Yohimbine Enhances the Effect of Sildenafil on Erectile Process in Rats

Total Page:16

File Type:pdf, Size:1020Kb

Yohimbine Enhances the Effect of Sildenafil on Erectile Process in Rats International Journal of Impotence Research (2008) 20, 409–417 & 2008 Nature Publishing Group All rights reserved 0955-9930/08 $30.00 www.nature.com/ijir ORIGINAL ARTICLE Yohimbine enhances the effect of sildenafil on erectile process in rats AM Senbel1 and T Mostafa2 1Pharmacology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt and 2Andrology and Sexology Department, Faculty of Medicine, Cairo University, Cairo, Egypt Combining the centrally acting drug yohimbine with the peripheral conditioner sildenafil might be an approach to erectile dysfunction cases in which sildenafil alone failed. This work aimed to investigate the effect of yohimbine on sildenafil-induced facilitation of erectile process. Erectile responses to electrical stimulation of the cavernous nerve in anesthetized male rats were recorded. Intracavernosal pressure/systemic arterial pressure (ICP/SAP) was calculated, 1 and 5 min after intravenous administration of sildenafil, yohimbine or a combination of both. Changes in sexual arousal and copulatory performance indices were compared before and after these injections using behavioral mating experiments. It was shown that systemic administration of sildenafil produced a significant increase in ICP/SAP than control at doses X10 lmol kgÀ1. Yohimbine alone failed to potentiate erectile responses but yohimbine (1 lmol kgÀ1) significantly potentiated the effect of sildenafil 1–10 lmol kgÀ1 and 1 mmol kgÀ1, 1 and 5 min after injection. Potentiation of ICP/SAP induced by their combination was greater than the sum of the effects of the corresponding doses of either drug at the same time interval. A nonsignificant additional decrease in SAP than sildenafil- induced was observed if administered with yohimbine. Addition of sildenafil to yohimbine significantly enhanced the effect of the latter on intromission frequency, intercopulatory interval and the number of ejaculations per session. It is concluded that yohimbine may enhance and prolong the effect of sildenafil on erectile process without additional hypotension. Sildenafil may enhance the central effects of yohimbine on erection; it amplifies the effect of yohimbine on male copulatory performance but not on sexual motivation. The potential beneficial effect of the combination was found to be more pronounced on the central component than on the peripheral component of the erectile process. International Journal of Impotence Research (2008) 20, 409–417; doi:10.1038/sj.ijir.3901630; published online 17 April 2008 Keywords: erectile dysfunction; sildenafil; yohimbine; phosphodiesterase inhibitor; corpus cavernosum Introduction agents, including the PDE5 inhibitors, phentola- 1,2 mine, yohimbine, L-arginine and so on. Sexual behavior and erectile function are influenced Introduction of sildenafil citrate (Viagra Pfizer by emotional and cognitive functions. At the central Inc., New York, NY, USA) in 1998, has been an nervous system level hypothalamic and limbic advancement in improving erectile function and systems are responsible for central erectogenic enabling successful sexual intercourse in men with signals facilitating spinal cord pathways, which broad spectrum ED.3,4 Yohimbine is an indole lead to erection via peripheral autonomic nerves.1 alkaloid whose aphrodisiac activity may be Current strategies for the pharmacological treatment mediated through a combination of central nervous of erectile dysfunction (ED) favor the use of oral system effects and peripheral effects including blockade of pre- and postsynaptic a2-adrenergic receptors.5–7 Placebo-controlled studies have sug- gested the effectiveness of yohimbine in treating ED Correspondence: Professor Dr T Mostafa, Andrology and due to psychogenic or mild organic etiology, but the Sexology Department, Faculty of Medicine, Cairo Uni- 8 versity, Cairo 11562, Egypt. outcome of its use was, however, disappointing. E-mail: [email protected] Since the advent of sildenafil, there has been a Received 27 December 2006; revised 28 September 2007; resurgence of interest in ED and an increase in 9 accepted 25 October 2007; published online 17 April 2008 patients presenting with this disease. However, Combined effect of yohimbine and sildenafil AM Senbel and T Mostafa 410 several studies showed that administering sildenafil computed at the maximal effect after CN stimulation could not result in rigidity sufficient for satisfactory and SAP is the systemic arterial pressure computed sexual intercourse in 11–22% of patients with at the same time) was calculated. ICP/SAP 1 and psychogenic and 36–65% with organic ED.10,11 5 min after intravenous (i.v.) administration of the Combination drug therapy seems appealing to treat drug were compared to control cavernous responses patients with ED in whom monotherapy with in the same rat. Percentage potentiation in ICP sildenafil failed. Therefore, combining the centrally induced by the combinations was then statistically acting drug yohimbine with the peripheral condi- compared to that induced by every drug alone in the tioner sildenafil might be an attractive approach. previous set of experiments at the same time This study therefore was designed to investigate the interval. In this set of experiments, the drug(s) and effect of yohimbine on sildenafil-induced facilita- drug combinations were administered i.v.; the effect tion of centrally and peripherally mediated erectile was recorded 1 and 5 min after injection. A catheter process in male rats. was inserted into the femoral vein and used for i.v. drug administration. A time-matched control using saline vehicle was performed alongside with the Materials and methods original experiment. Animals Experiments were carried out on male albino rats Intravascular cannulation and measurement of 200–350 g weight (approximately aged 4–6 months) blood pressure and female albino rats 150–200 g. All animals used Measurement of blood pressure and heart rate in rats were bred in the animal house at the Faculty of was made as described previously by Tseng et al.14 Pharmacy according to NIH guidelines, housed About 1 cm incision was made in the skin of the under constant environmental conditions, fed diets groin and the underlying muscles were cut, then the consisting of wheat or bread soaked in milk. Water femoral artery and vein were exposed and freed was allowed ad libitum. from underlying muscles. By a fine scissors or a 901 curved needle, a small incision was made in the artery near a closed tie through which a polyethyl- ene catheter, 20 cm length filled with heparinized Measurement of ICP in rats saline, was introduced. The arterial catheter Experiments have been conducted by measuring was connected to the pressure transducer and intracavernosal pressure (ICP) changes elicited arterial blood pressure was displayed on a Grass by electrical stimulation of the cavernosal polygraph. nerve (CN) in anesthetized rats according to the method described by Giuliani et al.12 Male rats were anesthetized by intraperitoneal injection of thiopen- tal (50 mg kgÀ1), then the skin overlying the penis Behavioral testing in rats was incised, and the prepuce was degloved to Copulatory behavioral tests on rats were performed expose the corpora cavernosa. A 26-gauge needle as described previously by Butcher et al.15 Male and filled with heparinized saline was carefully inserted female rats were housed at room temperature for 1 into the corpus cavernosum on one side to measure week before the start of the experimental period, ICP. The needle was sealed to a polyethylene 50 three or four to a cage. All experiments were tubing of 20 cm length filled with heparinized performed between 1100 and 1500 hours in a sound saline, connected to a Gould-Statham pressure attenuated room.16 Sexual activity of rats was transducer (Oxnard, CA, USA). ICP was displayed evaluated after four selection mating tests with on a Grass polygraph (Model 7D, Grass Inst. Co., receptive females. After selection tests, animals MA, USA). were admitted to the experimental session if they Through a lower suprapubic midline incision, the had exhibited at least one ejaculation per test.17 The lateral prostate was dissected and the major pelvic normal coital pattern in male rats is characterized by ganglion was identified. The CN was unilaterally the following behavioral sequence: (1) mounting freed from its facial attachments and stimulated of the female followed by a penile intromission electrically using a bipolar platinum electrode lasting approximately 1/3 s, (2) withdrawal of the placed 3–4 mm distal to the major pelvic ganglion.13 penis and dismount and (3) a brief rest interval of The two poles of the electrode were separated by about 40–60 s. This sequence is then repeated 2 mm and the electrode was connected to an several times until ejaculation occurs with the electronic stimulator (Letica, Panlab, Model 12106/ terminal intromission of the series. Ejaculation was 150, Spain). CN was stimulated for 1 min, the pulse identified by vigorous thrush and longer intro- parameters were 5 V, 1 ms duration and 0.5–10 Hz mission period, and was always followed by a frequency. Maximum rise in ICP during nerve resting period (post-ejaculatory interval (PEI)) of stimulation was measured. ICP/SAP ratio (ICP is 10–15 min.15 International Journal of Impotence Research Combined effect of yohimbine and sildenafil AM Senbel and T Mostafa 411 Estrous was induced in the stimulus female by level. Throughout the manuscript ‘n’ indicates the means of a combined treatment of estrogen and number of rats. progesterone. Forty-eight hours before testing, the females were subcutaneously injected with À1 À1 60 mgkg estradiol benzoate followed by 1 mg kg Results progesterone 4 h prior the observation period. After a 10-min adaptation period in the observation cage, Effect of sildenafil on nerve-stimulated erectile a receptive female was presented to the male by responses dropping it gently into the cage. By direct observa- This set of experiments began with 3–5 CN stimula- tion, the following behavioral parameters were tions at different frequencies to select a suitable recorded: frequency that produced a submaximal increase in (1) mount latency (ML): the time from introduction ICP.
Recommended publications
  • Pharmacology and Toxicology of Amphetamine and Related Designer Drugs
    Pharmacology and Toxicology of Amphetamine and Related Designer Drugs U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol Drug Abuse and Mental Health Administration Pharmacology and Toxicology of Amphetamine and Related Designer Drugs Editors: Khursheed Asghar, Ph.D. Division of Preclinical Research National Institute on Drug Abuse Errol De Souza, Ph.D. Addiction Research Center National Institute on Drug Abuse NIDA Research Monograph 94 1989 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 Pharmacology and Toxicology of Amphetamine and Related Designer Drugs ACKNOWLEDGMENT This monograph is based upon papers and discussion from a technical review on pharmacology and toxicology of amphetamine and related designer drugs that took place on August 2 through 4, 1988, in Bethesda, MD. The review meeting was sponsored by the Biomedical Branch, Division of Preclinical Research, and the Addiction Research Center, National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other matieral in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors.
    [Show full text]
  • Effect of Repeated MDMA Exposure on Rat Brain and Behaviour
    Effect of repeated MDMA exposure on rat brain and behaviour by Ross van de Wetering A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington, New Zealand 2020 Table of contents Absract ........................................................................................................................... 5 List of abbreviations ...................................................................................................... 7 CHAPTER 1: GENERAL INTRODUCTION ............................................................ 10 Introduction ........................................................................................................................ 10 Behavioural fundamentals of addiction ........................................................................... 12 Studying addiction ........................................................................................................... 13 Self-administration. ...................................................................................................... 14 Behavioural sensitisation. ............................................................................................ 18 Neurocircuitry of addiction ............................................................................................... 20 Ventral tegmental area and nucleus accumbens .............................................................. 20 Dopamine and reinforcement. .....................................................................................
    [Show full text]
  • Neuropharmacology and Toxicology of Novel Amphetamine-Type Stimulants
    Neuropharmacology and toxicology of novel amphetamine-type stimulants Bjørnar den Hollander Institute of Biomedicine, Pharmacology University of Helsinki Academic Dissertation To be presented, with the permission of the Medical Faculty of the University of Helsinki, for public examination in lecture hall 2, Biomedicum Helsinki 1, Haartmaninkatu 8, on January 16th 2015 at 10 am. Helsinki 2015 Supervisors Thesis committee Esa R. Korpi, MD, PhD Eero Castrén, MD, PhD Institute of Biomedicine, Pharmacology Neuroscience Center Faculty of Medicine University of Helsinki P.O. Box 63 (Haartmaninkatu 8) P.O. Box 56 (Viikinkaari 4) 00014 University of Helsinki, Finland 00014 University of Helsinki, Finland Esko Kankuri, MD, PhD Sari Lauri, PhD Institute of Biomedicine, Pharmacology Neuroscience Center and Faculty of Medicine Department of Biosciences/ Physiology P.O. Box 63 (Haartmaninkatu 8) University of Helsinki 00014 University of Helsinki, Finland P.O.Box 65 (Viikinkaari 1) 00014 University of Helsinki, Finland Reviewers Dissertation opponent Atso Raasmaja, Professor, PhD Prof David Nutt DM FRCP FRCPsych Division of Pharmacology and FMedSci Pharmacotherapy Edmond J. Safra Chair of Faculty of Pharmacy Neuropsychopharmacology P. O. Box 56 (Viikinkaari 5E) Division of Brain Sciences 00014 University of Helsinki, Finland Dept of Medicine Imperial College London Petri J. Vainio, MD, PhD Burlington Danes Building Pharmacology, Drug Development and Hammersmith Hospital Therapeutics Du Cane Road Institute of Biomedicine London W12 0NN, United Kingdom Faculty of Medicine Kiinamyllynkatu 10 C 20014 University of Turku, Finland The cover layout is done by Anita Tienhaara. The cover photo is by Edd Westmacott and shows a close-up of ecstasy tablets, photographed in Amsterdam in 2004.
    [Show full text]
  • Potentiation of Yohimbine-Induced Lethality in Mice: Predictor of Antidepressant Potential
    Drug Development Research 3:357-363 (1983) Potentiation of Yohimbine-Induced Lethality in Mice: Predictor of Antidepressant Potential Jeffrey B. Malick Biomedical Research Department, Stuart Pharmaceuticals, Division of ICI Americas, Inc., Wilmington, Delaware ABSTRACT Malick, J.B.: Potentiation of yohimbine-induced lethality in mice: Predictor of antidepres- sant potential. Drug Dev. Res. 3:357-363, 1983. The ability of antidepressant agents to potentiate the lethal or toxic effects of yohimbine in mice was evaluated. With very few exceptions, the antidepressants were the only agents that significantly enhanced yohimbine-induced lethality. All of the clinically effective anti- depressants, both typical (e.g., amine reuptake inhibitors, monoamine oxidase inhibitors) and atypical (e.g., mianserin, iprindole, bupropion, quipazine) drugs, produced a dose- related potentiation of yohimbine in mice. Representative anxiolytics and antipsychotics failed to potentiate yohimbine over a wide range of doses. Although several possible “false positives” (e.g., atropine, chlorpheniramine, and d-amphetamine) would be detected in this procedure, these same agents would be detected in other models (e.g., tetrabenazine antagonism, behavioral despair) considered predictive of antidepressant potential. Thus, the potentiation of yohimbine-induced lethality test in mice appears to represent a useful screening procedure for discovering potential antidepressant drugs. Key words: yohimbine, antidepressants, potentiation INTRODUCTION Antidepressants potentiate
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,084,156 B2 Devita Et Al
    USOO7084156B2 (12) United States Patent (10) Patent No.: US 7,084,156 B2 DeVita et al. (45) Date of Patent: Aug. 1, 2006 (54) 2-AMINOQUINOLINE COMPOUNDS 2004/0106645 A1 6/2004 Blackburn et al. (75) Inventors: Robert J. DeVita, Westfield, NJ (US); FOREIGN PATENT DOCUMENTS Lehua Chang, Ramsey, NJ (US); EP O 252 503 11, 1992 Danny Chaung, Clark, NJ (US); MyLe JP 2001-226269 8, 2001 Hoang, Colonia, NJ (US); JinLong JP 371,059 12/2002 Jiang, Scotch Plains, NJ (US); Peter WO WO 96,284.46 9, 1996 Lin, Edison, NJ (US); Andreas W. WO WO 98.27815 7, 1998 Sailer, Edison, NJ (US); Jonathan R. WO WO99, 19326 4f1999 WO WO 99,42464 8, 1999 (73) Assignee: Merck & Co., Inc., Rahway, NJ (US) WO WO 99,48492 * 9, 1999 (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 5 days. OTHER PUBLICATIONS Antelman et al., Chem. Abstract, 91:68543, Current Medical (21) Appl. No.: 10/496,615 Research and Opinion (1979), vol. 6, pp. 73-82, “ The (22) PCT Filed: Nov. 22, 2002 importance of stress in assessing the effects of anorectic e Afaf 9 drugs'. (86). PCT No.: PCT/USO2/37.556 (Continued) S 371 (c)(1), (2), (4) Date: May 25, 2004 Primary Examiner D. Margaret Seaman s 9 (74) Attorney, Agent, or Firm—Catherine D. Fitch; Melvin (87) PCT Pub. No.: WO03/045313 Winokur PCT Pub. Date: Jun. 5, 2003 (57) ABSTRACT (65) Prior Publication Data The present invention is concerned with compounds of the US 2005/OO26915 A1 Feb.
    [Show full text]
  • Mass Spectral, Infrared and Chromatographic Studies on Designer Drugs of the Piperazine Class by Karim M. Hafiz Abdel-Hay a Diss
    Mass Spectral, Infrared and Chromatographic Studies on Designer Drugs of the Piperazine Class by Karim M. Hafiz Abdel-Hay A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Auburn, Alabama May 7, 2012 Approved by C. Randall Clark, Chair, Professor of Pharmacal Sciences Jack DeRuiter, Professor of Pharmacal Sciences Forrest Smith, Associate Professor of Pharmacal Sciences Angela Calderon, Assistant Professor of Pharmacal Sciences Abstract The controlled drug 3,4-methylenedioxybenzylpiperazine (3,4-MDBP) has regioisomeric and isobaric substances of mass equivalence, which have similar analytical properties and thus the potential for misidentification. The direct regioisomers of 3,4-MDBP include the 2,3- methylenedioxy substitution pattern and the indirect regioisomers include the three ring substituted methoxybenzoylpiperazines. The ethoxy and methoxymethyl ring substituted benzylpiperazines constitute the major category of isobaric substances evaluated in this study. The direct and indirect regioisomers of 3,4-MDBP and also isobaric substances related to MDBP were synthesized and compared to 3,4-MDBP by using gas chromatographic and spectrophotometric techniques. The GC-MS studies of the direct regioisomers and isobaric substances of 3,4-MDBP indicated that they can not be easily differentiated by mass spectrometry. The synthesized compounds were converted to their perfluoroacyl derivatives, trifluoroacetyl (TFA), pentafluoropropionyl amides (PFPA) and heptafluorobutryl amides (HFBA), in an effort to individualize their mass spectra and to improve chromatographic resolution. Derivatized 3,4-MDBP was not distingushed from its derivatized regioisomers or isobars using mass spectrometry. No unique fragment ions were observed for the various regioisomeric and the isobaric compounds.
    [Show full text]
  • Screening of 300 Drugs in Blood Utilizing Second Generation
    Forensic Screening of 300 Drugs in Blood Utilizing Exactive Plus High-Resolution Accurate Mass Spectrometer and ExactFinder Software Kristine Van Natta, Marta Kozak, Xiang He Forensic Toxicology use Only Drugs analyzed Compound Compound Compound Atazanavir Efavirenz Pyrilamine Chlorpropamide Haloperidol Tolbutamide 1-(3-Chlorophenyl)piperazine Des(2-hydroxyethyl)opipramol Pentazocine Atenolol EMDP Quinidine Chlorprothixene Hydrocodone Tramadol 10-hydroxycarbazepine Desalkylflurazepam Perimetazine Atropine Ephedrine Quinine Cilazapril Hydromorphone Trazodone 5-(p-Methylphenyl)-5-phenylhydantoin Desipramine Phenacetin Benperidol Escitalopram Quinupramine Cinchonine Hydroquinine Triazolam 6-Acetylcodeine Desmethylcitalopram Phenazone Benzoylecgonine Esmolol Ranitidine Cinnarizine Hydroxychloroquine Trifluoperazine Bepridil Estazolam Reserpine 6-Monoacetylmorphine Desmethylcitalopram Phencyclidine Cisapride HydroxyItraconazole Trifluperidol Betaxolol Ethyl Loflazepate Risperidone 7(2,3dihydroxypropyl)Theophylline Desmethylclozapine Phenylbutazone Clenbuterol Hydroxyzine Triflupromazine Bezafibrate Ethylamphetamine Ritonavir 7-Aminoclonazepam Desmethyldoxepin Pholcodine Clobazam Ibogaine Trihexyphenidyl Biperiden Etifoxine Ropivacaine 7-Aminoflunitrazepam Desmethylmirtazapine Pimozide Clofibrate Imatinib Trimeprazine Bisoprolol Etodolac Rufinamide 9-hydroxy-risperidone Desmethylnefopam Pindolol Clomethiazole Imipramine Trimetazidine Bromazepam Felbamate Secobarbital Clomipramine Indalpine Trimethoprim Acepromazine Desmethyltramadol Pipamperone
    [Show full text]
  • “Rauwolscine/ Alfa Yohimbine”
    “Rauwolscine/ Alfa Yohimbine” Rauwolscine / Alfa Yohimbine – Natural and Safe Alternative for FAT BURNING Rauwolscine or Alfa–Yohimbine is an indole alkaloid with stimulant, aphrodisiac and local anaesthetic effects found naturally in plants of the genus Rauwolfia and Pausinystalia, along with several other active alkaloids including Yohimbine. Rauwolscine is a stereoisomer of Yohimbine, that is it is chemically identical, but differs in its 3 dimensional orientation. There are a total of 3 stereoisomers of Yohimbine, the other two are corynanthine and 3-epi-alpha-yohimbine. How it works – science behind this natural supplement Fat-Burning Potential Rauwolscine, or {3H}Rauwolscine, is a potent and selective antagonist of alpha-2 adrenergic receptors. This is the same mechanism by which yohimbine acts by blocking the pre- and post-synaptic alpha-2 adrenoceptors, this prevents the release of Norepinephrine from cells. Norepinepherine stimulates both the alpha and beta receptors in a cell. Stimulation of the beta adrenoceptors causes the breakdown of fat, whilst stimulating the alpha-2 adrenoceptors prevents this breakdown of fats.Alfa Yohimbine (Rauwolscine) blocks the alpha feedback mechanism, thus increasing norepinephrine. Additionally in blocking the alpha-2 receptor it blocks the storage of new fat. Serotonergic Effects Its works in a similar fashion like yohimbine, rauwolscine is an agonist of 5-HT1a/b receptors and induces serotonin-like effects.Whereas yohimbine has more affinity for the receptor, rauwolscine has a lower IC50 value (meaning it can saturate more receptors at the same dose) and can be seen as slightly more potent in serotonergic activity. Rauwolscine, an antagonist radioligand for the cloned human 5- hydroxytryptamine2b (5-HT2B) receptor.
    [Show full text]
  • Recreational Use, Analysis and Toxicity of Tryptamines
    Send Orders for Reprints to [email protected] 26 Current Neuropharmacology, 2015, 13, 26-46 Recreational Use, Analysis and Toxicity of Tryptamines Roberta Tittarelli1, Giulio Mannocchi1, Flaminia Pantano1 and Francesco Saverio Romolo1,2,* 1Legal Medicine Section, Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, “Sapienza” University of Rome, Viale Regina Elena, 336, 00161 Rome, Italy; 2Institut de Police Scientifique, Université de Lausanne, Batochime, 1015 Lausanne, Switzerland Abstract: The definition New psychoactive substances (NPS) refers to emerging drugs whose chemical structures are similar to other psychoactive compounds but not identical, representing a “legal” alternative to internationally controlled drugs. There are many categories of NPS, such as synthetic cannabinoids, synthetic cathinones, phenylethylamines, piperazines, ketamine derivatives and tryptamines. Tryptamines are naturally occurring compounds, which can derive from the amino acid tryptophan by several biosynthetic pathways: their structure is a combination of a benzene ring Roberta Tittarelli and a pyrrole ring, with the addition of a 2-carbon side chain. Tryptamines include serotonin and melatonin as well as other compounds known for their hallucinogenic properties, such as psilocybin in ‘Magic mushrooms’ and dimethyltryptamine (DMT) in Ayahuasca brews. Aim: To review the scientific literature regarding tryptamines and their derivatives, providing a summary of all the available information about the structure of these compounds, their effects in relationship with the routes of administration, their pharmacology and toxicity, including articles reporting cases of death related to intake of these substances. Methods: A comprehensive review of the published scientific literature was performed, using also non peer-reviewed information sources, such as books, government publications and drug user web fora.
    [Show full text]
  • The Role of Norepinephrine in the Pharmacology of 3,4
    !"#$%&'#$&($)&*#+,-#+"*,-#$,-$."#$/"0*102&'&34$&($ 56789#."4'#-#:,&;41#."01+"#.01,-#$<9=9>6$?#[email protected]@4AB$ $ C-0D3D*0':,@@#*.0.,&-$$ ! $ ED*$ F*'0-3D-3$:#*$GH*:#$#,-#@$=&I.&*@$:#*$/",'&@&+",#$ J&*3#'#3.$:#*$ /",'&@&+",@2"8)0.D*K,@@#-@2"0(.',2"#-$L0ID'.M.$ :#*$N-,J#*@,.M.$O0@#'$ $ $ J&-$ $ PQ:*,2$90*2$R4@#I$ 0D@$O#''1D-:6$OF$ $ O0@#'6$STU5$ $ $ V*,3,-0':&ID1#-.$3#@+#,2"#*.$0D($:#1$=&ID1#-.#-@#*J#*$:#*$N-,J#*@,.M.$O0@#'W$#:&2XD-,Y0@X2"$ $ =,#@#@$ G#*I$ ,@.$ D-.#*$ :#1$ Z#*.*03$ [P*#0.,J#$ P&11&-@$)01#-@-#--D-38\#,-#$I&11#*E,#''#$)D.ED-38\#,-#$ O#0*Y#,.D-3$ SX]$ ^2"K#,E_$ ',E#-E,#*.X$ =,#$ J&''@.M-:,3#$ `,E#-E$ I0--$ D-.#*$ 2*#0.,J#2&11&-@X&*3a',2#-2#@aY48-28 -:aSX]a2"$#,-3#@#"#-$K#*:#-X !"#$%&%$%%'%()*$+%$,-.##$/0+$11$,!'20'%()*$+%$,3$"/4$+2'%(,567,89:;$+0 8+$,<=/>$%? !"#$%&'($)&')*&+,-+.*/&01$)&'2'&*.&0$30!$4,,&0.+*56$73/-0/+*56$8"56&0 @',<$%,>.1($%<$%,3$<+%('%($%? !"#$%&%$%%'%(9$:*&$8;##&0$!&0$<"8&0$!&#$=3.>'#?@&56.&*06"2&'#$*0$!&'$ )>0$*68$,&#./&+&/.&0$%&*#&$0&00&0$AB>!3'56$"2&'$0*56.$!&'$C*0!'35($&0.#.&6&0$ !"',1$:*&$>!&'$!*&$<3.730/$!&#$%&'(&#$!3'56$:*&$B;'!&0$&0.+>60.D9 *$+%$,-.##$/0+$11$,!'20'%(9$E*&#&#$%&'($!"',$0*56.$,;'$(>88&'7*&++&$ FB&5(&$)&'B&0!&.$B&'!&09 *$+%$,3$"/4$+2'%(9$E*&#&#$%&'($!"',$0*56.$2&"'2&*.&.$>!&'$*0$"0!&'&'$%&*#&$ )&'-0!&'.$B&'!&09 ! G8$H"++&$&*0&'$I&'2'&*.30/$8;##&0$:*&$"0!&'&0$!*&$J*7&072&!*0/30/&01$30.&'$B&+56&$!*&#&#$%&'($,-++.1$ 8*..&*+&09$=8$C*0,"56#.&0$*#.$&#1$&*0&0$J*0($"3,$!*&#&$:&*.&$&*0732*0!&09 ! K&!&$!&'$)>'/&0"00.&0$L&!*0/30/&0$("00$"3,/&6>2&0$B&'!&01$#>,&'0$:*&$!*&$C*0B*++*/30/$!&#$ @&56.&*06"2&'#$!"73$&'6"+.&09
    [Show full text]
  • SELECTIVE SEROTONIN REUPTAKE INHIBITORS SEXUAL FUNCTION K. Demyttenaere0 and D. Vanderschueren" University Hospital Gasthui
    * 1995 Elsevier Science B. V. All rights reserved. The Pharmacology of Sexual Function and Dysfunction J. Bancroft, editor 327 SELECTIVE SEROTONIN REUPTAKE INHIBITORS AND SEXUAL FUNCTION K. Demyttenaere0 and D. Vanderschueren" University Hospital Gasthuisberg (K.D. Leuven) ° Department of Psychiatry and Institute for Family and Sexological Sciences " Department of Endocrinology - Andrology Unit Herestraat 49 - B 3000 Leuven, Belgium dedicated to dr. Hugo De Cuyper (18.1.1946 - 13.9.1994) Introduction Selective Serotonin Reuptake Inhibitors (SSRIs : fluvoxamine -Floxyfral® or Fevarin®-, fluoxetine -Prozac®-, sertraline - Serlain® or Zoloft®-, paroxetine -Seroxat® or Paxil®- and citalopram -Cipramil®-) are potent and competitive inhibitors of the high affinity neuronal re-uptake mechanism for serotonin. These drugs also inhibit the re-uptake of noradrenaline and, generally to a lesser extent, dopamine, at higher concentrations. Paroxetine is the most potent serotonin uptake inhibitor in vitro of the drugs investigated, and citalopram is the most selective inhibitor of serotonin re-uptake, with paroxetine being more selective than fluoxetine, fluvoxamine and sertraline. Of the drugs investigated, only sertraline is a more potent inhibitor of dopamine compared with noradrenaline uptake. SSRIs are not only as effective as the tricyclic antidepressants in the treatment of major depression but are also effective in the treatment of obsessive-compulsive disorder, panic disorder, eating disorders and premenstrual syndrome (1). Although the latency of onset to therapeutic response seems to be somewhat longer, most psychiatrists consider SSRIs the initital drug of choice in the treatment of depressive disorders. Indeed, these drugs are usually better tolerated since they do not produce muscarinic, histaminic and alpha adrenergic side effects.
    [Show full text]
  • Anxiogenic Activity of Methylenedioxymethamphetamine Fluid
    216 H lshikawa et al. BiogenicAminesVol.. 14.No.3,217-23711998) © VSP 1998 Tada,Y., Kudo,T. and Kishimoto,Y. (1991). Effect of L-dopa or dopamine on human !_ dccidual prostaglandin synthesis. Acta ^ted Okaywna, 45:333-338. Tanigichi,K., Okatani,Y. and Sagara,Y. (1994). Serotonin nletabolism in the fetus in preeclampsia. Asia Oceania J. Obster Gynecol., 20:77-86. Zuspan,F.P. and Abbott,M. 11970). Identification of a pressor substance itl amnion Anxiogenic activity of methylenedioxymethamphetamine fluid. Role of epinephrine and norepinephrine. Am. d Obster Qvnecol, 107:664- (Ecstasy): an experimental study 672. SALIL K. BHATI'ACHARYA, e, ARUNABH BHATTACHARYA, _' SHIBNATH GHOSALa l 'l)eparOncnt of l'harmac(fi.g¥, Institute of Medical Sciences, Banaras I Imdu lInivcrsily, Varanasl 221 0(15,lmha z.I)cpmlmcnt of Biochcmaisllx,tlariat-asIlindu Univcxsity, Varanasi, India Consullant, Indian )lerbs. Saharanpur, India Received 5 January I998; accepted 12 February 1998 Ab_tracL Methylenedioxymethamphetamine (MDMA), commonly known as Ecstasy., is widely abnsed as a recreational agent. Reports of death following MDMA intake has aroused _'rious concern Although some of the clinical symploms of MDMA (oxicity include severe anxiety, [xmic. excitation and agitation, bchavioural studies on the drug are sparse and incomplete. The present study investigated the anxiogenic aclivitv of MDMA in,sing yohimbine (2 rog/kg, i.p.) as the standard anxiogenic agent for'comparison. The_xpcrimental methods used were the open-field, elevated plus-maze, social inleraclion and novelty-suppressed feeding latency tests, all the tests being experimenlally validated as rodent models of clinical anxiely. In addition, the effect of MDMA was assessed on rat brain lnbulin activity iu !erms of endogenous monoamine oxidasc (MAO) A and B inhibition.
    [Show full text]