Silica Fume As a Scm for Pervious Concrete
Total Page:16
File Type:pdf, Size:1020Kb
THE EFFECTS OF UTILIZING SILICA FUME IN PORTLAND CEMENT PERVIOUS CONCRETE A THESIS IN Civil Engineering Presented to the Faculty of the University of Missouri-Kansas City in partial fulfillment of the requirements for the degree MASTER OF SCIENCE By DANIEL ALLEN MANN B.S. University of Missouri-Kansas City, 2012 Kansas City, Missouri 2014 © 2014 DANIEL ALLEN MANN ALL RIGHTS RESERVED THE EFFECTS OF UTILIZING SILICA FUME IN PORTLAND CEMENT PERVIOUS CONCRETE Daniel Allen Mann, Candidate for the Master of Science Degree University of Missouri-Kansas City, 2014 ABSTRACT Silica fume has long been used as a supplementary cementing material to provide a high density, high strength, and durable building material. Silica fume has a particle size a fraction of any conventional cement, which allows it to increase concrete strength by decreasing the porosity especially near the aggregates surface. Because Portland Cement Pervious Concrete (PCPC) has a smaller bond area between aggregate and paste, silica fume has significant impacts on the properties of the PCPC. The research in this paper studies the workability of a cement paste containing silica fume in addition to analyzing the results of testing on Portland Cement Pervious Concrete mixtures that also contained silica fume. Testing conducted included a study of the effects of silica fume on cement’s rheological properties at various dosage rates ranging from zero to ten percent by mass. It was determined that silica fume has negligible effects on the viscosity of cement paste until a dosage rate of five percent, at which point the viscosity increases rapidly. In addition to the rheological testing of the cement paste, trials were also conducted on the pervious concrete samples. Sample groups included mixes with river gravel and chipped limestone as aggregate, washed and unwashed, and two different void contents. iii Workability tests showed that mixtures containing a silica fume dosage rate of 5 percent or less had comparable or slightly improved workability when compared to control groups. Workability was found to decrease at a 7 percent dosage rate. Samples were tested for compressive strength at 7 and 28 days and splitting tensile strength at 28 days. It was found in most sample groups, strength increased with dosage rates of 3 to 5 percent but often decreased when the dosage reached 7 percent. Abrasion testing showed that both samples containing washed aggregate and samples containing silica fume exhibited a reduced mass loss. iv APPROVAL PAGE The faculty listed, appointed by the Dean of the School of Computing and Engineering, have examined a thesis titled “The Effects of Utilizing Silica Fume in Portland Cement Pervious Concrete,” presented by Daniel A. Mann, candidate for the Master of Science Degree, and certify in their opinion it is worthy of acceptance. Supervisory Committee John T. Kevern, Ph.D., Committee Chair Department of Civil Engineering Ceki Halmen, Ph.D. Department of Civil Engineering Travis Fields, Ph.D. Department of Mechanical Engineering v CONTENTS 1. ABSTRACT ....................................................................................................................... iii 2. CONTENTS ....................................................................................................................... vi 3. LIST OF ILLUSTRATIONS ........................................................................................... viii 4. LIST OF TABLES ............................................................................................................ xii 5. ACKNOWLEDGEMENTS ............................................................................................. xiii 6. INTRODUCTION .............................................................................................................. 1 7. LITERATURE REVIEW ................................................................................................... 3 8. MATERIALS .................................................................................................................... 10 9. MIXTURE PROPORTIONS ............................................................................................ 13 Paste Mixtures ............................................................................................................. 14 Mortar Mixtures .......................................................................................................... 15 Pervious Concrete Mixtures ........................................................................................ 15 10. MIXING METHODS ....................................................................................................... 18 Paste Mixture Methods ............................................................................................... 18 Mortar Mix Method .................................................................................................... 20 Pervious Mix Method ................................................................................................. 21 11. TEST METHODS ............................................................................................................. 22 Paste Testing ............................................................................................................... 22 Mortar Testing ............................................................................................................ 24 Pervious Testing ......................................................................................................... 25 12. RESULTS AND DISCUSSION ....................................................................................... 35 Paste Results ............................................................................................................... 35 vi Mortar Cubes .............................................................................................................. 43 Pervious Concrete ....................................................................................................... 44 13. CONCLUSIONS............................................................................................................... 76 14. FUTURE TESTING ......................................................................................................... 80 15. REFERENCES ................................................................................................................. 82 16. VITA ................................................................................................................................. 85 vii LIST OF ILLUSTRATIONS Figure Page 1 PHOTOMICROGRAPH OF OPC (LEFT) AND SF (RIGHT) AT THE SAME MAGNIFICATION (HOLLAND, 2005). ......................................................................... 4 2 HOT WEATHER MIXING CONFIGURATION ............................................................... 19 3 MORTAR ULTRASOUND MIXING ................................................................................ 20 4 PCPC SAMPLE WITH TOO MUCH WATER ADDED ................................................... 21 5 BROOKFIELD VISCOMETER MODEL USED FOR TESTING..................................... 22 6 CAPSULE AND SPINDLE OF BROOKFIELD VISCOMETER ...................................... 23 7 ASTM C109 MORTAR CUBE COMPRESSIVE STRENGTH TESTING ....................... 25 8 CAPPING-CAPPING PROCESS FOR COMPRESSIVE STRENGTH TESTING ........... 26 9 COMPRESSIVE STRENGTH TESTING OF A PERVIOUS CONCRETE SAMPLE. .... 27 10 SPLITTING TENSILE STRENGTH SETUP ................................................................... 28 11 ASTM C944 ROTARY ABRASION APPARATUS ....................................................... 29 12 ABRASION PLATE SPECIMEN BEFORE ROTARY ABRASION TESTING ............ 30 13 ABRASION PLATE SPECIMEN AFTER ROTARY ABRASION TESTING ............... 30 14 PERVIOUS CONCRETE PERMEABILITY TEST SETUP ............................................ 33 15 PERVIOUS CONCRETE PERMEABILITY TEST SAMPLES ...................................... 34 16 DATA PROCESSING FOR P-5 AT 10 MINUTES MIXING TIME USING LINEAR VISCOSITY MODEL ..................................................................................................... 35 17 EXAMPLE OF DATA PROCESSING FOR P-5 AT 10 MINUTES MIXING TIME ACKNOWLEDGING SHEAR THINNING BEHAVIOR ............................................. 36 18 SUM OF SQUARES MODEL FITTING FOR BINGHAM PLASTIC AND HERSHELL- BULKLEY FOR P-5 ....................................................................................................... 37 19 DATA SAMPLE SHOWING LINEAR VISCOSITY AT 0% SF DOSAGE ................... 38 20 RHEOLOGY RESULTS FOR P-5 AT 0 TO 90 MINUTES ASSUMING LINEAR VISCOSITY .................................................................................................................... 39 viii 21 RHEOLOGY RESULTS FOR P-5 AT 0 TO 90 MINUTES AT SHEAR RATES OF 10 SEC-1 AND 35 SEC-1 ...................................................................................................... 40 22 VISCOSITY AND YIELD STRESS FOR DIFFERENT SF DOSAGE RATES ............. 41 23 HOT WEATHER MIXING RHEOLOGY ........................................................................ 42 24 TYPICAL MORTAR CUBE FAILURE ........................................................................... 43 25 UNIT WEIGHT TESTING BY ASTM C1688 ................................................................. 48 26 7-DAY 20-PERCENT DESIGN VOIDS LIMESTONE COMPRESSIVE STRENGTH VALUES ........................................................................................................................