Cathepsin H Regulated by the Thyroid Hormone Receptors Associate with Tumor Invasion in Human Hepatoma Cells

Total Page:16

File Type:pdf, Size:1020Kb

Cathepsin H Regulated by the Thyroid Hormone Receptors Associate with Tumor Invasion in Human Hepatoma Cells Oncogene (2011) 30, 2057–2069 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Cathepsin H regulated by the thyroid hormone receptors associate with tumor invasion in human hepatoma cells S-M Wu1, Y-H Huang2, C-T Yeh3, M-M Tsai1,4, C-H Liao1, W-L Cheng1, W-J Chen5 and K-H Lin1 1Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan; 2Medical Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; 3Liver Research Unit, Chang-Gung Medical Center, Taipei, Taiwan; 4Department of Nursing, Chang-Gung Institute of Technology, Taoyuan, Taiwan and 5First Cardiovascular Division, Chang Gung Memorial Hospital, Taoyuan, Taiwan 0 Thyroid hormone, 3, 3 , 5-triiodo-L-thyronine (T3), Introduction mediates cell growth, development and differentiation by 0 binding to its nuclear receptors (TRs). The role of TRs in Thyroid hormone (3, 3 , 5-triiodo-L-thyronine; T3)isa cancer is still undefined. Notably, hyperthyroxinemia has potent mediator of many physiological processes in- been reported to influence the rate of colon cancer in an cluding embryonic development, cell differentiation, experimental model of carcinogenesis in rats. Previous metabolism and the regulation of cell proliferation microarray analysis revealed that cathepsin H (CTSH) is (Huang et al., 2008). Two TR genes, THRA and THRB, upregulated by T3 in HepG2-TR cells. We verified that have been identified and mapped to human chromo- mRNA and protein expression of CTSH are induced by somes 17 and 3, respectively (Lazar, 1993; Yen, 2001). T3 in HepG2-TR cells and in thyroidectomized rats The liver is a typical target organ for T3. Equal amounts following administration of T3. The possible thyroid of TRa1 and TRb1 proteins are expressed in human hormone-responsive elements of the CTSH promoter hepatocytes (Chamba et al., 1996). However, the localized to the nucleotides –2038 to –1966 and –1565 mechanisms involved in the regulation of liver-specific to –1501 regions. An in vitro functional assay showed that genes by TRa1 and TRb1 have not been elucidated. CTSH can increase metastasis. J7 cells overexpressing Evidence that TRs might be involved in carcinogen- CTSH were inoculated into severe combined immune- esis came from studies on v-erbA protein (Thormeyer deficient mice and these J7-CTSH mice displayed a and Baniahmad, 1999), thus, v-erbA antagonizes TR greater metastatic potential than did J7-control mice. The function via competition for response elements or clinicopathologic significance of CTSH expression in coactivators and ligand-dependent transcriptional acti- hepatocellular carcinoma (HCC) was also investigated. vation (Yen et al., 1994). That TRs can have an The CTSH overexpressing in HCC was associated with important role in tumor transformation was further the presence of microvascular invasion (P ¼ 0.037). The verified by aberrant expression and mutations of TRs in microvascular invasion characteristic is closely related to various human cancers including pituitary tumors our in vitro characterization of CTSH function. Our (Ando et al., 2001), hepatocellular carcinomas (HCCs) results show that T3-mediated upregulation of CTSH led (Lin et al., 2001), thyroid cancers (Puzianowska- to matrix metallopeptidase or extracellular signal-regu- Kuznicka et al., 2002) and renal clear cell carcinomas lated kinase activation and increased cell migration. This (Rosen and Privalsky, 2009). Transgenic mice (TRbPV/PV), study demonstrated that CTSH overexpression in a subset harboring a PV mutation originally identified in a hepatoma may be TR dependent and suggests that this patient with thyroid hormone resistance, spontaneously overexpression has an important role in hepatoma developed thyroid cancer (Suzuki et al., 2002). This progression. study showed that TRb could act as a tumor suppressor. Oncogene (2011) 30, 2057–2069; doi:10.1038/onc.2010.585; Recently, Zhu et al. (2010) reported that mice devoid of published online 10 January 2011 functional TRs (TRa1À/ÀTRb1À/À) spontaneously devel- Keywords: cysteine proteases; receptors; migration; op follicular thyroid cancer and metastases in the lung. hepatocellular carcinoma TRs could function as tumor suppressors in such mice. Besides their suppressor role, TRs enhanced tumor progression in other studies. Thyroid hormones stimu- late the proliferation of several cancer cell types including those from the pituitary (Barrera-Hernandez Correspondence: Dr K-H Lin, Department of Biochemistry, School of et al., 1999), gliomas (Davis et al., 2006), breast cancers Medicine, Chang-Gung University, 259 Wen-Hwa 1st Road, Taoyuan (Hall et al., 2008) and prostate cancers (Tsui et al., 333, Taiwan. 2008). Thyroid hormone and the TRa1 receptor control E-mail: [email protected] Received 14 June 2010; revised 23 November 2010; accepted 26 epithelial cell proliferation and the expression of November 2010; published online 10 January 2011 components of the Wnt pathway (Plateroti et al., 2006). Thyroid hormone receptor regulates cathepsin H S-M Wu et al 2058 Various proteases are implicated in cancer progres- et al., 2008a), SPON2 (Liao et al., 2010), MATA1A (Wu sion by degrading the basement membrane and extra- et al., 2010), SULT2A1 (Huang et al., 2006) and cellular matrix in a cascade-like manner (Mohamed and AKR1B1 (Liao et al., 2009). Supplementary Table S1 Sloane, 2006; Wilson and Singh, 2008). Cysteine lists several cancer-related genes, including those encod- cathepsins are a family of lysosomal proteases that are ing cathepsin proteases positively regulated by T3. often upregulated in various human cancers, and these We first used oligonucleotide microarrays to identify proteases have been implicated in distinct tumorigenic the genes induced by T3 in HepG2-TRa cells. Upregula- processes, such as angiogenesis, proliferation, apoptosis tion of cathepsin cysteine proteases was identified and and invasion (Berdowska, 2004; Joyce and Hanahan, the result was verified by quantitative reverse transcrip- 2004; Gocheva and Joyce, 2007). Cysteine cathepsin tion–PCR. Several human cysteine cathepsins (CTSH, proteases have recently emerged as enzymes that are CTSB, CTSS and CTSL) were induced by 3.2–8.6 times active in cancer development, and cysteine cathepsin after the incubation of HepG2-TRa1#1 cells with 10 nM inhibitors have been proposed as anticancer agents T3 for 72 h (Supplementary Figure S1). However, the (Palermo and Joyce, 2008). There is increasing evidence mRNA levels of cysteine proteases, such as CTSV, were that the expression of cathepsin H (CTSH) is increased not induced by T3. in disease states including breast carcinoma (Gabrijelcic Northern blot analysis was used to assess further the et al., 1992), melanoma (Kos et al., 1997), glioma response of CTSH mRNA expression to the exogenous (Sivaparvathi et al., 1996), and colorectal and prostate addition of T3. A 1.47-kb CTSH transcript was carcinoma (del Re et al., 2000). identified in HepG2-TRa1#1 cells (Figure 1a). The Although several individual target genes have been CTSH mRNA levels were induced by 3–4 times after studied in the liver, a large-scale profile of the target incubation of HepG2-TRa1#1 cells with 10 nM T3 for genes regulated by thyroid hormone has not been 48 h. A similar induction was observed in HepG2- undertaken. CTSH gene expression was induced by T3 TRa1#2 and -TRb1 cells. As a control, HepG2 cells in HepG2-TRa cells identified from oligonucleotide were transfected with the empty vector, yielding a cell microarrays. CTSH and other proteases may be line expressing the Neo protein (HepG2-Neo cells). involved in the destruction of extracellular matrix components, leading to cancer proliferation, migration and metastasis (Tsushima et al., 1991). However, T3 upregulates expression of CTSH protein in HepG2-TR elucidation of the underlying mechanisms by which T3 cells regulated requires further study. Previous reports have The effect of TRs on the degree of CTSH protein shown that TRs are potent inducer of tumorigenesis expression in HepG2 isogenic cell lines was studied (Plateroti et al., 2006; Chen et al., 2008a; Kress et al., (Figure 1b). CTSH is synthesized as an inactive 2009). In this study, we report that the T3/TR controls proenzyme (41 kDa, upper arrow), which is then the transcription of the CTSH gene and that T3- processed proteolytically to an active single chain, mediated cell migration appears to involve CTSH. mature form (28 kDa, lower arrow) within the endo- somes/lysosomes (Turk et al., 2001). The incubation results indicated that T3 increased the amount of 28- kDa CTSH protein in the HepG2-TRa1#1, -TRa1#2 Results and -TRb1 cells. The CTSH protein levels increased after incubation of HepG2-TRa1#1, -TRa1#2 and -TRb1 Cathepsin mRNA is regulated by T3 in the HepG2-TR cell line cells with 1 or 10 nM T3 for 24–72 h. These results show We used isogenic HepG2 cell lines that consistently that the effect of T3 on the CTSH protein level in TRa1- express wild-type TRa1 (HepG2-TRa1#1, #2) and overexpressing cells is time and dose dependent. TRb1 (HepG2-TRb1). As a control, HepG2 cells were Immunoblot analysis showed that incubation of control transfected with the empty vector, yielding a cell line HepG2-Neo cells, which did not express detectable expressing the Neo protein (HepG2-Neo cells). In the endogenous TR proteins, in 10 nM T3 for 24–72 h did not four HepG2 cell lines investigated in this study, HepG2- increase the CTSH protein level significantly. However, TRa1#1, -TRa1#2, -TRb1 and -Neo, overexpression of the CTSH proenzyme was affected marginally by T3. TR protein was approximately 10-, 3.3- and 2.5-fold To analyze whether cathepsin is secreted into the that of the HepG2-Neo control cell line (data not culture medium, the HepG2-TR stable cell line was shown). Previously, complementary DNA-microarrays incubated in serum-free medium, and the medium was were performed to identify the target genes regulated collected at 24 and 48 h. Analysis using anti-CTSH by T3 in a hepatoma cell line-overexpressing TRa1 antibodies revealed a major extracellular product with (HepG2-TRa1) (Shih et al., 2004).
Recommended publications
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Specificity of Aza-Peptide Electrophile Activity-Based Probes of Caspases
    Cell Death and Differentiation (2006), 1–6 & 2006 Nature Publishing Group All rights reserved 1350-9047/06 $30.00 www.nature.com/cdd Specificity of aza-peptide electrophile activity-based probes of caspases KB Sexton1, D Kato1, AB Berger3, M Fonovic1,4, SHL Verhelst1 and M Bogyo*,1,2,3 Activity-Based Probes (ABPs) are small molecules that form stable covalent bonds with active enzymes thereby allowing detection and quantification of their activities in complex proteomes. A number of ABPs that target proteolytic enzymes have been designed based on well-characterized mechanism-based inhibitors. We describe here the evaluation of a novel series of ABPs based on the aza-aspartate inhibitory scaffold. Previous in vitro kinetic studies showed that this scaffold has a high degree of selectivity for the caspases, clan CD cysteine proteases activated during apoptotic cell death. Aza-aspartate ABPs containing either an epoxide or Michael acceptor reactive group were potent labels of executioner caspases in apoptotic cell extracts. However they were also effective labels of the clan CD protease legumain and showed unexpected crossreactivity with the clan CA protease cathepsin B. Interestingly, related aza peptides containing an acyloxymethyl ketone reactive group were relatively weak but highly selective labels of caspases. Thus azapeptide electrophiles are valuable new ABPs for both detection of a broad range of cysteine protease activities and for selective targeting of caspases. This study also highlights the importance of confirming the specificity of covalent protease inhibitors in crude proteomes using reagents such as the ABPs described here. Cell Death and Differentiation advance online publication, 15 December 2006; doi:10.1038/sj.cdd.4402074 Most proteolytic enzymes are regulated by a series of tightly We recently developed a solid-phase synthesis methodo- controlled posttranslational modifications.
    [Show full text]
  • Food Proteins Are a Potential Resource for Mining
    Hypothesis Article: Food Proteins are a Potential Resource for Mining Cathepsin L Inhibitory Drugs to Combat SARS-CoV-2 Ashkan Madadlou1 1Wageningen Universiteit en Research July 20, 2020 Abstract The entry of SARS-CoV-2 into host cells proceeds by a two-step proteolysis process, which involves the lysosomal peptidase cathepsin L. Inhibition of cathepsin L is therefore considered an effective method to prevent the virus internalization. Analysis from the perspective of structure-functionality elucidates that cathepsin L inhibitory proteins/peptides found in food share specific features: multiple disulfide crosslinks (buried in protein core), lack or low contents of a-helix structures (small helices), and high surface hydrophobicity. Lactoferrin can inhibit cathepsin L, but not cathepsins B and H. This selective inhibition might be useful in fine targeting of cathepsin L. Molecular docking indicated that only the carboxyl-terminal lobe of lactoferrin interacts with cathepsin L and that the active site cleft of cathepsin L is heavily superposed by lactoferrin. Food protein-derived peptides might also show cathepsin L inhibitory activity. Abstract The entry of SARS-CoV-2 into host cells proceeds by a two-step proteolysis process, which involves the lyso- somal peptidase cathepsin L. Inhibition of cathepsin L is therefore considered an effective method to prevent the virus internalization. Analysis from the perspective of structure-functionality elucidates that cathepsin L inhibitory proteins/peptides found in food share specific features: multiple disulfide crosslinks (buried in protein core), lack or low contents of a-helix structures (small helices), and high surface hydrophobicity. Lactoferrin can inhibit cathepsin L, but not cathepsins B and H.
    [Show full text]
  • Cysteine Cathepsin Proteases: Regulators of Cancer Progression and Therapeutic Response
    REVIEWS Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response Oakley C. Olson1,2 and Johanna A. Joyce1,3,4 Abstract | Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment. Extracellular matrix Our contemporary understanding of cysteine cathepsin tissue homeostasis. In fact, aberrant cathepsin activity (ECM). The ECM represents the proteases originates with their canonical role as degrada- is not unique to cancer and contributes to many disease multitude of proteins and tive enzymes of the lysosome. This view has expanded states — for example, osteoporosis and arthritis4, neuro­ macromolecules secreted by considerably over decades of research, both through an degenerative diseases5, cardiovascular disease6, obe- cells into the extracellular
    [Show full text]
  • Rat Cathepsin H-Catalyzed Transacylation: Comparisons of the Mechanism and the Specificity with Papain-Superfamily Proteases1
    J. Biochem. 110, 939-944 (1991) Rat Cathepsin H-Catalyzed Transacylation: Comparisons of the Mechanism and the Specificity with Papain-Superfamily Proteases1 Hironobu Koga,*>2 Nobuko Mori,* Hidenori Yamada," * Yukio Nishimura,* Kazuo Tokuda,* Keitaro Kato,' and Taiji Imoto° 'Faculty of Pharmaceutical Sciences, Kyushu University 62, Maidashi, Higashi-ku, Fukuoka, Fukuoka 812; and "Department of Bioengineering Science, Faculty of Engineering, Okayama University, 3-1-1 Tushimanaha, Okayama, Okayama 700 Received for publication, August 20, 1991 We found that rat cathepsin H showed strong transacylation activity under physiological Downloaded from https://academic.oup.com/jb/article/110/6/939/755804 by guest on 28 September 2021 conditions. It is a feature of cathepsin H to utilize amino acid amides not only as acyl- acceptors but also as acyl-donors in the reaction. The pH-dependence of the transacylation activity was distinct from those of other papain-superfamily proteases. The alkaline limb (P-KOPP=7.5) could be regarded as the p-K, of the a-amino group of the acyl-donor, which was also involved in the original amino-peptidase activity. The acidic limb (pKcpp=5.8) was suggested to be involved in the deacylation step, where amino acid amide attacked the acyl-intermediate as a nucleophile in place of water in the hydrolysis. Although the Na-deprotonated acyl-acceptor, which is supposed to govern the nucleophilic attack, has a small population in the acidic pH range (above pH 5), the transacylation was detectable even at the acidic pH-range because of the high SI -site binding ability and suitable nucleophilicity of the acyl-acceptor.
    [Show full text]
  • VEGF-A Induces Angiogenesis by Perturbing the Cathepsin-Cysteine
    Published OnlineFirst May 12, 2009; DOI: 10.1158/0008-5472.CAN-08-4539 Published Online First on May 12, 2009 as 10.1158/0008-5472.CAN-08-4539 Research Article VEGF-A Induces Angiogenesis by Perturbing the Cathepsin-Cysteine Protease Inhibitor Balance in Venules, Causing Basement Membrane Degradation and Mother Vessel Formation Sung-Hee Chang,1 Keizo Kanasaki,2 Vasilena Gocheva,4 Galia Blum,5 Jay Harper,3 Marsha A. Moses,3 Shou-Ching Shih,1 Janice A. Nagy,1 Johanna Joyce,4 Matthew Bogyo,5 Raghu Kalluri,2 and Harold F. Dvorak1 Departments of 1Pathology and 2Medicine, and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, and 3Departments of Surgery, Children’s Hospital and Harvard Medical School, Boston, Massachusetts; 4Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York; and 5Department of Pathology, Stanford University, Stanford, California Abstract to form in many transplantable mouse tumor models are mother Tumors initiate angiogenesis primarily by secreting vascular vessels (MV), a blood vessel type that is also common in many endothelial growth factor (VEGF-A164). The first new vessels autochthonous human tumors (2, 3, 6–8). MV are greatly enlarged, to form are greatly enlarged, pericyte-poor sinusoids, called thin-walled, hyperpermeable, pericyte-depleted sinusoids that form mother vessels (MV), that originate from preexisting venules. from preexisting venules. The dramatic enlargement of venules We postulated that the venular enlargement necessary to form leading to MV formation would seem to require proteolytic MV would require a selective degradation of their basement degradation of their basement membranes.
    [Show full text]
  • Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants
    International Journal of Molecular Sciences Review Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants Gilles Lalmanach 1,2,* , Ahlame Saidi 1,2 , Paul Bigot 1,2, Thibault Chazeirat 1,2, Fabien Lecaille 1,2 and Mylène Wartenberg 1,2 1 Université de Tours, 37000 Tours, France; [email protected] (A.S.); [email protected] (P.B.); [email protected] (T.C.); [email protected] (F.L.); [email protected] (M.W.) 2 INSERM, UMR1100, Centre d’Etude des Pathologies Respiratoires, 37000 Tours, France * Correspondence: [email protected]; Tel.: +33-2-47-36-61-51 Received: 20 February 2020; Accepted: 10 March 2020; Published: 12 March 2020 Abstract: Besides their primary involvement in the recycling and degradation of proteins in endo-lysosomal compartments and also in specialized biological functions, cysteine cathepsins are pivotal proteolytic contributors of various deleterious diseases. While the molecular mechanisms of regulation via their natural inhibitors have been exhaustively studied, less is currently known about how their enzymatic activity is modulated during the redox imbalance associated with oxidative stress and their exposure resistance to oxidants. More specifically, there is only patchy information on the regulation of lung cysteine cathepsins, while the respiratory system is directly exposed to countless exogenous oxidants contained in dust, tobacco, combustion fumes, and industrial or domestic particles. Papain-like enzymes (clan CA, family C1, subfamily C1A) encompass a conserved catalytic thiolate-imidazolium pair (Cys25-His159) in their active site. Although the sulfhydryl group (with a low acidic pKa) is a potent nucleophile highly susceptible to chemical modifications, some cysteine cathepsins reveal an unanticipated resistance to oxidative stress.
    [Show full text]
  • CATHEPSIN H from Human Liver Product Number C 8821 Product
    CATHEPSIN H from human liver Product Number C 8821 Product Description higher in patients with metastatic melanoma than in Cathepsins H (EC.3.4.22.1), like cathepsin L and B, is a those without metastasis. lysosomal cysteine proteinase that plays an important role in protein degradation processes. It belongs to the Reagent group of closely related proteins of the peptidase family Cathepsin H is provided as a frozen liquid containing 1 C1 (papain family of thiol proteases). Cathepsin H is a 25 mg of protein with a specific activity of 1 unit/mg more basic protein than Cathepsin B or L. It functions protein in 50 mM sodium acetate, pH 5.5, with as both an aminopeptidase and endopeptidase. 1 mM EDTA. Cathepsins H, L, S, and B vary in the amino acid side chains that can be accommodated in the specificity Precautions and Disclaimer 2 pockets of their active sites. A distinguishing Please consult the Material Safety Data Sheet for characteristic of Cathepsin H is that it cannot accom- handling recommendations before working with this modate aromatic side chains in P2. Cathepsin H also material. displays considerable amino-peptidase activity. Cathepsin H can be distinguished from Cathepsin S by Storage/Stability its activity on Arg-NHMec and its lack of activity against Store at –20 °C. Avoid repeated freeze-thaw cycles. 2 Z-Phe-Arg-NHMec and against elastin. Do not store in a frost-free freezer. Cathepsin H has a molecular weight of approx 28 kDa. Product Profile It is composed of a minichain (8 amino acids) and a Unit Definition: One unit of Cathepsin H is defined as large chain; the large chain may be split into a heavy the amount of enzyme that liberates one nmole of 7- (177 aa) and a light chain (43 aa).
    [Show full text]
  • Families and Clans of Cysteine Peptidases
    Families and clans of eysteine peptidases Alan J. Barrett* and Neil D. Rawlings Peptidase Laboratory. Department of Immunology, The Babraham Institute, Cambridge CB2 4AT,, UK. Summary The known cysteine peptidases have been classified into 35 sequence families. We argue that these have arisen from at least five separate evolutionary origins, each of which is represented by a set of one or more modern-day families, termed a clan. Clan CA is the largest, containing the papain family, C1, and others with the Cys/His catalytic dyad. Clan CB (His/Cys dyad) contains enzymes from RNA viruses that are distantly related to chymotrypsin. The peptidases of clan CC are also from RNA viruses, but have papain-like Cys/His catalytic sites. Clans CD and CE contain only one family each, those of interleukin-ll3-converting enz3wne and adenovirus L3 proteinase, respectively. A few families cannot yet be assigned to clans. In view of the number of separate origins of enzymes of this type, one should be cautious in generalising about the catalytic mechanisms and other properties of cysteine peptidases as a whole. In contrast, it may be safer to gener- alise for enzymes within a single family or clan. Introduction Peptidases in which the thiol group of a cysteine residue serves as the nucleophile in catalysis are defined as cysteine peptidases. In all the cysteine peptidases discovered so far, the activity depends upon a catalytic dyad, the second member of which is a histidine residue acting as a general base. The majority of cysteine peptidases are endopeptidases, but some act additionally or exclusively as exopeptidases.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]
  • Lysosomes in Cell Death
    Oncogene (2004) 23, 2881–2890 & 2004 Nature Publishing Group All rights reserved 0950-9232/04 $25.00 www.nature.com/onc Lysosomes in cell death Maria Eugenia Guicciardi1, Marcel Leist2 and Gregory J Gores*,1 1Mayo Clinic College of Medicine, Rochester, MN 55905, USA; 2H. Lundbeck A/S, DK-2500 Valby, Denmark For many years apoptosis research has focused on the magnitude of lysosomal permeabilization, and, caspases and their putative role as sole executioners of consequently, the amount of proteolytic enzymes programmed cell death. Accumulating information now released into the cytosol (Li et al., 2000). A complete suggests that lysosomal cathepsins are also pivotally breakdown of the organelle with release of high involved in this process, especially in pathological condi- concentrations of lysosomal enzymes into the cytosol tions. In particular, the role of lysosomes and lysosomal results in unregulated necrosis, whereas partial, selective enzymes in initiation and execution of the apoptotic permeabilization triggers apoptosis (Bursch, 2001; Turk program has become clear in several models, to the point et al., 2002). In both instances, the amount of released that the existence of a ‘lysosomal pathway of apoptosis’is enzymes is sufficient to overcome the protective barrier now generally accepted. This pathway of apoptosis can be of the endogenous inhibitors present in the cytosol (i.e. activated by death receptors, lipid mediators, and photo- cystatins), which usually prevent potential damage from damage. Lysosomal proteases can be released from the the spontaneous leakage of lysosomal enzymes naturally lysosomes into the cytosol, where they contribute to the occurring through the lysosomal membrane (Berg et al., apoptotic cascade upstream of mitochondria.
    [Show full text]
  • Homology of Amino Acid Sequences of Rat Liver Cathepsins B And
    Proc. NatL Acad. Sci. USA Vol. 80, pp. 3666-3670, June 1983 Biochemistry Homology of amino acid sequences of rat liver cathepsins B and H with that of papain (thiol endopeptidase/molecular evolution/lysosomal enzymes) Koji TAKIO*, TAKAE TOWATARIt, NOBUHIKO KATUNUMAt, DAVID C. TELLERS, AND KOITI TITANI* *Howard Hughes Medical Institute Laboratory and tDepartment of Biochemistry, SJ-70, University of Washington, Seattle, Washington 98195; and tDepartment of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima 770, Japan Communicated by Hans Neurath, March 21, 1983 ABSTRACT The amino acid sequences of rat liver lysosomal only the single-chain form of the enzyme, suggestive of arte- thiol endopeptidases, cathepsins B and H, are presented and com- factual limited proteolysis. The protease responsible for this pared with that of the plant thiol protease papain. The 252-res- limited proteolysis has not been identified. We also reported idue sequence of cathepsin B and the 220-residue sequence of that the amino-terminal sequence of cathepsin B has a striking cathepsin H were determined largely by automated Edman deg- resemblance to that radation of their intact polypeptide chains and of the two chains of the plant thiol endopeptidase papain (19). of each enzyme generated by limited proteolysis. Subfragments We now present the complete amino acid sequences of rat of the chains were produced by enzymatic digestion and by chem- liver cathepsins B and H and show that these two mammalian ical cleavage of methionyl and tryptophanyl bonds. Comparison thiol proteases are homologous both to each other and to the of the amino acid sequences of cathepsins B and H with each other plant thiol endopeptidases papain and actinidin, suggesting that and with that of papain demonstrates a striking homology among all four enzymes have evolved from a common ancestral pro- their primary structures.
    [Show full text]