J. Neurovirol. (2015) 21 (Suppl 1):S1–S87 DOI 10.1007/s13365-015-0345-z Abstracts from the 13th International Symposium on NeuroVirology June 2–6, 2015, San Diego, California, USA Published online: 5 May 2015 # Journal of NeuroVirology, Inc. 2015 P1 increased in the brains of Tat transgenic mice. Our in vitro Replication independent functions of Tat may contribute studies indicate that Tat-mediated changes in PINCH-PP1-al- to hpTau pha and downstream AKT-GSK3-beta signaling are responsi- ble in part for hpTau formation in HIV CNS disease. Radhika Adiga1,WilliamYen1, Anthony Adame2,Kori Kosberg2,EdwardRockenstein2, Satish Deshmane1, Prasun Datta1, Eliezer Masliah2,DianneLangford1 P2 (corresponding author:
[email protected]) Astrocytes Activation Induced by a Neuroadapted Dengue Virus Strain 1Temple University School of Medicine, Department of Neuroscience, Philadelphia, PA, USA; Sandra Elizabeth Aguilera Rojas, Maria Angélica Calderón 2University of California, San Diego, CA, USA Pelaez, Julieth Pardo, Edgar Orlando Beltran, Jaime Castellanos, Myriam Lucia Velandia Even though HIV does not infect neurons, extracellular Tat is (corresponding author:
[email protected]) internalized by neurons, localizes to the nucleus and can in- teract with numerous neuronal proteins to impact a variety of Grupo de Virología, Vicerrectoría de Investigaciones, cellular processes. The serine/threonine-protein phosphatase Universidad El Bosque, Bogotá, Colombia PP1 (PP1) is among the numerous host proteins to which Tat can bind. PP1-alpha contributes to the regulation of Little is known about the cellular and molecular mechanisms AKT and GSK3-beta activity and can de-phosphorylate the involved in neurological symptoms during dengue infection. microtubule binding protein Tau at residues associated with It seems that astrocyte cell activation could play an important tauopathy.