Civil Engineering Journal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
STRUCTURAL BEHAVIOUR of REINFORCED CONCRETE BEAMS CONTAINING a NOVEL LIGHTWEIGHT AGGREGATE 1. Introduction
STRUCTURAL BEHAVIOUR OF REINFORCED CONCRETE BEAMS CONTAINING A NOVEL LIGHTWEIGHT AGGREGATE ABSTRACT: This paper reports the results of an experimental investigation into the structural behaviour of reinforced concrete beams incorporating a novel EPS-based Lightweight Aggregate (LWA) called Stabilised Polystyrene (SPS) aggregate. Four concrete mixtures with Water to Cement ratio (W/C) of 0.8 were used. The replacement levels of natural aggregate by SPS were 0, 30, 60 and 100%. The volume ratio to manufacture SPS aggregate was 8:1:1 (80% waste EPS: 10% cement: 10% clay). A total of 24 beams were cast and tested at 28-day age. Three types of tension reinforcement were used: 2 bars, 3 bars and 2 bars + shear links. There were no compression bars at the top for all beams. Four point- loading flexural tests were conducted up to failure. In general, it can be observed that the structural behaviour of SPS concrete beams is similar to that of other types of lightweight aggregate concretes used around the world. Keywords: Waste Polystyrene; Lightweight Aggregates; Compressive Strength; Structural Behaviour; Deflection; Reinforced Concrete Beam. 1. Introduction Expanded Polystyrene (EPS) is a thermoplastic material and is mainly used as packaging and insulating products in various industrial fields around the world. A large quantity of EPS is disposed of as waste and left as stockpiles, landfill material or illegally dumped in selected areas. It has been reported that more than 112,000 tons of EPS were used for post-consumer protective packaging in the USA only in 1996. It has also been reported that around 300,000 tons of waste EPS are disposed of in landfill in the UK each year; because up to 95% of EPS is air, it occupies 38,000,000 m3 of space in landfill, which is enough to fill 15,000 Olympic- sized swimming pools! This will ultimately cause pollution and is harmful to the ecosystem. -
Use of Recycled Concrete Aggregates in Production of Green Cement-Based Concrete Composites: a Review
crystals Review Use of Recycled Concrete Aggregates in Production of Green Cement-Based Concrete Composites: A Review Natt Makul 1, Roman Fediuk 2 , Mugahed Amran 3,4,*, Abdullah M. Zeyad 5 , Gunasekaran Murali 6, Nikolai Vatin 7 , Sergey Klyuev 8 , Togay Ozbakkaloglu 9 and Yuriy Vasilev 7 1 Department of Civil Engineering Technology, Faculty of Industrial Technology, Phranakhon Rajabhat University, Bangkok 10220, Thailand; [email protected] 2 School of Engineering, Far Eastern Federal University, 8, Sukhanova Str., 690950 Vladivostok, Russia; [email protected] 3 Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia 4 Department of Civil Engineering, Faculty of Engineering and IT, Amran University, Amran 9677, Yemen 5 Department of Civil Engineering, Faculty of Engineering, Jazan University, Jazan 45142, Saudi Arabia; [email protected] 6 School of Civil Engineering, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu 613401, India; [email protected] 7 Moscow Automobile and Road Construction University, 125319 Moscow, Russia; [email protected] (N.V.); [email protected] (Y.V.) 8 Department of Theoretical Mechanics and Strength of Materials, Belgorod State Technological University Named after V.G. Shukhov, 308012 Belgorod, Russia; [email protected] 9 Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA; [email protected] * Correspondence: [email protected] or [email protected] Citation: Makul, N.; Fediuk, R.; Amran, M.; Zeyad, A.M.; Murali, G.; Abstract: Recycled concrete aggregates (RCA) are used in existing green building composites to Vatin, N.; Klyuev, S.; Ozbakkaloglu, promote the environmental preservation of natural coarse aggregates (NCA). -
Volumetric Concrete Mixers
SUPPLEMENTAL SPECIFICATION July 1, 2019 Delete Section 701.4.4.7 Mobile Concrete Mixing Plants and replace it with the following: 701.4.4.7 Volumetric Concrete Mixers Provide volumetric mixers with rating plates indicating that the performance of the mixer is in accordance with the Volumetric Mixer Manufacturer Bureau (VMMB). Ensure that mixers comply with ASTM C685. Unless otherwise specified, ensure that all mixing operations are in strict accordance with the manufacturer's recommended procedures. Provide such procedures to the RCE for review upon request. Ensure that the concrete mixing truck is an auger-type continuous mixer used in conjunction with volumetric proportioning. Ensure that the mixer produces concrete, uniform in color and appearance, with homogeneous distribution of the material throughout the mixture. Establish the mixing time necessary to produce uniform concrete and comply with other requirements of these specifications. Only acceptable equipment capable of producing uniform results will be permitted. Continuous volumetric concrete mixers may be used, with the approval of the RCE and State Materials Engineer, for non-structural concrete. Ensure that mix designs meet the requirements of Section 701.2.12.2 and all materials used meet the requirements of Section 701. Ensure that continuous volumetric concrete mixers are capable of combining aggregate, cement and/or fly ash, water and admixtures, into a uniform mixture within the specified mixing period. Ensure that all materials used are listed on the appropriate QPL -
Design Efficiency, Characteristics, and Utilization of Reinforced Foamed
crystals Review Design Efficiency, Characteristics, and Utilization of Reinforced Foamed Concrete: A Review Mugahed Amran 1,2,*, Yeong Huei Lee 3,*, Nikolai Vatin 4 , Roman Fediuk 5, Shek Poi-Ngian 6, Yee Yong Lee 7 and Gunasekaran Murali 8 1 Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia 2 Department of Civil Engineering, Faculty of Engineering and IT, Amran University, Quhal 9677, Amran, Yemen 3 Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University, CDT250, Miri 98009, Sarawak, Malaysia 4 Higher School of Industrial, Civil and Road Construction, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia; [email protected] 5 School of Engineering, Far Eastern Federal University, Vladivostok 690950, Russia; [email protected] 6 Construction Research Centre (CRC), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; [email protected] 7 Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia; [email protected] 8 School of Civil Engineering, SASTRA Deemed to be University, Thanjavur 613404, Tamil Nadu, India; [email protected] * Correspondence: [email protected] or [email protected] (M.A.); [email protected] (Y.H.L.) Received: 27 August 2020; Accepted: 30 September 2020; Published: 17 October 2020 Abstract: Foam concrete (FC) serves as an efficient construction material that combines well thermal insulation and structural properties. The studies of material characteristics, including the mechanical, physical, rheological, and functional properties of lightweight concrete, have been conducted rigorously. However, a lack of knowledge on the design efficiency of reinforced FC (RFC) was found in current research trends, compared to reinforced lightweight aggregate concrete. -
Concrete Mixing Methods and Concrete Mixers: State of the Art
Volume 106, Number 2, March–April 2001 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 106, 391–399 (2001)] Concrete Mixing Methods and Concrete Mixers: State of the Art Volume 106 Number 2 March–April 2001 Chiara F. Ferraris As for all materials, the performance of ule (volume of concrete needed per hour), concrete is determined by its microstruc- and the cost. Ultimately, the quality of National Institute of Standards and ture. Its microstructure is determined by its the concrete produced determines its per- Technology, composition, its curing conditions, and formance after placement. An important Gaithersburg, MD 20899-8621 also by the mixing method and mixer con- measure of the quality is the homogeneity ditions used to process the concrete. This of the material after mixing. This paper paper gives an overview of the various will review mixing methods in regards to [email protected] types of mixing methods and concrete the quality of the concrete produced. mixers commercially available used by the Some procedures used to determine the ef- concrete industry. There are two main fectiveness of the mixing will be exam- types of mixers used: batch mixers and ined. continuous mixers. Batch mixers are the most common. To determine the mixing Key words: concrete mixers; mixer effi- method best suited for a specific applica- ciency. tion, factors to be considered include: loca- tion of the construction site (distance Accepted: August 30, 2000 from the batching plant), the amount of concrete needed, the construction sched- Available online: http://www.nist.gov/jres 1. -
CRACK-RESISTANT CONCRETE MIX Pre-Blended, Fiber-Reinforced, Portland Cement and Sand Mix for 1½” Or Greater Depth
CRACK-RESISTANT CONCRETE MIX Pre-blended, fiber-reinforced, Portland cement and sand mix for 1½” or greater depth 1. PRODUCT NAME Coverage Tech-Mix® Crack-Resistant Concrete Mix • 60 lb. (27.2 kg) bag yields approximately 0.45 cu. ft. (12.7 L) of wet mortar. Coverage will vary based on waste and job site 2. MANUFACTURER conditions. Tech-Mix® is a registered trademark of TCC Materials 2025 Centre Pointe Blvd., Suite 300 5. INSTALLATION Mendota Heights, MN 55120 USA Preparation Phone: 1.651.688.9116 Read all directions before starting work. Stake out the planned Web: techmixpro.com area and remove sod or soil to the desired depth. Nail and stake forms securely in place. Tamp and compact the sub-base 3. PRODUCT DESCRIPTION until firm. Subgrade surface should be brought to a saturated Tech-Mix® Crack-Resistant Concrete Mix consists of a pre- surface dry (SSD) condition with potable water. All repair blended mixture of Portland cement, aggregates, air-entraining overlay surfaces must be sound and be clean of any admixtures, special synthetic reinforcing fibers, and other contaminants. Dampen adjoining concrete surfaces to SSD ingredients to reduce shrinkage cracks and improve impact condition with potable water. For increased bond to existing resistance. The special reinforcing fibers eliminate the need for concrete, a latex bonding additive such as Akona Concrete wire mesh in typical slab-on-grade applications. Use for Bonding Additive may be used. pouring concrete 1½ in. (38 mm) thick or greater. It is also used for building or repairing steps, walks, and floors. Note: It is the responsibility of the installer/applicator to ensure the suitability of the product for its intended use. -
Concrete Construction
Concrete Construction Six (6) Continuing Education Hours Course #CV1216 Approved Continuing Education for Licensed Professional Engineers EZ-pdh.com Ezekiel Enterprises, LLC 301 Mission Dr. Unit 571 New Smyrna Beach, FL 32170 800-433-1487 [email protected] Concrete Construction Ezekiel Enterprises, LLC Course Description: The Concrete Construction course satisfies six (6) hours of professional development. The course is designed as a distance learning course that overviews essentially all aspects of concrete construction. Objectives: The primary objective of this course is to enable the student to understand all the essentials of concrete, this includes characteristics, mix design, formwork, joints, placement, finishing, and pre-cast. Grading: Students must achieve a minimum score of 70% on the online quiz to pass this course. The quiz may be taken as many times as necessary to successful pass and complete the course. A copy of the quiz questions are attached to last pages of this document. ii Concrete Construction Ezekiel Enterprises, LLC Table of Contents Concrete Construction 1. Concrete Characteristics ..................................... 1 2. Concrete Ingredients .......................................... 5 3. Concrete Mix Design ........................................ 12 4. Mixing Concrete ............................................... 24 5. Formwork ........................................................ 28 6. Reinforced Concrete ......................................... 48 7. Concrete Construction Joints ........................... -
Standard Specifications
SECTION 03300 CAST IN PLACE CONCRETE PART 1 GENERAL 1.1 DESCRIPTION A. Provide cast-in-place concrete as indicated on the Drawings and as specified and required. Work includes but is not limited to the following: 1. Furnishing all materials, labor, equipment, and supplies. 2. Mixing, placing, testing, finishing, and curing cast in place concrete. 1.2 QUALITY ASSURANCE A. Conform to applicable requirements of the International Building Code currently in force unless more stringent requirements are specified or shown on the Drawings. B. Perform work in accordance with ACI 301, ACI 304, ACI 305R, ACI 306R, ACI 318, ACI 347, and ACI 350. Maintain the latest copy of these and other appropriate documents referred to therein on the project site at all times. 1. Do not exceed 1.5-hrs. between batching and complete discharge of concrete. 2. Use mechanical high-frequency internal vibrators to compact concrete during and immediately after depositing. a. Provide sufficient standby equipment to ensure vibration will be continuous. b. Only use approved external vibrators for compacting concrete when concrete is inaccessible for adequate compaction by other means. c. Vibrate concrete to ensure no movement of reinforcing steel from its final position. 3. Acquire cement and aggregate from same source for all work. 4. Do not use excess grout or mortar to lubricate pipelines when pumping concrete. Also, do not discharge washout water into the forms. C. Unless otherwise indicated, use an independent testing agency hired by the Contractor and approved by the Engineer to perform all testing. Sampling shall be the Contractor’s responsibility. -
Portugal Is the Major Producer of Cork (Bark of Quercus Suber L.) and the Major Manufacturer of Cork Products
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório da Universidade Nova de Lisboa Cement- cork mortars for thermal bridges correction. Comparison with cement-EPS mortars performance Construction and Building Materials 49 (2013), 315-327 ANA BRÁS1, MÁRCIO LEAL1, PAULINA FARIA2 1 Construction and Environment Section, ESTB – Polytechnic Institute of Setúbal, Portugal 2 Department of Civil Engineering, NOVA University of Lisbon, 2829-516 Caparica Portugal Corresponding author: Ana Margarida Armada Brás. Tel: +351212064660, Fax: +351 212 075 002, e-mail: [email protected] ABSTRACT The aim of this paper is to demonstrate the advantage of cork-mortars for renderings when compared to EPS- mortars, from a thermal characteristics point of view, namely in steady and unsteady conditions. It was intended to develop specific rendering mortars able to be applied in thermal bridges to reduce condensation effects and heat transfer in buildings envelopes. The impact of this solution is significant, especially in building typologies as framed reinforced concrete structures. Cement mortars and cement-EPS mortars are used as a reference as their properties are easily recognized compared to cement-cork mortars, which are made with by-products from the cork industry. Several studies were made concerning fresh and hardened state behaviour of mortars, namely: rheological and mechanical properties, microstructure evolution with time and thermal behaviour. For a cement based mortar, different cork dosages (from 0% to 80%) were tested (as sand replacement by mass). Microstructural analyses show that the mechanical properties of cement-cork blends are not only controlled by cork’s low density, but also by interaction of cork extractives with the cement hydration process. -
Optimum Mix Design for 3D Concrete Printing Using Mining Tailings: a Case Study in Spain
sustainability Article Optimum Mix Design for 3D Concrete Printing Using Mining Tailings: A Case Study in Spain Martina-Inmaculada Álvarez-Fernández 1,*, María-Belén Prendes-Gero 2 , Celestino González-Nicieza 1, Diego-José Guerrero-Miguel 1 and Juan Enrique Martínez-Martínez 2 1 Mining Exploitation Department, EIMEM, University of Oviedo, 33003 Oviedo, Spain; [email protected] (C.G.-N.); [email protected] (D.-J.G.-M.) 2 Construction Department, EPM, University of Oviedo, 33003 Oviedo, Spain; [email protected] (M.-B.P.-G.); [email protected] (J.E.M.-M.) * Correspondence: [email protected] Abstract: A mix design, using a mixture of sand and mine tailings as aggregates, was selected to produce a cement-based 3D printing material suitable for building purposes. Different dosage rates of mine tailings, water, superplasticizers, and accelerators were added to the mixture with the end of looking for the optimum strength, workability and buildability. The term buildability includes aspects such as pumpability and printability. Different tests were carried out in order to compare homogeneous material strength with printed material strength, to evaluate the bonding strength between filaments, and to establish the relationship between fresh behaviour and build- ability for printing applications. Finally, a mixture with 20% of recycled materials demonstrated its ability to be used as concrete printing material in the construction industry in the frame of circular economy concept. Citation: Álvarez-Fernández, M.-I.; Keywords: concrete printing; printing buildability; rheological properties; fresh concrete Prendes-Gero, M.-B.; González-Nicieza, C.; Guerrero-Miguel, D.-J.; Martínez-Martínez, J.E. Optimum 1. -
Use of a Moisture Sensor for Monitoring the Effect of Mixing Procedure on Uniformity of Concrete Mixtures Kejin Wang1 and Jiong Hu2
Journal of Advanced Concrete Technology Vol. 3, No. 3, 371-384, October 2005 / Copyright © 2005 Japan Concrete Institute 371 Scientific paper Use of a Moisture Sensor for Monitoring the Effect of Mixing Procedure on Uniformity of Concrete Mixtures Kejin Wang1 and Jiong Hu2 Received 9 January 2005, accepted 18 June 2005 Abstract The present research is to explore a new approach to monitoring uniformity of concrete mixtures. A given concrete mix was subjected to three different mixing procedures. A moisture sensor was installed inside a pan mixer to monitor mois- ture content of the concrete mixtures during mixing. The concrete mixtures were considered as uniformly mixed when stable moisture content was detected by the moisture sensor. The concrete workability and strength were then evaluated, and the concrete’s microstructure (pore distributions and aggregate-paste interface) was examined. The preliminary re- sults indicated that the moisture sensor provided reliable test results describing moisture distribution in concrete mix- tures. The sensor readings well captured the subtle changes, such as the loading sequence of concrete materials, in the concrete mixing process. The material loading sequence, mixing time, and aggregate moisture condition had significant influences on the concrete workability, air void system, and strength. These research results provide researchers and engineers with insight into the control of concrete mixing quality and the optimization of mixing procedures in the lab and field. 1. Introduction Thorough mixing is essential to produce a homoge- neous mixture. A well-mixed mixture will permit all Concrete production consists of multiple and closely concrete components to distribute in its system uni- interrelated steps, including batching, mixing, consoli- formly and allow cementitious materials to hydrate uni- dation, finishing, and curing. -
Influence of Aggregates Grading and Water/Cement Ratio in Workability and Hardened Properties of Mortars
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars Vladimir G. Haach1 Graça Vasconcelos2 Paulo B. Lourenço3 Abstract. Mortar is the material responsible for distribution of stresses in masonry structures. Knowledge about the fresh and hardened properties of mortar is fundamental to ensure a good performance of masonry walls. Water/cement ratio and aggregates grading are among several variables that influence physical and mechanical behaviour of mortars. An experimental program is presented in order to evaluate the influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Eighteen compositions of mortar are prepared using three relations cement:lime:sand, two types of sand and three water/cement ratios. Specimens are analyzed through flow table test, compressive and flexural strength tests. Results indicate that the increase of water/cement ratio reduces the values of hardened properties and increases the workability. Besides, sands grading has no influence in compressive strength. On the other hand, significant differences in deformation capacity of mortars were verified with the variation of the type of sand. Finally, some correlations are presented among hardened properties and the compressive strength. Key words: mortar, water/cement ratio, sand grading, masonry. Introduction Mortar is one of the constituents of the composite anisotropic material denominated “masonry”. Mortar is responsible for creating a uniform stress distribution correcting the irregularities of blocks and accommodating deformations associated to thermal expansions and shrinkage. In case of mortar, it is well known that its influence on compressive strength of masonry is much reduced.