RESEARCH ARTICLE Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells Nathaniel Hassan1,2, Kirstin McCarville1,2,3☯, Kenzo Morinaga1,3,4☯, Cristiane M. Mengatto1,5, Peter Langfelder6, Akishige Hokugo1,7, Yu Tahara8, Christopher S. Colwell8, Ichiro Nishimura1,2,3* a1111111111 a1111111111 1 Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California, a1111111111 United States of America, 2 Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, a1111111111 California, United States of America, 3 Division of Advanced Prosthodontics, UCLA School of Dentistry, Los a1111111111 Angeles, California, United States of America, 4 Department of Oral Rehabilitation, Section of Oral Implantology, Fukuoka Dental College, Fukuoka, Japan, 5 Department of Conservative Dentistry, School of Dentistry Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil, 6 Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America, 7 Division of Plastic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America, 8 Department of Psychiatry & Biobehavioral Science, David Geffen School of OPEN ACCESS Medicine at UCLA, Los Angeles, California, United States of America Citation: Hassan N, McCarville K, Morinaga K, ☯ These authors contributed equally to this work. Mengatto CM, Langfelder P, Hokugo A, et al. *
[email protected] (2017) Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells. PLoS ONE 12(8): e0183359. https://doi.org/ Abstract 10.1371/journal.pone.0183359 Circadian rhythms maintain a high level of homeostasis through internal feed-forward and Editor: Shin Yamazaki, University of Texas -backward regulation by core molecules.