Conformational Distributions of Isolated Myosin Motor Domains
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PSPC1 Potentiates IGF1R Expression to Augment Cell Adhesion and Motility
1 Supplementary information 2 PSPC1 potentiates IGF1R expression to augment cell 3 adhesion and motility 4 Hsin-Wei Jen1,2 , De-Leung Gu 2, Yaw-Dong Lang 2 and Yuh-Shan Jou 1,2,* 5 1 Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 6 2 Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 7 * Author to whom correspondence should be addressed 8 Cells 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/cells Cells 2020, 9, x FOR PEER REVIEW 2 of 10 9 10 11 Supplementary Figure S1: Expression of IGF1R and integrin in PSPC1-expressing or PSPC1-depleted 12 HCC cells by Western blotting analysis 13 (A) Detection of IGF1R protein levels in three PSPC1-knockdown cells Huh7, HepG2 and Mahlavu. (B) 14 Detection of selected integrin expression in PSPC1-overexpressing or PSPC1-depleted HCC cells by using 15 their total cell lysates immunoblotted with specific integrin antibodies as shown. 16 17 18 Supplementary Figure S2: PSPC1-modulated IGF1R downstream signaling in HCC cells. Cells 2020, 9, x FOR PEER REVIEW 3 of 10 19 (A, B) Immunoblotting of IGF1R expression in PSPC1-overexpressing SK-Hep1 and PLC5 cells 20 treated with IGF1R shRNAs. (C, D) Cell migration and adhesion were measured in PSPC1- 21 knockdown Hep3B cells rescued with exogenous expression of IGF1R. Exogenous expression of 22 IGF1R in PSPC1-knockdown Hep3B cells were then applied for detection of altered AKT/ERK 23 signaling including (E) total PSPC1, IGF1R, AKT, ERK, p-IGF1R, p-AKT(S473), and 24 p-ERK(T202/Y204) as well as altered FAK/Src signaling including (F) total FAK, Src, p-FAK(Y397) 25 and p-Src(Y416) by immunoblotting assay. -
Supplemental Material Table of Contents
Supplemental material Table of Contents Detailed Materials and Methods ......................................................................................................... 2 Perioperative period ........................................................................................................................... 2 Ethical aspects ................................................................................................................................... 4 Evaluation of heart failure ................................................................................................................. 4 Sample preparation for ANP mRNA expression .................................................................................. 5 Sample preparation for validative qRT-PCR (Postn, Myh7, Gpx3, Tgm2) ............................................ 6 Tissue fibrosis .................................................................................................................................... 7 Ventricular remodeling and histological tissue preservation ................................................................ 8 Evaluation of the histological preservation of cardiac tissue ................................................................ 9 Sample preparation and quantitative label-free proteomics analyses .................................................. 10 Statistical methods ........................................................................................................................... 12 References ........................................................................................................................................ -
Myosin Myth4-FERM Structures Highlight Important Principles of Convergent Evolution
Myosin MyTH4-FERM structures highlight important principles of convergent evolution Vicente José Planelles-Herreroa,b, Florian Blanca,c, Serena Sirigua, Helena Sirkiaa, Jeffrey Clausea, Yannick Souriguesa, Daniel O. Johnsrudd, Beatrice Amiguesa, Marco Cecchinic, Susan P. Gilberte, Anne Houdussea,1,2, and Margaret A. Titusd,1,2 aStructural Motility, Institut Curie, CNRS, UMR 144, PSL Research University, F-75005 Paris, France; bUPMC Université de Paris 6, Institut de Formation Doctorale, Sorbonne Universités, 75252 Paris Cedex 05, France; cLaboratoire d’Ingénierie des Fonctions Moléculaires, Institut de Science et d’Ingénierie Supramoléculaires, UMR 7006 CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France; dDepartment of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455; and eDepartment of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 Edited by James A. Spudich, Stanford University School of Medicine, Stanford, CA, and approved March 31, 2016 (received for review January 15, 2016) Myosins containing MyTH4-FERM (myosin tail homology 4-band (Fig. 1). These MF myosins are widespread and likely quite an- 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found cient because they are found in many different branches of the in a wide range of phylogenetically divergent organisms, such as phylogenetic tree (5, 6), including Opisthokonts (which includes humans and the social amoeba Dictyostelium (Dd). Interestingly, Metazoa, unicellular Holozoa, and Fungi), Amoebozoa, and the evolutionarily distant MF myosins have similar roles in the exten- SAR (Stramenopiles, Alveolates, and Rhizaria) (Fig. 1 A and B). sion of actin-filled membrane protrusions such as filopodia and Over the course of hundreds of millions years of parallel evolution bind to microtubules (MT), suggesting that the core functions of the MF myosins have acquired or maintained roles in the formation these MF myosins have been highly conserved over evolution. -
Novel Association of Hypertrophic Cardiomyopathy, Sensorineural Deafness, and a Mutation in Unconventional Myosin VI (MYO6)
309 LETTER TO JMG J Med Genet: first published as 10.1136/jmg.2003.011973 on 1 April 2004. Downloaded from Novel association of hypertrophic cardiomyopathy, sensorineural deafness, and a mutation in unconventional myosin VI (MYO6) S A Mohiddin, Z M Ahmed, A J Griffith, D Tripodi, T B Friedman, L Fananapazir, R J Morell ............................................................................................................................... J Med Genet 2004;41:309–314. doi: 10.1136/jmg.2003.011973 amilial hypertrophic cardiomyopathy (FHC) is typically Key points characterised by left ventricular hypertrophy, diastolic Fdysfunction, and hypercontractility, and is often asso- ciated with disabling symptoms, arrhythmias, and sudden N Familial hypertrophic cardiomyopathy (FHC) is typi- death.1 FHC shows both non-allelic and allelic genetic cally confined to a cardiac phenotype and is caused by heterogeneity, and results from any one of more than 100 mutations in genes encoding sarcomeric proteins. mutations in genes encoding sarcomeric proteins.2 Identified Occasionally FHC may be one component of a genes include those encoding b myosin heavy chain, the hereditary multisystem disorder. myosin regulatory and essential light chains, myosin bind- N Sensorineural hearing loss is genetically heteroge- ing protein C, troponin I, troponin C, a cardiac actin, and neous. Mutations in the MYO6 gene, encoding 23 titin. The FHC phenotype is characterised by hypertrophy, unconventional myosin VI, have been found to cause myocyte disarray and fibrosis, and results from the dominant non-syndromic sensorineural hearing loss—that is, negative expression of one of these (mainly missense) sensorineural hearing loss in the absence of any other mutations. The resulting sarcomeric dysfunction leads related clinical features. ultimately, through mechanisms that remain obscure, to pathological left ventricular remodelling. -
Notch-Wnt-Bmp Crosstalk Regulates Radial Patterning in the Mouse Cochlea in a Spatiotemporal Manner Vidhya Munnamalai1,2 and Donna M
© 2016. Published by The Company of Biologists Ltd | Development (2016) 143, 4003-4015 doi:10.1242/dev.139469 RESEARCH ARTICLE Notch-Wnt-Bmp crosstalk regulates radial patterning in the mouse cochlea in a spatiotemporal manner Vidhya Munnamalai1,2 and Donna M. Fekete1,2,3,* ABSTRACT development progresses (Munnamalai and Fekete, 2013). Wnt- The sensory cells of the mammalian organ of Corti assume a precise mediated regulation of cell proliferation is well known in many mosaic arrangement during embryonic development. Manipulation of organ systems, including the cochlea (Jacques et al., 2012). Whether Wnt signaling can modulate the proliferation of cochlear progenitors, the canonical Wnt signaling pathway intersects with the Notch, but whether Wnts are responsible for patterning compartments, or Bmp or Fgf pathways to regulate cochlear patterning remains specific hair cells within them, is unclear. To address how the precise relatively unexplored. timing of Wnt signaling impacts patterning across the radial axis, The Wnt and Notch pathways are known to crosstalk, a finding ‘ ’ mouse cochlear cultures were initiated at embryonic day 12.5 and that coined the term Wntch signaling. This interaction is context subjected to pharmacological treatments at different stages. Early dependent and can be bi-directional (Collu et al., 2014; Zak et al., changes in major patterning genes were assessed to understand the 2015). In the cochlea, Notch has a dual role in regulating lateral mechanisms underlying alterations of compartments. Results show induction early (to induce prosensory fate) and lateral inhibition that Wnt activation can promote medial cell fates by regulating later (to block HC fate) (Kiernan, 2013). Studies have shown that medially expressed Notch genes in a spatiotemporal manner. -
Conserved Microtubule–Actin Interactions in Cell Movement and Morphogenesis
REVIEW Conserved microtubule–actin interactions in cell movement and morphogenesis Olga C. Rodriguez, Andrew W. Schaefer, Craig A. Mandato, Paul Forscher, William M. Bement and Clare M. Waterman-Storer Interactions between microtubules and actin are a basic phenomenon that underlies many fundamental processes in which dynamic cellular asymmetries need to be established and maintained. These are processes as diverse as cell motility, neuronal pathfinding, cellular wound healing, cell division and cortical flow. Microtubules and actin exhibit two mechanistic classes of interactions — regulatory and structural. These interactions comprise at least three conserved ‘mechanochemical activity modules’ that perform similar roles in these diverse cell functions. Over the past 35 years, great progress has been made towards under- crosstalk occurs in processes that require dynamic cellular asymme- standing the roles of the microtubule and actin cytoskeletal filament tries to be established or maintained to allow rapid intracellular reor- systems in mechanical cellular processes such as dynamic shape ganization or changes in shape or direction in response to stimuli. change, shape maintenance and intracellular organelle movement. Furthermore, the widespread occurrence of these interactions under- These functions are attributed to the ability of polarized cytoskeletal scores their importance for life, as they occur in diverse cell types polymers to assemble and disassemble rapidly, and to interact with including epithelia, neurons, fibroblasts, oocytes and early embryos, binding proteins and molecular motors that mediate their regulated and across species from yeast to humans. Thus, defining the mecha- movement and/or assembly into higher order structures, such as radial nisms by which actin and microtubules interact is key to understand- arrays or bundles. -
Circmyo10 Promotes Osteosarcoma Progression by Regulating Mir-370
Chen et al. Molecular Cancer (2019) 18:150 https://doi.org/10.1186/s12943-019-1076-1 RESEARCH Open Access CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/ RUVBL1 axis to enhance the transcriptional activity of β-catenin/LEF1 complex via effects on chromatin remodeling Junxin Chen1†, Gang Liu1†, Yizheng Wu1†, Jianjun Ma1†, Hongfei Wu2, Ziang Xie1, Shuai Chen1, Yute Yang1, Shengyu Wang1, Panyang Shen1, Yifan Fang3, Shunwu Fan1, Shuying Shen1* and Xiangqian Fang1* Abstract Background: CircMYO10 is a circular RNA generated by back-splicing of gene MYO10 and is upregulated in osteosarcoma cell lines, but its functional role in osteosarcoma is still unknown. This study aimed to clarify the mechanism of circMYO10 in osteosarcoma. Methods: CircMYO10 expression in 10 paired osteosarcoma and chondroma tissues was assessed by quantitative reverse transcription polymerase chain reaction (PCR). The function of circMYO10/miR-370-3p/RUVBL1 axis was assessed regarding two key characteristics: proliferation and endothelial–mesenchymal transition (EMT). Bioinformatics analysis, western blotting, real-time PCR, fluorescence in situ hybridization, immunoprecipitation, RNA pull-down assays, luciferase reporter assays, chromatin immunoprecipitation, and rescue experiments were used to evaluate the mechanism. Stably transfected MG63 cells were injected via tail vein or subcutaneously into nude mice to assess the role of circMYO10 in vivo. Results: CircMYO10 was significantly upregulated, while miR-370-3p was downregulated, in osteosarcoma cell lines and human osteosarcoma samples. Silencing circMYO10 inhibited cell proliferation and EMT in vivo and in vitro. Mechanistic investigations revealed that miR-370-3p targets RUVBL1 directly, and inhibits the interaction between RUVBL1 and β-catenin/LEF1 complex while circMYO10 showed a contrary effect via the inhibition of miR-370-3p. -
Clinical and Prognostic Significance of MYH11 in Lung Cancer
ONCOLOGY LETTERS 19: 3899-3906, 2020 Clinical and prognostic significance ofMYH11 in lung cancer MENG-JUN NIE1,2, XIAO-TING PAN1,2, HE-YUN TAO1,2, MENG-JUN XU1,2, SHEN-LIN LIU1, WEI SUN1, JIAN WU1 and XI ZOU1 1Oncology Department, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029; 2No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China Received May 14, 2019; Accepted February 21, 2020 DOI: 10.3892/ol.2020.11478 Abstract. Myosin heavy chain 11 (MYH11), encoded by 5-year survival rate is estimated to approximately 18% (2). the MYH11 gene, is a protein that participates in muscle Therefore, novel targets for drug treatment and prognosis of contraction through the hydrolysis of adenosine triphosphate. lung cancer are needed. Although previous studies have demonstrated that MYH11 Myosin heavy chain 11 (MYH11), which is encoded by gene expression levels are downregulated in several types of the MYH11 gene, is a smooth muscle myosin belonging to the cancer, its expression levels have rarely been investigated in myosin heavy chain family (3). MYH11 is a contractile protein lung cancer. The present study aimed to explore the clinical that slides past actin filaments to induce muscle contraction significance and prognostic value of MYH11 expression levels via adenosine triphosphate hydrolysis (4,5). Previous findings in lung cancer and to further study the underlying molecular have shown that in aortic tissue, destruction of MYH11 can mechanisms of the function of this gene. The Oncomine lead to vascular smooth muscle cell loss, disorganization database showed that the MYH11 expression levels were and hyperplasia, which is one of the mechanisms leading to decreased in lung cancer compared with those noted in the thoracic aortic aneurysms and dissections (6,7). -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Communication Pathways in Human Nonmuscle Myosin-2C 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Authors: 25 Krishna Chinthalapudia,B,C,1, Sarah M
1 Mechanistic Insights into the Active Site and Allosteric 2 Communication Pathways in Human Nonmuscle Myosin-2C 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Authors: 25 Krishna Chinthalapudia,b,c,1, Sarah M. Heisslera,d,1, Matthias Prellera,e, James R. Sellersd,2, and 26 Dietmar J. Mansteina,b,2 27 28 Author Affiliations 29 aInstitute for Biophysical Chemistry, OE4350 Hannover Medical School, 30625 Hannover, 30 Germany. 31 bDivision for Structural Biochemistry, OE8830, Hannover Medical School, 30625 Hannover, 32 Germany. 33 cCell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The 34 Scripps Research Institute, Jupiter, Florida 33458, USA. 35 dLaboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 36 20892, USA. 37 eCentre for Structural Systems Biology (CSSB), German Electron Synchrotron (DESY), 22607 38 Hamburg, Germany. 39 1K.C. and S.M.H. contributed equally to this work 40 2To whom correspondence may be addressed: E-mail: [email protected] or 41 [email protected] 42 43 1 44 Abstract 45 Despite a generic, highly conserved motor domain, ATP turnover kinetics and their activation by 46 F-actin vary greatly between myosin-2 isoforms. Here, we present a 2.25 Å crystal pre- 47 powerstroke state (ADPVO4) structure of the human nonmuscle myosin-2C motor domain, one 48 of the slowest myosins characterized. In combination with integrated mutagenesis, ensemble- 49 solution kinetics, and molecular dynamics simulation approaches, the structure reveals an 50 allosteric communication pathway that connects the distal end of the motor domain with the 51 active site. -
Spectrum of MYO7A Mutations in an Indigenous South African
G C A T T A C G G C A T genes Article Spectrum of MYO7A Mutations in an Indigenous South African Population Further Elucidates the Nonsyndromic Autosomal Recessive Phenotype of DFNB2 to Include Both Homozygous and Compound Heterozygous Mutations Rosemary Ida Kabahuma 1,2,*, Wolf-Dieter Schubert 2, Christiaan Labuschagne 3, Denise Yan 4, Susan Halloran Blanton 4,5 , Michael Sean Pepper 6 and Xue Zhong Liu 4,5,* 1 Department of Otorhinolaryngology, University of Pretoria, Pretoria 0001, South Africa 2 Departments of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0001, South Africa; [email protected] 3 Inqaba Biotechnical Industries, Pretoria 0002, South Africa; [email protected] 4 Department Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; [email protected] (D.Y.); [email protected] (S.H.B.) 5 Dr. John T. Macdonald Foundation Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA 6 Department Immunology and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Citation: Kabahuma, R.I.; Pretoria 0001, South Africa; [email protected] Schubert, W.-D.; Labuschagne, C.; * Correspondence: [email protected] (R.I.K.); [email protected] (X.Z.L.) Yan, D.; Blanton, S.H.; Pepper, M.S.; Liu, X.Z. Spectrum of MYO7A Abstract: MYO7A gene encodes unconventional myosin VIIA, which, when mutated, causes a phe- Mutations in an Indigenous South notypic spectrum ranging from recessive hearing loss DFNB2 to deaf-blindness, Usher Type 1B African Population Further (USH1B). -
MYO7A Gene Myosin VIIA
MYO7A gene myosin VIIA Normal Function The MYO7A gene provides instructions for making a protein called myosin VIIA, which is part of a group of proteins called unconventional myosins. These proteins, which have similar structures, help transport molecules within cells. Myosins interact with actin, a protein that is important for cell movement and shape. Researchers believe that myosins use long filaments of actin as tracks along which to transport other molecules. Myosin VIIA is made in the inner ear and in the retina, which is the light-sensitive tissue at the back of the eye. In the inner ear, myosin VIIA plays a role in the development and maintenance of hairlike projections called stereocilia. Stereocilia, which are rich in actin, line the inner ear and bend in response to sound waves. This bending motion is critical for converting sound waves to nerve impulses, which are then transmitted to the brain. Stereocilia are also elements of the vestibular system, the part of the inner ear that helps maintain the body's balance and orientation in space. Bending of these stereocilia is needed to transmit signals from the vestibular system to the brain. In the retina, myosin VIIA is found primarily in a thin layer of cells called the retinal pigment epithelium (RPE). Myosin VIIA probably plays a role in the development and maintenance of this tissue, which supports and nourishes the retina. Research suggests that one function of myosin VIIA is to carry small sacs of pigment (called melanosomes) within the RPE. This pigment is necessary for normal vision. Myosin VIIA is also found in other parts of the retina, where it likely carries additional proteins and molecules that are important for vision.