................................................................................... 24 2.6. Native Peoples ..................................................................................................................
    [Show full text]
  • Final Lower Columbia River Conservation and Recovery Plan
    Lower Columbia River Conservation and Recovery Plan for Oregon Populations of Salmon and Steelhead FINAL – August 6, 2010 FINAL LOWER COLUMBIA RIVER CONSERVATION AND RECOVERY PLAN FOR OREGON POPULATIONS OF SALMON AND STEELHEAD August 6, 2010 APPENDICES Appendix Page A: Planning and Stakeholder Team Members .................................................................................1 B: Strata and Population Issues in Lower Columbia River Domain Planning ...............................4 C: CATAS Support Information ...................................................................................................13 D: Most Recent Harvest Limits ....................................................................................................51 E: Limiting Factor and Threats to Lower Columbia River Salmon and Steelhead Populations................................................................................................................................57 F: SLAM Model Support Information ........................................................................................133 G: Related Management Plans for Lower Columbia River Salmon and Steelhead Populations..............................................................................................................................162 H: Programs to Implement Recovery Actions .............................................................................164 I: Oregon's Columbia River Chum Salmon Recovery Strategy .................................................172 J: Current
    [Show full text]
  • Sport Fishing Regulation Updates ‐ Last Updated July 23, 2013
    Sport Fishing Regulation Updates ‐ Last updated July 23, 2013 Oregon Sport Fishing Regulations provide requirements for all zones. However, additional regulations may be adopted in this rule division from time to time and to the extent of any inconsistency, they supersede the 2013 Oregon Sport Fishing Regulations. NORTHWEST ZONE Please note: Most recent updates are shown in bold red text. Beginning Jan. 1, 2013 the following tributaries of the Columbia will be restricted to barbless hooks when fishing for salmon, steelhead and trout: Youngs River from confluence with Youngs Bay upstream to markers at confluence with Klaskanine River. Lewis and Clark River from Hwy 101 bridge upstream to Alternate Hwy 101 bridge. Walluski River from confluence with Youngs Bay upstream to Hwy 202 bridge. Gnat Creek from railroad bridge upstream to Aldrich Point Road. Knappa/Blind Slough select areas. Three Rivers Open for adipose fin‐clipped spring chinook, adipose fin‐clipped summer steelhead and cutthroat trout through July 15. All regulations listed in the 2013 Oregon Sport Fishing Regulations will remain in place through the end the season. This includes the recent anti‐snagging gear restrictions that prohibit leaders longer than 36 inches, and limit anglers to a single point hook with a gap 3/8‐ inch or less. Trask River The ‘hatchery hole’ – the section of the Trask River located 200 feet above and 900 feet below its confluence with Gold Creek – will remain open to fishing through July 15. Bag limits, guidelines and closed areas remain the same and are described in the 2013 Oregon Sport Fishing Regulations.
    [Show full text]