A Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

A Table of Contents A TABLE OF CONTENTS LECTURE 1 ....................................................................................................................................................................... 5 1.1. Random variables. Probability distribution law .................................................................................................. 5 1.2. Cumulative distribution function .......................................................................................................................... 6 1.3. Distribution set ..................................................................................................................................................... 7 1.4. Probability density function ................................................................................................................................. 8 LECTURE 2 ..................................................................................................................................................................... 10 2.1. Numerical characteristics of the random variable ............................................................................................. 10 LECTURE 3 ..................................................................................................................................................................... 15 3.1. Uniform distribution .......................................................................................................................................... 15 3.2. Exponential distribution ..................................................................................................................................... 16 3.3 Normal (Gauss) distribution ............................................................................................................................... 17 3.4 Сhi-square distribution ....................................................................................................................................... 20 3.5 Student distribution ............................................................................................................................................. 23 3.6 Fisher distribution............................................................................................................................................... 25 3.7 Gamma distribution ............................................................................................................................................ 26 LECTURE 4 ..................................................................................................................................................................... 28 4.1. The distribution law of the random argument function ...................................................................................... 28 4.2. Simulating of the random variable with the given distribution law by functional transformation ..................... 32 LECTURE 5 ..................................................................................................................................................................... 34 5.1. The law of large numbers ................................................................................................................................... 34 12.2. The central limit theorem ................................................................................................................................. 37 LECTURE 6 ..................................................................................................................................................................... 40 6.1. Mathematical statistics. Basic concepts ............................................................................................................. 40 6.2. The distribution law estimate ............................................................................................................................. 41 LECTURE 7 ..................................................................................................................................................................... 48 7.1. Point estimates of numerical characteristics ..................................................................................................... 48 LECTURE 8 ..................................................................................................................................................................... 52 8.1. The distribution parameters estimate ................................................................................................................. 52 8.2 Parameter estimation by the results of unequal measurements .......................................................................... 57 LECTURE 9 ..................................................................................................................................................................... 59 9.1 Interval estimate of numerical characteristics .................................................................................................... 59 9.2 The confidence interval for mathematical expectation ....................................................................................... 61 9.3 The confidence interval for dispersion ................................................................................................................ 62 9.4Theconfidence interval for probability ................................................................................................................. 63 LECTURE 10 ................................................................................................................................................................... 64 10.1 Statistical check of hypotheses. Classification of hypotheses ........................................................................... 64 10.2 Significance criterion ........................................................................................................................................ 65 10.3. Hypothesis testing about probabilities equality ............................................................................................... 69 LECTURE 11 ................................................................................................................................................................... 71 11.1. Hypothesis test about the distribution law. Fitting criteria ............................................................................. 71 11.2. Pirson criterion ................................................................................................................................................ 72 11.3. Kolmogorov criterion ....................................................................................................................................... 74 LECTURE 12 ................................................................................................................................................................... 78 12.1 Fitting criterion Mises-Smirnov criterion ......................................................................................................... 78 12.2 Neumann-Pirsona criterion .............................................................................................................................. 80 LECTURE 13 ................................................................................................................................................................... 85 13.1 Hypothesis test about the mathematical expectation at the known dispersion .................................................. 85 13.2 Hypothesis test about the mathematical expectation at the unknown dispersion .............................................. 88 13.3 Hypothesis test about the dispersion at the known mathematical expectation .................................................. 88 13.4 Hypothesis test about dispersionat the unknown mathematical expectation ..................................................... 90 13.5 Hypothesis test about mathematical expectation equality ................................................................................. 91 13.6 Hypothesis test about the dispersions equality.................................................................................................. 93 LECTURE 14 ................................................................................................................................................................... 95 14.1 Two-dimensional random variables. The two-dimensional distribution law .................................................... 95 14.2 Dependent and independent random variables ................................................................................................. 96 14.3 Conditional distribution laws ............................................................................................................................ 97 LECTURE 15 ................................................................................................................................................................... 98 15.1 Numerical characteristics of two-dimensional random variable ...................................................................... 98 15.2 Conditional numerical characteristics .............................................................................................................. 99 LECTURE 16 ................................................................................................................................................................
Recommended publications
  • On Asymptotic Diversification Effects for Heavy-Tailed Risks
    On Asymptotic Diversification Effects for Heavy-Tailed Risks Dissertation zur Erlangung des Doktorgrades der Fakult¨atf¨urMathematik und Physik der Albert-Ludwigs-Universit¨atFreiburg im Breisgau vorgelegt von Georg Mainik Februar 2010 Dekan: Prof. Dr. Kay K¨onigsmann Referenten: Prof. Dr. Ludger R¨uschendorf Prof. Dr. Paul Embrechts Datum der Promotion: 29. April 2010 Contents 1 Introduction1 1.1 Motivation.............................1 1.2 Overview of related theory....................2 1.3 Central results and structure of the thesis...........3 1.4 Acknowledgements........................7 2 Multivariate regular variation9 2.1 Basic notation and model assumptions.............9 2.2 Canonical forms of exponent and spectral measures...... 14 2.3 Dependence functions....................... 18 2.4 Copulas.............................. 20 2.5 Spectral densities of Gumbel copulas.............. 24 2.6 Spectral densities of elliptical distributions........... 27 3 Extreme risk index 35 3.1 Basic approach.......................... 35 3.2 Representations in terms of spectral measures......... 39 3.3 Portfolio optimization and diversification effects........ 42 3.4 Minimization of risk measures.................. 49 4 Estimation 55 4.1 Basic approach.......................... 55 4.2 Main results............................ 59 4.3 Empirical processes with functional index............ 63 4.4 Proofs of the main results.................... 76 4.5 Examples and comments..................... 78 5 Stochastic order relations 87 5.1 Introduction............................ 87 5.2 Ordering of extreme portfolio losses............... 90 5.3 Ordering of spectral measures.................. 94 i ii CONTENTS 5.4 Convex and supermodular orders................ 106 5.5 Examples............................. 111 6 Modelling and simulation 117 6.1 Objectives and design....................... 117 6.2 Estimation of the tail index................... 118 6.3 Models............................... 121 6.4 Simulation results........................
    [Show full text]
  • Bibliography of Nonparametric Statistics and Related Topics
    Section 12,3 ft" not r-ftmiwtt NATIONAL BUREAU OF STANDARDS REPORT 1828 BIBLIOGRAPHY OF NONPARAMETRIC STATISTICS AND RELATED TOPICS by I* Richard Savage <NB§> U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS U. S. DEPARTMENT OF COMMERCE Charles Sawyer, Secretary NATIONAL BUREAU OF STANDARDS A . Y„ Astin, Acting Director THE NATIONAL BUREAU OF STANDARDS The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report. 1. Electricity, Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Electrochemistry. 2. Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photo- graphic Technology. Length. Gage. 3. Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. En- gines and Lubrication. Engine Fuels. 4. Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Physical Electronics. Electron Physics. Atomic Physics. Neutron Measurements. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Instruments Branch. 5. Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chem- istry. Thermochemistry. Spectrochemistry. Pure Substances. 6. Mechanics. Sound. Mechanical Instruments. Aerodynamics. Engineering Me- chanics. Hydraulics. Mass. Capacity, Density, and Fluid Meters. 7. Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Organic Plastics. Dental Research. 8. Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. 9.
    [Show full text]
  • A First Course in Order Statistics
    A First Course in Order Statistics Books in the Classics in Applied Mathematics series are monographs and textbooks declared out of print by their original publishers, though they are of continued importance and interest to the mathematical community. SIAM publishes this series to ensure that the information presented in these texts is not lost to today’s students and researchers. Editor-in-Chief Robert E. O’Malley, Jr., University of Washington Editorial Board John Boyd, University of Michigan Leah Edelstein-Keshet, University of British Columbia William G. Faris, University of Arizona Nicholas J. Higham, University of Manchester Peter Hoff, University of Washington Mark Kot, University of Washington Hilary Ockendon, University of Oxford Peter Olver, University of Minnesota Philip Protter, Cornell University Gerhard Wanner, L’Université de Genève Classics in Applied Mathematics C. C. Lin and L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences Johan G. F. Belinfante and Bernard Kolman, A Survey of Lie Groups and Lie Algebras with Applications and Computational Methods James M. Ortega, Numerical Analysis: A Second Course Anthony V. Fiacco and Garth P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques F. H. Clarke, Optimization and Nonsmooth Analysis George F. Carrier and Carl E. Pearson, Ordinary Differential Equations Leo Breiman, Probability R. Bellman and G. M. Wing, An Introduction to Invariant Imbedding Abraham Berman and Robert J. Plemmons, Nonnegative Matrices in the Mathematical Sciences Olvi L. Mangasarian, Nonlinear Programming *Carl Friedrich Gauss, Theory of the Combination of Observations Least Subject to Errors: Part One, Part Two, Supplement. Translated by G. W. Stewart Richard Bellman, Introduction to Matrix Analysis U.
    [Show full text]
  • Approximation Theorems of Mathematical Statistics
    Approximation Theorems of Mathematical Statistics Robert J. Serfling JOHN WILEY & SONS This Page Intentionally Left Blank Approximation Theorems of Mathematical Statistics WILEY SERIES M PROBABILITY AND STATISTICS Established by WALTER A. SHEWHART and SAMUEL S. WILKS Editors: Peter Bloomfield, Noel A. C. Cressie, Nicholas I. Fisher, Iain M.Johnstone, J. B. Kadane, Louise M. Ryan, David W.Scott, Bernard W. Silverman, Adrian F. M. Smith, Jozef L. Teugels; Editors Emeriti: Vic Barnett, Ralph A. Bradley, J. Stuart Hunter, David G. Kendall A complete list of the titles in this series appears at the end of this volume. Approximation Theorems of Mathematical Statistics ROBERT J. SERFLING The Johns Hopkins University A Wiley-lnterscience Publication JOHN WILEY & SONS,INC. This text is printed 011 acid-free paper. @ Copyright Q 1980 by John Wiley & Sons. Inc. All rights reserved. Paperback edition published 2002. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic. mechanical, photocopying, recording, scanning or otherwise, except as pennitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers. MA 01923. (978) 750-8400. fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons. Inc.. 605 Third Avenue. New York. NY 10158-0012. (212) 850-601 I, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.
    [Show full text]
  • Obituary Andrei Nikolaevich Kolmogorov
    OBITUARY ANDREI NIKOLAEVICH KOLMOGOROV (1903-1987) A tribute to his memory organised by David Kendall CONTENTS D. G. Kendall: Kolmogorov: the man and his work. 31 G. K. Batchelor: Kolmogorov's work on Turbulence. 47 N. H. Bingham: Kolmogorov's work on Probability, particularly Limit Theorems. 51 W. K. Hayman: Kolmogorov's contribution to Fourier Series. 58 J. M. E. Hyland: Kolmogorov's work in Logic. 61 G. G. Lorentz: Superpositions, Metric Entropy, Complexity of Functions, Widths. 64 H. K. Moffatt: KAM-theory. 71 W. Parry: Entropy in Ergodic Theory - the initial years. 73 A. A. Razborov: Kolmogorov and the Complexity of Algorithms. 79 C. A. Robinson: The work of Kolmogorov on Cohomology. 82 P. Whittle: Kolmogorov's contributions to the Theory of Stationary Processes. 83 ACKNOWLEDGEMENTS. We wish to express our gratitude to those who have helped us in the production of this work. Professor A. N. Shiryaev in his capacity as Kolmogorov's literary executor kindly provided us with an extensive bibliography (here further enlarged and translated into English by E. J. F. Primrose, who also wrote the commentary on it). Professor Shiryaev also gave us the three photographs, and allowed DGK to have access to his definitive biography. Professor Yu. A. Rozanov added several illuminating details to DGK's introductory essay. DGK acknowledges support from the Science and Engineering Research Council. KOLMOGOROV: THE MAN AND HIS WORK D. G. KENDALL The subject of this memoir (ANK in what follows) was born on 25 April 1903 in Tambov during a journey from the Crimea to his mother's home.
    [Show full text]