Ruthenium Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Ruthenium Complexes Ruthenium Complexes Ruthenium Complexes Photochemical and Biomedical Applications Edited by Alvin A. Holder Lothar Lilge Wesley R. Browne Mark A.W. Lawrence Jimmie L. Bullock Jr. Editors All books published by Wiley-VCH are carefully produced. Nevertheless, authors, Prof. Alvin A. Holder editors, and publisher do not warrant the Old Dominion University information contained in these books, Department of Chemistry and including this book, to be free of errors. Biochemistry Readers are advised to keep in mind that 4541 Hampton Blvd. statements, data, illustrations, procedural VA details or other items may inadvertently United States be inaccurate. Prof. Lothar Lilge Library of Congress Card No.: University of Toronto applied for Princess Margaret Cancer Centre 101 College Street British Library Cataloguing-in-Publication M5G 1L7 ON Data Canada A catalogue record for this book is available from the British Library. Prof. Wesley R. Browne University of Groningen Bibliographic information published by Stratingh Institute of Chemistry the Deutsche Nationalbibliothek Nijenborgh 4 The Deutsche Nationalbibliothek 9747 AG Groningen lists this publication in the Deutsche Netherlands Nationalbibliografie; detailed bibliographic data are available on the Dr. Mark A.W. Lawrence Internet at <http://dnb.d-nb.de>. Old Dominion University Department of Chemistry and © 2018 Wiley-VCH Verlag GmbH & Co. Biothchnology KGaA, Boschstr. 12, 69469 Weinheim, 4541 Hampton Blvd. Germany VA United States All rights reserved (including those of Jimmie L. Bullock Jr. translation into other languages). No part Old Dominion University of this book may be reproduced in any Department of Chemistry and form – by photoprinting, microfilm, or Biochemistry any other means – nor transmitted or 4541 Hampton Blvd. translated into a machine language VA without written permission from the United States publishers. Registered names, trademarks, etc.usedinthisbook,evenwhennot specifically marked as such, are not to be considered unprotected by law. Print ISBN: 978-3-527-33957-0 ePDF ISBN: 978-3-527-69520-1 ePub ISBN: 978-3-527-69524-9 Mobi ISBN: 978-3-527-69521-8 oBook ISBN: 978-3-527-69522-5 Cover Design Grafik-Design Schulz, Fußgönheim, Germany Typesetting SPi Global, Chennai, India Printing and Binding Printed on acid-free paper 10987654321 Dedicated to Karen with admiration, affection, and respect!! Dear Karen, we will miss you for your class, humour, and knowledge!! Selah R.I.P. vii Contents About the Editors xv Preface xvii Acknowledgments xix Section I Introduction 1 1 Karen J. Brewer (1961–2014): A Bright Star that Burned Out Far Too Soon 3 Seth C. Rasmussen 1.1 Introduction 3 1.2 Early Years 4 1.3 Graduate Studies and Clemson University 6 1.4 Postdoctoral Research and the University of California, Berkeley 11 1.5 Washington State University: Beginning an Independent Career 13 1.6 Move to Virginia Tech 15 1.7 Collaboration with Brenda Winkel and the Study of Metal-DNA Interactions 16 1.8 A Return to Where It All Started: Photochemical H2 Production 18 1.9 A Career Cut Tragically Short 19 1.10 Karen’s Legacy 20 Acknowledgments 20 References 20 2 Basic Coordination Chemistry of Ruthenium 25 Mark A. W. Lawrence, Jimmie L. Bullock, and Alvin A. Holder 2.1 Coordination Chemistry of Ruthenium 25 2.1.1 The Element 25 2.1.2 Stereochemistry and Common Oxidation States 26 2.1.2.1 Ruthenium in Low Oxidation States 27 2.1.2.2 Chemistry of Ruthenium(II) and (III) 31 2.1.2.3 Higher Oxidation States of Ruthenium 36 2.1.3 Conclusion 37 References 37 viii Contents Section II Artificial Photosynthesis 43 3 Water Oxidation Catalysis with Ruthenium 45 Andrea Sartorel 3.1 Introduction 45 3.1.1 Energy Issue and Energy from the Sun 45 3.1.2 Photosynthesis and Solar Fuels 46 3.1.3 Water Oxidation 48 3.1.4 Artificial Water Oxidation 49 3.2 Ruthenium in Water Oxidation Catalyst 50 3.2.1 Ruthenium Oxide 50 3.2.2 Molecular Ruthenium WOC 52 3.2.2.1 Meyer’s Blue Dimer 53 3.2.2.2 The Ru-Hbpp Catalyst 54 3.2.2.3 Single-Site Ru-WOCs 55 3.2.2.4 Heptacoordinated Ru Intermediates 56 3.2.3 Polyoxometalates: The Bridge Between Metal Oxides and Coordination Complexes 57 3.3 Conclusions and Perspectives 60 References 61 4 Ruthenium- and Cobalt-Containing Complexes and Hydrogenases for Hydrogen Production 67 Michael J. Celestine, Raj K. Gurung, and Alvin A. Holder 4.1 Introduction 67 4.2 (A) Ruthenium- and Cobalt-Containing Complexes for Hydrogen Production 68 4.2.1 Nonbridged Systems 68 4.2.2 Bridged Systems 70 4.3 (B) Ruthenium(II)-Containing Complexes and Hydrogenases for Hydrogen Generation in Aqueous Solution 77 4.3.1 Hydrogenases 77 4.3.2 Hydrogenases with Ruthenium(II) Complexes 78 4.4 Conclusions 84 References 85 Section III Applications in Medicine 89 5 Ligand Photosubstitution Reactions with Ruthenium Compounds: Applications in Chemical Biology and Medicinal Chemistry 91 Samantha L. Hopkins and Sylvestre Bonnet 5.1 Introduction 91 5.2 Caging and Uncaging Biologically Active Ligands with a Nontoxic Ruthenium Complex 92 5.3 Caging Cytotoxic Ruthenium Complexes with Organic Ligands 96 Contents ix 5.4 Low-Energy Photosubstitution 100 5.4.1 Introduction 100 5.4.2 Modulating Ru Photophysics by Ligand Modulation 100 5.4.3 Upconversion (UC) 105 5.4.3.1 Triplet–Triplet Annihilation Upconversion 105 5.4.3.2 Upconverting Nanoparticles (UCNPs) 106 5.4.3.3 Two-Photon Absorption (TPA) Photosubstitution 109 5.5 Conclusions 110 References 111 6 Use of Ruthenium Complexes as Photosensitizers in Photodynamic Therapy 117 Lothar Lilge 6.1 Introduction 117 6.2 The Basics of Photodynamic Therapy 118 6.2.1 Singlet Oxygen Production 120 6.2.2 Other Radical Production 120 6.2.3 PDT Dose Definition 120 6.2.3.1 PDT Dosimetry In Vitro 122 6.2.3.2 PDT Dosimetry In Vivo 124 6.2.3.3 Oxygen Consumption Model 125 6.2.3.4 In Vivo Tissue Response Models 125 6.2.4 PDT and Immunology 126 6.3 Status of Ru Photosensitizing Complexes 126 6.3.1 Photostability for Ru-PS Complexes 128 6.3.2 Long Wavelength Activation of Ru(II)-PS Complexes 128 6.4 Issues to Be Considered to Further Develop Ru-Based Photosensitizers 129 6.4.1 Subcellular Localization 130 6.4.2 Ruthenium Complex Photosensitizers and the Immune Response 131 6.5 Future Directions for Ru-PS Research 131 6.6 Conclusion 132 References 132 7 Photodynamic Therapy in Medicine with Mixed-Metal/Supramolecular Complexes 139 Jimmie L. Bullock and Alvin A. Holder 7.1 Introduction 139 7.2 Platinum and Rhodium Centers as Bioactive Sites 140 7.2.1 Platinum(II)-Based Chemotherapeutics 140 7.2.2 Rhodium(III) as a Bioactive Site 141 7.3 Supramolecular Complexes as DNA Photomodification Agents 142 7.4 Mixed-Metal Complexes as Photodynamic Therapeutic Agents 143 7.4.1 Photosensitizers with a Ru(II) Metal Center Coupled to Pt(II) Bioactive Sites 143 x Contents 7.4.1.1 Binuclear Complexes with Ru(II) and Pt(II) Metal Centers with Bidentate Ligands 143 7.4.1.2 Binuclear and Trinuclear Complexes with Ru, Pt with Tridentate Ligands 146 7.4.2 Photosensitizers with a Ru(II) Metal Center Coupled to Rh(III) Bioactive Sites 147 7.4.2.1 Trinuclear Complexes with Ru(II), Rh(III), and Ru(II) Metal Centers 147 7.4.2.2 Binuclear Complexes with Ru(II) and Rh(III) Metal Centers 149 7.4.3 Photosensitizers with a Ru(II) Metal Cenetr Coupled to Other Bioactive Sites 150 7.4.3.1 Binuclear Complexes with Ru(II) and Cu 150 7.4.3.2 Binuclear Complexes with Ru(II) and Co(III) Metal Centers 151 7.4.3.3 Binuclear Complexes with Ru (II) and V(IV) Metal Centers 151 7.4.3.4 Applications of Ru(II) Metal Centers in Nanomedicine 152 7.5 Summary and Conclusions 155 Abbreviations 156 References 157 8 Ruthenium Anticancer Agents En Route to the Tumor: From Plasma Protein Binding Agents to Targeted Delivery 161 Muhammad Hanif and Christian G. Hartinger 8.1 Introduction 161 8.2 Protein Binding RuIII Anticancer Drug Candidates 163 8.2.1 RuIII Anticancer Drug Candidates Targeting Primary Tumors 163 8.2.2 Antimetastatic RuIII Compounds 165 8.3 Functionalization of Macromolecular Carrier Systems with Ru Anticancer Agents 166 8.3.1 Proteins as Delivery Vectors for Organometallic Compounds 166 8.3.2 Polymers and Liposomes as Delivery Systems for Bioactive Ruthenium Complexes 168 8.3.3 Dendrimers 169 8.4 Hormones, Vitamins, and Sugars: Ruthenium Complexes Targeting Small Molecule Receptors 169 8.5 Peptides as Transporters for Ruthenium Complexes into Tumor Cells and Cell Compartments 173 8.6 Polynuclear Ruthenium Complexes for the Delivery of a Cytotoxic Payload 174 8.7 Summary and Conclusions 175 Acknowledgments 175 References 176 9 Design Aspects of Ruthenium Complexes as DNA Probes and Therapeutic Agents 181 Madeleine De Beer and Shawn Swavey 9.1 Introduction 181 9.2 Physical Interaction to Disrupt DNA Structure 181 Contents xi 9.2.1 Irreversible Covalent Binding 182 9.2.2 Intercalation 184 9.2.3 Additional Noncovalent Binding Interactions 185 9.3 Biological Consequences of Ru-Complex/DNA Interactions 186 9.4 Effects of Ru Complexes on Topoisomerases and Telomerase 191 9.5 Summary and Conclusions 196 References 197 10 Ruthenium-Based Anticancer Compounds: Insights into Their Cellular Targeting and Mechanism of Action 201 António Matos, Filipa Mendes, Andreia Valente, Tânia Morais, Ana Isabel Tomaz, Philippe Zinck, Maria Helena Garcia, Manuel Bicho, and Fernanda Marques 10.1 Introduction 201 10.2 Cellular Uptake 204 10.3 DNA and DNA-Related Cellular Targets 205 10.4 Targeting Signaling Pathways 207 10.5 Targeting Enzymes of Specific Cell Functions 207 10.6 Targeting Glycolytic Pathways 209 10.7 Macromolecular Ruthenium Conjugates: A New Approach to Targeting 211 10.8 Conclusions 214 References 215 11 Targeting cellular DNA with Luminescent Ruthenium(II) Polypyridyl Complexes 221 Martin R.
Recommended publications
  • Michael Kühn Detlev Auvermann RARE BOOKS
    ANTIQUARIAT 55Michael Kühn Detlev Auvermann RARE BOOKS 1 Rolfinck’s copy ALESSANDRINI, Giulio. De medicina et medico dialogus, libris quinque distinctus. Zurich, Andreas Gessner, 1557. 4to, ff. [6], pp. AUTOLYKOS (AUTOLYCUS OF PYTANE). 356, ff. [8], with printer’s device on title and 7 woodcut initials; a few annotations in ink to the text; a very good copy in a strictly contemporary binding of blind-stamped pigskin, the upper cover stamped ‘1557’, red Autolyci De vario ortu et occasu astrorum inerrantium libri dvo nunc primum de graeca lingua in latinam edges, ties lacking; front-fly almost detached; contemporary ownership inscription of Werner Rolfinck on conuersi … de Vaticana Bibliotheca deprompti. Josepho Avria, neapolitano, interprete. Rome, Vincenzo title (see above), as well as a stamp and duplicate stamp of Breslau University library. Accolti, 1588. 4to, ff. [6], pp. 70, [2]; with large woodcut device on title, and several woodcut diagrams in the text; title a little browned, else a fine copy in 19th-century vellum-backed boards, new endpapers. EUR 3.800.- EUR 4.200.- First edition of Alessandrini’s medical dialogues, his most famous publication and a work of rare erudition. Very rare Latin edition, translated from a Greek manuscript at the Autolycus was a Greek mathematician and astronomer, who probably Giulio Alessandrini (or Julius Alexandrinus de Neustein) (1506–1590) was an Italian physician and author Vatican library, of Autolycus’ work on the rising and setting of the fixed flourished in the second half of the 4th century B.C., since he is said to of Trento who studied philosophy and medicine at the University of Padua, then mathematical science, stars.
    [Show full text]
  • Kailash C. Misra Rutgers University, New Brunswick
    Nilos Kabasilas Heinri%h von )angenstein ;emetrios Ky2ones 4lissae"s J"2ae"s Universit> 2e /aris (1060) ,eorgios /lethon ,emistos Johannes von ,m"n2en !an"el Chrysoloras (10'5) UniversitIt *ien (1.56) ,"arino 2a ?erona $asilios $essarion ,eorg von /e"erba%h (1.5') !ystras (1.06) UniversitIt *ien (1..5) Johannes 8rgyro1o"los Johannes !Lller Regiomontan"s )"%a /a%ioli UniversitC 2i /a2ova (1...) UniversitIt )ei1Big : UniversitIt *ien (1.-6) ?ittorino 2a Aeltre !arsilio Ai%ino ;omeni%o !aria Novara 2a Aerrara Cristo3oro )an2ino UniversitC 2i /a2ova (1.16) UniversitC 2i AirenBe (1.6() UniversitC 2i AirenBe (1.'0) Theo2oros ,aBes 9gnibene (9mnibon"s )eoni%en"s) $onisoli 2a )onigo 8ngelo /oliBiano Constantino1le : UniversitC 2i !antova (1.00) UniversitC 2i !antova UniversitC 2i AirenBe (1.66) ;emetrios Chal%o%on2yles R"2ol3 8gri%ola S%i1ione Aortig"erra )eo 9"ters ,aetano 2a Thiene Sigismon2o /ol%astro Thomas C Kem1is Ja%ob ben Jehiel )oans !oses /ereB !ystras : 8%%a2emia Romana (1.-() UniversitC 2egli St"2i 2i Aerrara (1.6') UniversitC 2i AirenBe (1.90) Universit> CatholiK"e 2e )o"vain (1.'-) Jan"s )as%aris Ni%oletto ?ernia /ietro Ro%%abonella Jan Stan2on%& 8le7an2er Hegi"s Johann (Johannes Ka1nion) Re"%hlin AranNois ;"bois ,irolamo (Hieronym"s 8lean2er) 8lean2ro !aarten (!artin"s ;or1i"s) van ;or1 /elo1e !atthae"s 82rian"s Jean Taga"lt UniversitC 2i /a2ova (1.6() UniversitC 2i /a2ova UniversitC 2i /a2ova CollMge Sainte@$arbe : CollMge 2e !ontaig" (1.6.) (1.6.) UniversitIt $asel : Universit> 2e /oitiers (1.66) Universit> 2e /aris (1-16) UniversitC
    [Show full text]
  • Conference Proceedings by Maik Wackerhagen ([email protected]), Approved by Ute Frietsch, 27.02.2020
    1 Conference Proceedings by Maik Wackerhagen ([email protected]), approved by Ute Frietsch, 27.02.2020 From 20 to 22 November 2019 the International Conference “Alchemy and University – Alchemie und Universität” took place at the Herzog August Bibliothek Wolfenbüttel. It was organized by Ute Frietsch (HAB Wolfenbüttel, Humboldt Universität zu Berlin), as part of the project “Epistemic Change: Stages of Early Modern Alchemy”, funded by the DFG (German Research Foundation), and in cooperation with Volkhard Wels (Freie Universität Berlin). Johann Hartmann apparently was the first and only professor of alchemy. The history of alchemy, alchemical teaching and the university however is far more complex than it may seem. More detailed research shows that a profound transformation of knowledge, teaching structures and scientific methods was necessary, to slowly adapt alchemy to the norms and traditions of early modern university as well as vice versa. Alchemically interested people in different social positions and networks exchanged and transformed this knowledge. Universities and rulers however often had a hard time in finding a way to deal with alchemy and its proponents. These processes of acceptance and denial were topics of the International Conference on “Alchemy and University” at the Herzog August Bibliothek Wolfenbüttel. The public opening lecture to the conference was given by Bruce T. Moran (University of Nevada/USA) on “The Experience of Things in the Making and the Abstractions of the Made Thing: Networks, Recipes, and the Contradictions of Alchemy between the Kassel Court and the Marburg Classroom”. Moran focused on the relevance of alchemical "maker's knowledge" in different networks. That in Marburg 1609 lectures in Chymiatria were established, was a result of the collision of courtly and university networks: In the beginning, the university disfavoured the courtly enthusiasm for alchemical practices, because these practical experiences (e.g.
    [Show full text]
  • The Anatomical School of Padua
    AAA 125th ANNIVERSARY MANY FACES OF ANATOMY The Anatomical School of Padua ANDREA PORZIONATO,1 VERONICA MACCHI,1 1 2 1 CARLA STECCO, ANNA PARENTI, AND RAFFAELE DE CARO, * 1 Section of Anatomy, Department of Human Anatomy and Physiology, University of Padua, Italy 2 Section of Pathologic Anatomy, Department of Medical Diagnostic Sciences and Special Therapies, University of Padua, Italy Abstract and was in Padua in the middle of the 13th century (‘‘Anno ab The University of Padua is one of the most ancient in the world, being incar. Dom. MCCLII mense januarii ind.x, apud civitatem founded in 1222, and the most important anatomists of the XVI, XVII, Paduae, in loco s. Pauli, ego Brunus, gente calaber, patria longo- and XVIII centuries studied and taught here. Probably, the first professor burgensis, sub spe divini favoris per omnia vestigia veterum of anatomy and surgery was Bruno da Longobucco (c. 1200–c. 1286), who sapientium perscrutans, huic operi debitum finem imposui’’). A had previously studied at the Salerno School of Medicine. While professor suggestion is that Longobucco may have been one of the founders in Padua, Andreas Vesalius (1514–1564) published De Humani Corporis Fabrica (1543), which is considered as the birth of the modern anatomy. of the University of Padua (Pluchinotta, 1986). Bruno da Longo- Following professors were Realdo Colombo (c. 1516–1559), Gabriel Fallo- bucco also wrote a compendium of the Chirurgia magna entitled pius (1523–1562), Hieronymus Fabricius ab Aquapendente (1533–1619), Chirurgia parva. He probably died in 1286 (Tosoni, 1844; Selmi, Iulius Casserius (1552–1616), Johann Wesling (1598–1649), and Johann 1966; Tabanelli, 1970; Foca, 2004).
    [Show full text]
  • University of London Thesis
    SHL ITEM BARCODE REFERENCE ONLY UNIVERSITY OF LONDON THESIS Degree fVvsO Year Name of Author ^ ° ^ ^ COPYRIGHT This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOAN Theses may not be lent to individuals, but the University Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: The Theses Section, University of London Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the University of London Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The University Library will provide addresses where possible). B. 1962 - 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied. This thesis comes within category D.
    [Show full text]
  • Alchemy and University – Alchemie Und Universität
    Alchemy and University – Alchemie und Universität Alchemy and University – Alchemie und alchemy into the medical faculty. Moran Universität nonetheless emphasized that calling them the first professors of chemistry wouldn’t be cor- Veranstalter: Ute Frietsch, Herzog Au- rect. As Andreas Libavius (c. 1555-1616) gust Bibliothek Wolfenbüttel / Humboldt- had rightly excoriated, the capacity of making Universität zu Berlin; Volkhard Wels, Freie things alone didn’t make an academic disci- Universität Berlin pline. Datum, Ort: 20.11.2019–22.11.2019, Wolfen- UTE FRIETSCH (Wolfenbüttel/Berlin) con- büttel centrated on the University of Helmstedt. Bericht von: Sergei Zotov, Humboldt- Duke Julius of Brunswick-Lüneburg, its Universität zu Berlin founder, as well as his son, Duke Henry Julius, its first rector, are good examples of The history of alchemy tends not to be under- powerful regents involved in alchemy and researched in the past decades. Nowadays the Paracelsism. Even with their support how- historiography of alchemy offers a wide range ever it was complicated to establish the con- of approaches, from philological and socio- troversial subject officially as an academic historical to ones of history of science, history topic. Some professors, such as Franciscus of technology, and history of ideas. All the Parcovius (1560-1611) or Jacob Horst (1537- more important to stress areas of research that 1600), built a network of alchemical contacts. have hardly been studied yet. One of them is Though modern chemistry in fact was estab- the relation between alchemy and early mod- lished on empirical grounds, older positions ern universities. This subject lacks new edi- of alchemy nonetheless deteriorated.
    [Show full text]
  • Frank Wigglesworth Clarke (1847-1931), Was a Chemist, Born in Boston, Massachusetts 19 March 1847
    Appendix Epsilon2: The Abydos Intellectual Line Connecting brothers of Phi Kappa Psi Fraternity at Cornell University, tracing their fraternal Big Brother/Little Brother line to the tri-Founders and their Pledges . Brother Frank Clarke was tapped into the Pledge Class of 1869 and studied under Oliver Wolcott Gibbs at Harvard’s Lawrence Scientific School: Oliver Wolcott Gibbs was influenced by Adriaan van den Spieghel followed in the Justus von Liebig . tradition of Giulio Cesare Casseri . Justus von Liebig followed in the tradition Giulio Cesare Casseri was influenced by of Karl Wilhelm Gottlob Kastner. Girolamo Fabrici . Karl Wilhelm Gottlob Kastner was Girolamo (Aquapendente) Fabrici influenced by Johann Friedrich August followed in the tradition of Gabriele Gottling . Fallopio . Johann Friedrich August Gottling followed Gabriele Fallopio was influenced by in the tradition of Antonio Musa Brasavola . Johann Christian Wiegleb. Johann Christian Wiegleb was influenced Antonio Musa Brasavola followed in the by Ernst Gottfried Baldinger. tradition of Leoniceno . Ernst Gottfried Baldinger follwed in the Nicolo da Lonigo (Leoniceno) was tradition of Christoph Andreas influenced by Pelope . Mangold . Pelope followed in the tradition of Christoph Andreas Mangold was influenced by Georg Erhardt Galen . Hamberger. Galen was influenced by Hippocrates, Georg Erhardt Hamberger followed in the Herodicus and their Egyptian tradition of Johann Adolph Wedel. predecessors. Johann Adolph Wedel was influenced by Georg Wolfgang Wedel . Georg Wolfgang Wedel followed in the tradition of Werner Rolfinck . Werner Rolfinck was influenced by Adriaan van den Spieghel . “Who defends the House.” Below we present short biographies of the Abydos intellectual line of the Phi Kappa Psi Fraternity at Cornell University.
    [Show full text]