The comparative population ecology of two semi-aquatic varanids

James G. Smith 2007

Thecomparativepopulationecologyoftwosemi

aquaticvaranids

JamesGordonSmith

B.Sc.(Hons)Melbourne

AthesissubmittedtosatisfytherequirementsfortheawardofthedegreeofDoctor

ofPhilosophyintheInstituteofAdvancedStudies,SchoolforEnvironmental

Research,CharlesDarwinUniversity,Darwin,

January2007

Declaration:

I hereby declare that the work herein, now submitted as a thesis for the degree of Doctor of Philosophy of the Charles Darwin University, is the result of my own investigations, and all references to ideas and work of other researchers have been specifically acknowledged. I herby certify that the work embodied in this thesis has not already been accepted in substance for any degree, and is not being currently submitted in candidature for any other degree. Signed:

Date:

Acknowledgments

Iwouldliketothanktheinnumerablevolunteers(particularlymyfriend“features”)I havehadovertheyearsfortheirassistanceinthecaptureandrecaptureof, mostofthetimeinlessthanidealcircumstances.

I am indebted to Keith Newgrain for analysis of all isotopic samples, the staff at

CrocodylusPark,inparticularCharlieManolisandYaakovBarLevwhogenerously allowedmetousetheir,andEricCox,JasonStevensandGregBrownat

Beatrice Hill Research Farm who provided logistical support. Peter Brocklehurst from the Northern Territory Government, Department of Natural Resources,

Environment and the Arts provided invaluable GIS base layers for use in many analyses.IwouldalsoliketothankThomasMadsenforthegeneroususeofhisfield laboratory, Paul Horner for assistance and access to museum specimens, Corey

Bradshaw for assistance in R programming, Jeremy Freeman for all things GIS,

Gavin Bedford for advice and Julian Gorman for all sortsofhelp,onandoffthe touchrugbyfield.

Aftermuchdeliberation,BobRichardsletmecontinuetoenterhisbarramundifarm tocarryoncatching V.indicus onhisland,adecisionthatenabledusalltolearna littlemoreaboutthisamazingandreclusivecreature.Inaddition,RodandLorraine keptmecompanyandkeptmelaughingthroughoutmytimeinthemangroves.For this,andforalltheafterworkbeers,Ithankthethreeofthem.

Of my three supervisors, I thank Keith Christian for his unquestioning assistance,

Barry Brook for his immediate, concise and honest advice and most of all Tony

Griffiths,forthiswonderfulopportunityandhisenduringpatience.

Therearesomanyotherpeopleinmylifewhodeservemuchkudosfortheirhelpin gettingmethroughthis,whetheritwasbydistractingmewithafrisbee,aguitarora holiday, or by staving off my insanity by providing comprehensible discussions aboutstatistics.Accordingly,allthepeopleinthisparagraphdeserveequalranking;

LorraeMcArthur,WendyTelfer,JenniferKoenig,Ben(Iconcur)Phillips,RonFirth,

ChrisBrady,Taegan(lil’t)Calnan,Christopher(features)Schaefer,BrettMurphy,

James (Lyndley) Mckay, Cameron Fraser, Steve Comber,Steve(bighair)Sinclair,

Jeffrey Foucault, Tchavolo Schmitt, Florin Niculescu and Birelli Lagrene. To my parents,JenniferandGordon,mysistersMarindaandSamanthaandtomybeautiful

Miranda,Iextendmydeepestgratitudeandlove.

JacindaBrownspentajoyousafternooninthemangroveswithmeandIamgrateful toherforsomeofthephotosonthecoverpages.Whoeverreadsthisshouldheadto

MindilbeachmarketsinDarwinandbuysomeofherpictures,theremightevenbea mertens or an indicus in there! Albert Koomen and the Australian Broadcasting

Commission also allowed me to use some stills that I had captured from the documentary “Goannas and Rubbish Frogs” that was madeduringthisproject.To the “other” indicus boys, Ron and Chris (and Geoffrey) I thank you mostly for keepingmelaughingbutalsoforkeepingmecashedup.

Andfinally,Ican’tfinishwithoutthankingtheinimitableyethumblemosquito.My constant companion in the mangroves, my joints still ache just at the thought of you…

This work wasfundedbyCharlesDarwinUniversityandagrantfromtheNatural

HeritageTrust(NHT).AllresearchwasconductedunderEthicsPermitNo.

A00015andNorthernTerritoryParksandWildlifePermitNo.15254.

Tableofcontents

1.Introduction...... 1 Varanidphylogenyand...... 1 Varanidhabitsandmorphology...... 2 Varanidphysiology...... 3 SignificanceofvaranidsinAustralia ...... 4 CurrentthreatstoAustralianvaranidpopulations...... 5 Previousstudiesofvaranidecology...... 6 SeasonalresponsesbyvaranidsinnorthernAustralia...... 6 Varanidsusedinthisstudy...... 8 Whyuseacomparativeapproach? ...... 10 Thisstudy...... 10 2.ThepotentialimpactofcanetoadsonAustralian ...... 13 Abstract ...... 13 Introduction...... 14 Methods ...... 19 Numbersofpotentiallyatrisk ...... 19 Reptiles’tolerancetotoadtoxins...... 20 Results...... 27 Speciespotentiallyatriskfromtoads...... 27 Tolerancetotoadtoxins...... 27 Discussion ...... 33 Crocodiles ...... 34 Varanids ...... 35 Agamids...... 35 Freshwaterturtles ...... 36 3.Studysitesandgeneralmethods ...... 39 Abstract ...... 39 StudySites ...... 41 MantonDam(mertensi)...... 41 AdelaideRiver(Varanusindicus) ...... 41 Animalcapture...... 44 Previouscapturemethods ...... 44

Capturemethodsused ...... 45 Newpipetrap ...... 45 Effectivenessofdesign...... 46 Animalprocessing ...... 50 Radiotransmitterimplantation...... 50 Analyticalframework...... 52 4.Usingmorphometricstopredictgenderinvaranids ...... 58 Abstract ...... 58 Introduction...... 59 Materialsandmethods...... 61 Modeldevelopment...... 64 Modelfitting ...... 65 Modelselection...... 65 Characteristicbodysize ...... 68 Results...... 69 Combinedadultandjuvenilevaranids...... 69 Adultvaranids ...... 70 Juveniles ...... 71 Previoushypotheses ...... 71 GenderpredictioninVaranusgouldii...... 72 Discussion ...... 74 5. Varanus indicus physiology...... 78 Abstract ...... 78 Introduction...... 79 Materialsandmethods...... 80 Radiotelemetry...... 80 Thermoregulation...... 81 Fieldmetabolism ...... 86 Energybudgetcalculations...... 86 Statisticalanalyses ...... 87 Results...... 88 Thermoregulation...... 88 Fieldmetabolism,waterfluxandenergybudget ...... 91 Discussion ...... 97

Thermoregulation...... 97 Waterflux ...... 99 Fieldmetabolicratesandseasonalenergybudgets ...... 100 6.Homerangeandmovementsof V. indicus and V. mertensi ...... 104 Abstract ...... 104 Introduction...... 105 Materialsandmethods...... 107 Radiotelemetry ...... 107 HomerangesofV.mertensiandV.indicus ...... 108 Analyses...... 109 Rangeoverlap...... 110 Dataanalysis...... 111 Results...... 113 Homerange ...... 113 Distancestraveled ...... 121 DailymovementsofV.indicus ...... 123 Overlap...... 123 Discussion ...... 126 Spaceuseofsemiaquaticvaranids ...... 126 Distancestraveled ...... 129 Varanusindicusdailyactivity ...... 130 Overlap...... 131 Homerangeestimation(V.indicus)...... 131 Conclusions ...... 134 7.Populationdynamicsof V. mertensi and V. indicus ...... 136 Abstract ...... 136 Introduction...... 137 Methods ...... 139 Regionalclimate...... 139 Studyareasandcapturedetails ...... 139 Modeldevelopmentandparameterestimation ...... 140 Survivalmodeldevelopment...... 142 Survivalestimation...... 142 Densityestimation ...... 143

Results...... 144 Recapture...... 144 Survival...... 144 Densityandsexratios ...... 148 Discussion ...... 148 V.indicusrecapture ...... 148 Survival...... 148 Whichmethodbestpredictsvaranidsurvival? ...... 152 Density...... 153 Sexratios ...... 155 Conclusion...... 156 8.Synopsis ...... 158 Australianreptilesandthethreatofcanetoads ...... 158 Theproblemofsexingvaranidsinthefield ...... 159 ThephysiologyofVaranusindicus ...... 160 Intraandinterspecificdifferencesbetweenterrestrialandsemiaquatic varanids...... 160 Measuringvaranidpopulationdynamics...... 162 Conclusions ...... 162 9.References ...... 165

TableofFigures

Chapter 2 Cane toads and reptiles Figure1. Theapproximatecurrent2004andpredicteddistributionofthecanetoad inAustralia.………………………………………………………….….16 Figure2. Percentagereductioninspeedasaconsequenceoftoadtoxindosefor11 speciesofAustralianreptile.……………………………………………32 Chapter 3 Methods and study sites Figure1. AmapshowingthelocationofthestudyregioninAustralia……………40 Figure2. AmapofMantonDam,showingreedsandlilies(darkhatching)androcky banks(nohatching),whichprovidedaccesstotheshorelinefornoosing Varanusmertensi .……………………………………………………….42 Figure3. Aerialphotographshowingdiscretesectionofmangroveforestalongthe AdelaideRiverwhichwasthestudysitefor V.indicus...... 43 Figure4. Numberofcapturesof Varanusindicus usingdifferentbaitsinpipetraps (12traps,6trapdayspersession).……………………………………..63 Chapter 4 Gender prediction in varanids Figure1. Morphometricmeasurementsusedinmodelconstruction.……………63 Chapter 5 V. indicus physiology

Figure 1. Grand mean body temperatures (T b; as measured by radiotelemetry),

predictedT b(predT b),setpointrange,andoperativetemperatures(T emax

andT emin)asafunctionoftimeofdayforfreerangingV.indicus during the(a)wetseasonand(b)dryseason…………………………….…….92 Chapter 6 Home range and movements Figure 1. Home ranges of Varanus indicus throughout 2002 and 2003, based on Minimum Convex Polygons clipped to remove unused habitat. ……………………………………………………………..…………..114

Figure 2. Schematic representation of the home ranges of V. mertensi around the bankofMantonDam…………….……………………………………115 Figure 3. Relationshipbetweenrangesizeandbodymassforsomemediumsized varanids.………………………………………………………………117 Figure 4. Relationship between home range and snout vent length (and 95% confidenceintervals)in V.indicus aspredictedbythemodel………..120 Figure5. Meandistances(±SD)movedby V.indicus throughoutthedayduringtwo weeksofradiotelemetryinthedryseasonof2003……………………124 Figure 6. Mean (± SE) home range overlap between and within genders of a) V. indicus andb) V.mertensi .…………………….…………..………….125 Figure7. Numberofrecapturesof V.indicus againstmaximumdistancebetweenthe furthest two traps in which each individual was recaptured in. ……………………………………………….………………………..133 Chapter 7 Population dynamics Figure 1. Number of captures of V. indicus (bars) and proportion of captures/ recaptures(line)withineachtrappingperiod.………………………..145 Figure 2. Male and female V. mertensi monthlysurvivalprobabilities(±95%CI) basedonmodelaveragedvaluesfromallmodelsinTable2…………147 Figure3: Relationshipbetweenageatmaturityandknownsurvivalratesof (closedcircles)and(opencircles)(takenfromShineandCharnov 1992).………………………………………………………………….151

TableofTables

Chapter 3 Cane toads and reptiles Table 1. Species used for this study, collection localities, morphological statistics

andresultsoftoxintrials.…………………..………..…..………………...21

Table 2. Australian reptile speciespotentially affectedbytheinvasionofthecane

toad.…………………..…………………..…………………..…………..29

Chapter 4 Gender prediction in varanids Table1. Numberofspecimensexamined,meansnoutventlengths(SVL)±SEand

subgenericclassificationforsixspeciesofvaranidsmeasured…………..62

Table2. Explanationofallderivedparametersusedinmodelconstruction………66

Table3. Candidatemodelsetsforpredictinggenderofeachspecies,thehypothesis

examinedundereachmodelandreferencesconcerningsexualdimorphism

invaranidsleadingtoeachmodel.…………………..…………………..67

Table 4. Summary of secondorder Akaike’s information criterion (AIC c) and

associated statistics for all candidate models for the analysis of gender

predictioninadultandjuvenile V.gouldii subsets.……………………...73

Chapter 5 V. indicus physiology Table1. Definitionsofthethermoregulatoryindicesused.………………………85

Table2. ThesetpointrangesandmeanTb(asmeasuredinthelab)for V.indicus

andothervaranidsfromthesameregion(datafromChristianandWeavers

1996).…………………..…………………..…………………..………..89

Table 3. Summary of body temperature data and thermoregulatory indices of V.

indicus and three other varanids from the same region (Christian and

Weavers1996)duringthewetanddryseasons.………………………….90

Table4. Waterfluxrates,totalbodywater(TBW=%bodymass,derivedfrom18O

dilution),asdeterminedfromisotopicanalysis,and water economy index

(WEI) for field active Varanus indicus during wet and dry seasons.

…………………..…………………..…………………….……………….93

Table 5. Fieldmetabolicrateandwaterfluxratesof V.indicus andanothersemi

aquaticvaranid, V.mertensi (fromChristianetal.1996d)andtwoterrestrial

species from the same northern Australian region (from Christian et al.

1995).…………………..…………………..…………………..…………95

Table 6 .Carbondioxideproduction,fieldmetabolicrates (FMR), and meanbody

massoffreeranging Varanusindicus duringthewetanddryseasons…..96

Chapter 6 Home range and movements Table1. Candidatemodelsetsforpredictingvariousspatialstatisticsin V.mertensi

and V.indicus ,thehypothesisexaminedundereachmodelandreferences

concerningspaceuseinvaranidsleadingtoeachmodel………………...112

Table2 .Seasonalhomerangesandsummarydatafor Varanusindicus and Varanus

mertensi .……...……..……………..……………..………...…………….116

Table 3. Home range sizes and summary data for Varanus indicus and Varanus

mertensi .……………..……………..……………..……………..………118

Table4. SummaryofmodelselectionusingAIC cfortheanalysisofhomerangesize

in V. indicus and V. mertensi , using generalised linear modeling (family:

Gamma).……………..……………..……………..……………..………119

Table 5. Summary of model selection using AIC c for the analyses of distances

moved in V. indicus and V. mertensi , using generalized linear modeling

(family:Gamma).……………..……………..………………………….122

Chapter 7 Population dynamics Table 1 . Group andindividualcovariatesusedintheparameterisation of survival

and recapture probability models for Varanus mertensi and Varanus

indicus .……………..……………..……………..………………………141

Table2. SummaryofAkaike’sinformationcriterion(AIC c)andassociatedstatistics

forcandidateknownfatemodelsfortheanalysisofthesurvivalprobability

(S)of V.mertensi .……………..……………..……………..…………...146

TableofPlates

Plate1. AninaccessiblesectionofbankwithintheMantonDamstudysite,covered in Nymphaeaviolacea and Eleocharisdulcis...... 55 Plate2. SectionofthebankatMantonDam(foreground)thatiseasilyaccessibleby boatforspottingandcatching Varanusmertensi ...... 55 Plate3. AsectionoftheAdelaideRiver V.indicus studysite,showingmature Avicenniamarina and Xylocarpusmekongensis alongthecreekline...... 56 Plate4. Asectionofthe V.indicus studysitealongtheAdelaideRiver,dominated by Bruigeiragymnorhyza and Rhyzophorastylosa...... 56

Preface

The chapters presented in this thesis have been prepared as individual papers.

Consequently, some repetition ofmaterialisinevitable and unavoidable, however, attemptshavebeenmadetokeepanyrepetitiontoaminimum.Theinclusionofaco authoronapaperreflectsasupervisoryroleonly,andtheinterpretation,ideasand conclusionsaspresentedreflectsolelymyownoriginalwork,withtheexceptionof

Chapter2,wherethedesignsofPhillips(etal.2003)wereexpandedupon(withthe primaryauthor)toincludereptilesotherthansnakes.

Abstract DuringthedryseasonintropicalnorthernAustralia,whenwaterandfoodarescarce but temperatures remain warm enough for activity, many terrestrial varanids lower theirlevelsofactivity(sometothepointofinactivity).However,previousstudies have shown that the semiaquatic varanid Varanus mertensi remains active throughouttheyear,maintainingalowerbodytemperaturethanterrestrialvaranids.

Istheexamplefoundin V.mertensi indicativeofothersemiaquaticmonitors?HereI describe,usingasuiteofnovelandinnovativesamplingandanalysistechniques,the populationecologyof V.mertensi andanothersemiaquaticvaranidspecies Varanus indicus .Specifically,Iaskthequestionsofwhether(i)V.indicus respondssimilarly to seasonality, and (ii) the home range and movement patterns of semiaquatic varanidsalsodifferfromfullyterrestrialspecies.Ialsoconsiderthelikelyimpactof theinvasiveandtoxiccanetoad( Bufomarinus )onthesespeciesandotherreptiles andtowhatdegreeitispossibletoquantifythedemographyoffreelivingvaranids

(particularlywhentheyarehardtosexinthefield).Idemonstratethat V.mertensi and V.indicus sharebroadsimilaritiesinlifehistorytraitswithterrestrialvaranids: malestravelfurtherinthebreedingseason;largeraremorelikelytomove further;andhomerangesoverlapbetweenconspecifics.Howevertheirsemiaquatic lifestyle,whilebufferingthem(bothphysiologicallyandecologically)fromseasonal water shortages, has implications for their use of space (in the case of V. indicus, leading to relatively small home ranges) and their population dynamics (high densities). In addition, I show that Bufo marinus poses a definite threat to these varanids along with many other reptile species. Lastly, I demonstrate that radiotracking is more robust than markrecapture for population monitoring of varanids.

Varanusindicus

Introduction

Varanus mertensi

1. Introduction 1

1.Introduction Thisthesisexaminesvariationinthephysiological,spatial,seasonalandpopulation ecology of two semiaquatic varanids; Varanus mertensi and Varanus indicus . In contrasttosemiaquaticvaranids,terrestrialvaranidsarerelativelywellstudiedand show distinct intra and interspecific variation, including pronounced responses to seasonality.Thischapterservestoreviewthecurrentliteratureonbothsemiaquatic andterrestrialvaranids,highlightsthegapsincurrentknowledgethatIwilladdress, and culminates with the aims of the thesis research and a brief outline of each chapter.

Varanidphylogenyandtaxonomy

Alllivingvaranidlizards(or‘goannas’astheyareknowninAustralia)aremembers ofthe Varanus ,thesolegenusinthefamily.Varanidsareglobally widespreadwith54speciescurrentlyrecognized;however,thisnumberisconstantly increasingasnewspeciesaredescribed(e.g.,HarveyandBarker1998,Piankaetal.

2004).Varanidshaveprobablyretainedthesamebasicbodyplanforalongtime,as manysuggestabodyplansimilartothoseof present day varanids (Pianka

1995).

The most recent work on the phylogeny of all varanids (Ast 2001) has recognised threemajorlineageswithinthegenus Varanus :anAfricanclade,whichisbasalto the rest of the group; an IndoAsian clade; and an IndoAustralian clade. The monophyly of the IndoAustralian clade,hasbeenfurthersupportedbyFitchetal.

(2006). Within the IndoAustralian clade the endemic Australian dwarf varanids

(Odatria ) are included as a sister group to the larger Australian varanids in the

1. Introduction 2 gouldii and varius groups(Fitchetal.2006).OnlyfourmembersoftheIndoAsian group are extant in Australia ( V. doreanus , V. indicus , V. keithorni and V. finschi

(Piankaetal.2004)).

Varanidhabitsandmorphology

Possessing a generalised body plan and hampered by the putative constraints of ectothermy, one might conclude that varanids are too closely coupled to both physicalforcesandthespatialconfigurationofabioticfactorsintheirenvironmentto allowformuchadaptiveradiation.Despitetheseapparentlimitations,varanidshave radiatedextensively,particularlyinAustralia,andnowpersistinalmostallclimates andhabitattypesonthecontinent.Somehaveevolvedasmallerbodyplan,andsome gigantism;infactthemassofthesmallestandlargestmembersofthegenusvaries by nearly five orders of magnitude (Pianka 1995). This enormous size range variationhasenabledvaranidstoexploitmanydifferenthabitatsandclimates.Such diversificationincludesspeciesthatarefossorial,arboreal,arenicolousorsaxicoline in habit, whereas others have become semiaquatic and one has developed specialisations for coping with saline environments (Dunson 1974). A number of species utilise many of these strategies, to the extent that the now more geographicallywidespreadspecies(e.g. V.gouldii )havebeenabletoexploitawide varietyofhabitatsandthermalenvironments.

Althoughmanyvaranidsareassociatedwithaquatichabitats(riparianandfloodplain associations),diversificationbythegenusintoaquatichabitatshasbeenlimited.Of the24speciesofvaranidsinAustralia(Cogger2000),onlyfourcanbeconsidered aquatic to any appreciable degree: Varanus mertensi, Varanus mitchelli, Varanus

1. Introduction 3 indicus and Varanussemiremex .Thisphenomenomisreplicatedinothersquamate families, such as the agamids where there is only one (out of approximately 63 species) semiaquatic Australian species; the Eastern Water Dragon Physignathus lesueurii. Inthevaranids,thedistributionsofallthesemiaquaticspecieslieinthe tropics,whereaverageyearroundtemperaturesarehigherandhencerestrictionsto activity on ectothermic animals are reduced. Adaptations for an aquatic lifestyle includealaterallycompressedtail,withadorsal‘fin’inthefinalonethirdofthetail andelevatednostrils(BedfordandChristian1996).Interestingly,allaquaticvaranids inAustraliahavealsoevolvedsomeextentofarboreality,althoughthistraitisnot restrictedtoaquaticvaranids(e.g. V.scalaris , V.tristis , V.gilleni arenonaquaticbut arboreal).

The dietary habits of all varanids are fairly similar in that most are generalist , consuming high proportions of small invertebrate prey and a smaller proportion of larger vertebrate prey (Shine 1986, Bennett 1998). However, two species are known to be exclusively frugivorous (at certain times of the year, V. olivaceus and V. mabitang , Bennett 1998). Varanids activity varies from wide ranging active foragers, to some species that are consideredalmostpurelyambush predators(Peters1973,Auffenberg1981,Drydenetal.1990,Sweet1999,Piankaet al.2004).

Varanidphysiology

The amount and predictability of energy (food and temperature) available to organismsiscrucialbothininfluencingindividuals’abilityformaintenance,growth, survival and reproduction, but these energetic factors may also influence the

1. Introduction 4 potential for adaptation and diversification (Huey et al. 2001). Therefore diversification in the ecology of a group of species that possess a relatively generalised body plan such as varanids may be associated with a suite of physiologicalandbehavioural,aswellasmorphologicaladaptations,inresponseto differentclimatesandresourceconditions.

There have been various comparisons of variability in physiological traits for varanids including aerobic capacity (Christian and Conley 1994, Schultz 2002), heatingandcoolingrates(WikramanayakeandDryden1999)andstandardmetabolic rates(ThompsonandWithers1994).Thesestudiesindicatesignificantvariationin physiologicaltolerances,whichhavebeenequatedtodifferencesinforagingmode.

Theyalsoindicatethatmanyphysiologicalparametersofvaranids,suchasstandard metabolicrateandmaximumoxygenconsumption,aresimilartootherlizards.Thus, varanidlizards,maybeasphysiologicallydiverseasotherfamilies.

SignificanceofvaranidsinAustralia

The Australian continent contains most varanid species, with as many as six sympatricspeciesinthearidregionsoftheinterior(Pianka1995)anduptoeleven broadly sympatric species in tropical northern Australia (Cogger 2000). They are importantcomponentsoftheAustralianbiota,duetotherolestheyplayincomplex foodwebsandithasbeensuggestedtheyareoccupyingtheroleoflargerplacental carnivoresinsomeecosystems(Pough1973,LososandGreene1988).Varanidsare alsoofenormoussignificanceforAboriginalpeople,bothasafoodsource(Bomford and Caughley 1996, Vardon et al. 1998) and as cultural totems (Meehan 1982,

Altman1987).

1. Introduction 5

CurrentthreatstoAustralianvaranidpopulations

Encroaching urbanisation and habitat alteration impact on Australian varanids.

Nevertheless, most varanid species in Australia have stable conservation status at presentduetotheirlargedistributionsandthelackofheavilytraffickedroadsacross muchofthecontinent(KingandGreen1999).

AlthoughnoAustralianvaranidsarelistedasthreatened under the Commonwealth

EnvironmentProtectionandBiodiversityConservationAct1999 (Commonwealthof

Australia 1999), nine species from the Northern Territory have been upgraded recently to threatened status because an introduced anuran potentially can have significantconsequencesforthefuturepersistenceordistributionsofmanyspecies

(NRETA2006).Thecanetoad( Bufomarinus ,Bufonidae)isalarge(upto230mm bodylength)anurannativetoSouthandCentralAmerica(ZugandZug1979)and represents a novel, abundant and highly toxic prey item to Australian predators, many of which are varanids. Doody et al. (2006) recently recorded declines in V. panoptes from the Daly River Region, immediately after thearrival of cane toads.

The habitat preferences of semiaquatic varanids in particular overlap greatly with thoseofcanetoads,anditisexpectedthatvaranidpopulationswillrapidlydeclineas aconsequenceofthisimmediateandcontinualsympatry.Thereisalmostnobaseline dataonvaranidpopulationdynamicsatpresent,andimportantly,theopportunityto study large populations of varanids in the wetdry tropics of northern Australia is rapidlydiminishing.

1. Introduction 6

Previousstudiesofvaranidecology

Themajorityofpastautecologicalvaranidstudieshaveconcentratedonavarietyof aspectsofvaranidecology:habitatselectionandhomerange(GreenandKing1978,

Gaulke1992,Thompson1992a,1993,Weavers1993,Philipps1995,Traeholt1995,

Sweet 1999, Thompson et al. 1999), field thermoregulatory and metabolic studies

(Stebbins and Barwick 1968, King 1980, King et al. 1989, Thompson 1992b,

ChristianandConley1994,Traeholt1995,ChristianandWeavers1996,Thompson andWithers1998,Guarinoetal.2002),diet(Shine1986,Gaulke1991,Jamesetal.

1992,King1993,McCoidandWitteman1993)anddistributionpatterns(Woinarski

1992,WoinarskiandGambold1992).Onelongertermstudyofavaranidpopulation hasestimateddensityandsexratioswithinapopulation(AuliyaandErdelen1999), but there has been to date only one study (James 1996) that used markrecapture methodstoquantifyvaranidpopulationdynamics.Alackofpopulationlevelstudies prohibits well informed, long term managementdecisions for existing populations

(CaughleyandGunn1996).Onefactorthathashinderedsuchstudiesisthedifficulty in obtaining high numbers of animals and subsequent recaptures from the field

(Shine1986,Sweet1999).

SeasonalresponsesbyvaranidsinnorthernAustralia

ThetropicalnorthofAustraliahasamonsoonalclimate,whichischaracterisedby annuallydichotomousseasons(Bowman2002).Verylittlerainfallsthroughoutthe dry season (May to October) whilst heavy rain is characteristic of the wet season

(November to April). During the dry season the average total precipitation is 122 mm, average maximum and minimum temperatures are 31 and 21ºC respectively, and average relative humidity ranges from 67 to 43% (Darwin Airport, Bureau of

1. Introduction 7

Meteorology2004).Thesedataareinstrikingcontrasttothewetseason,whenthe averagetotalprecipitationis1592mm,theaveragetemperaturerangeisbetween32 and24ºCandtheaveragerelativehumidityrangesfrom77to67%(DarwinAirport,

Bureau of Meteorology 2004). A further two transitional seasons canbe discerned fromwithinthese(McDonaldandMcAlpine1991),thusdefiningfourseasons;early andlatewetandearlyandlatedry.Theearlywetandthelatewetseasonsareboth characterisedbyhighhumidityandlittlerainfall.

The majority of terrestrial varanids in northern Australia occupy habitats that are influenced strongly by seasonality (Pianka et al. 2004). In response to dry season conditions,whenfoodandwaterbecomescarce,thesespeciesshowmuchreduced, orevennoactivityuntilthefirstrainsofthewetseason(Shine1986,Christianetal.

1995,ChristianandBedford1996,Christianetal.1996b,Sweet1999).Varanidsin regionswherewaterneverdisappearsappeartobemorebufferedfromthesestrong effectsofseasonality(Shine1986,Christianetal.1996d).

Most of the river systems in Australia are comparatively short and coastal or ephemeral and many of these annually inundated regions dry out in the late dry season(October)leavingonlyremnant,deeperpoolsandbillabongsstillcontaining free water (Cowie et al. 2000). These deeperpoolsprovide dry season refuges for many species including freshwater crocodiles Crocodylus johnstoni (Webb and

Manolis1993),manyspeciesofbirds(Corbett1987,MarchantandHiggins1990,

Whiteheadetal.1992),mammals(Corbett1994),snakes(MadsenandShine1998,

Brownetal.2002)andvaranids(Shine1986,Piankaetal.2004).

1. Introduction 8

Anotherecosystemthatappearstobebufferedfromthehighseasonalityinnorthern

Australiaaremangroves.Mangrovecommunitiestendtobelocatedwithinsheltered coastalareas,surroundinghighlyindentedestuariesandoffshoreislandsprotectedby

2 reefsandshoals(Tomlinson1986).Over4,000km ofmangrovesarefoundalong the 10,953 km Northern Territory coastline (Brocklehurst and Edmeades 1996).

Mangrovesprovidebreeding,nesting,foragingandsheltersitesforavarietyofbirds, reptiles,amphibians,andbothterrestrialandaquaticmammals(Saengeretal.1983,

Hamilton and Snedaker 1984, Noske 1996, Blamires and Nobbs 2000, Macintosh andAsthton2002,Noske2003,Piankaetal.2004).

Examiningthepopulationecologyof V.indicus and V.mertensi ,whichbothlivein these seasonally buffered systems, forms the basis of this study. Importantly, both varanidscoulddeclineinnumbersasaresultofthecanetoadinvasion.

Varanidsusedinthisstudy

Merten’swatermonitor Varanusmertensi (Glauert1951)isasemiaquaticvaranid thatiswidelydistributedacrossnorthernAustralia,including,Western

Australia, and the Northern Territory. This species is highly adapted to freshwater streams and permanent water holes and hence its distribution is discontinuous throughoutitsrange,particularlyduringthedryseason(MayOctober)whenthereis littlewateravailable(Shine1986).Thisfactinparticularhighlightstheirpotential vulnerability,asitislikelythatcanetoadswillalsocongregateintheseareasinthe dryseason.Somepreviousworkon V.mertensi includeastudyofitsenergeticsand waterfluxoffreelivingadults(Christianetal.1996d,ThompsonandWithers1998), dietandforagingmode(Mayesetal.2005b),andacomparativestudyofthediets,

1. Introduction 9 habitsandreproductivebiologyoffourspeciesincluding V.mertensi (Shine1986).

Varanus mertensi isunlikemostvaranidspeciesinnorthernAustraliainthatthey select body temperatures that are significantly lower than other terrestrial species

(ChristianandWeavers1996,Christianetal.1996d)andcanremainrelativelyactive throughouttheyear,probablybecausetheirfoodsuppliesandhabitatarenotlimited inthedryseason(Christianetal.1996d).

Themangrovemonitor Varanusindicus (Daudin1802)hasalargedistributionthat extends throughout much of Micronesia with the southern extent of its range encompassing northern Queensland and the Northern Territory. Throughout its range, the size, pattern and scalation of populations are highly variable (Bennett

1998). In the Northern Territory V. indicus is associated almost entirely with the estuarinemangrovesystemsthatlinethemajorrivers.Manyoftheseriversystemsin northern Australia have adjacent floodplains which are predicted to contain high numbers of cane toads in the near future (Freeland 1986), therefore the long term viabilityofmany V.indicus populationsremainsunclear.Therehavebeennolong term studies of V. indicus ,themajorityofinformationintheliteratureconsists of observationsontheirdietandreproductivehabitsonislandswheretheyhavebeen introduced(Dryden1965,WikramanayakeandDryden1988,McCoidandHensley

1991,Sprackland1997).Itislikelythat V.indicus willshowthesameyearround activityas V.mertensi ,asmangrovesarehighlyproductiveenvironments(Lugoand

Snedaker 1974, Clough and Attiwill 1982, Finlayson et al. 1988) and water is permanentlypresentintheNorthernTerritory'slargeriverswheremangrovespersist.

Thus,themetabolicandwaterturnoverratesof V.indicu sarepredictedtobemore similartothoseknownfor V.mertensi (ChristianandWeavers1996,Christianetal.

1. Introduction 10

1996d,ThompsonandWithers1998)thantoothervaranidspeciesthatdecreasetheir activityinthedryseason(Thompson1992b,ChristianandBedford1996,Christian etal.1996b).

Whyuseacomparativeapproach?

The apparent convergence of V. mertensi and V. indicus from two separate and distinctevolutionarycladesintoatleastsuperficiallysimilarsemiaquatichabitsin twovastlydifferenthabitattypeswarrantsfurtherattention.Thus,comparisonsofthe physiology and the resulting comparative ecology of these two species can reveal someinsightintothebreadthofadaptationsshownbyvaranidsinAustralia.

Thisstudy

Themainaimsofthisthesisareto:i)investigatewhethertheexampleofconstant activity found in V. mertensi is replicated in V. indicus and; ii) to examine how different V. mertensi and V. indicus are to published information on terrestrial varanids, both ecologically and physiologically. Secondarily, I investigate the potentialthreatof Bufomarinus onvaranidsandotherreptiles,andexaminetheuse ofmorphometricstopredictgenderinvaranids.

Thisthesisispresentedin8chapters.Chapters2and46arewrittenasaseriesof papers that compare the population ecologyandphysiology of V. mertensi and V. indicus aswellashighlightingthepotentialthreatposedby Bufomarinus .Abrief synopsisofeachchapterisgivenbelow.

1. Introduction 11

Chapter 2 highlights the risks posed by cane toads to many of Australia’s reptile fauna,byexaminingtheeffectsoftoadtoxinonnumerousspeciesfromvarioustaxa andbydemonstratingtheprobableoverlapofknownreptiles’distributionswiththe predicteddistributionofthecanetoad.

Chapter 3 describes the study sites and the general methods used in this study, including analytical methods, and a new trapping technique designed to increase captureratesofvaranidsintidal,estuarinesystems.

Chapter4isalsoalargelymethodologicaldescription.Itexplainsthedevelopmentof models in an attempt to predict the gender of wild captured varanids based on variousmorphometriccharactersofxrayedandmuseumspecimens(i.e.animalsof knownsex).Genderdeterminationisimportantforfieldstudiesofvaranids,asthe resultsofotherstudieshavebeenlimitedbytheproblemsassociatedwithaccurate sexdetermination.

Chapter 5 explores the comparativephysiology of V. mertensi and V. indicus .The thermoregulatorycharacteristicsof V.indicus areexaminedinlightofwhatisknown of V. mertensi and other varanids. The field metabolic rates and rates of water turnoverof V.indicus betweenseasonsarethenexamined.

Chapters6and7examinethespatialandtemporalpopulationecologyof V.mertensi and V.indicus .InChapter6thehomerangesandmovementpatternsofeachspecies aredocumented.InChapter7,theinfluenceofseason,genderandbodysizeonthe

1. Introduction 12 survival of these two species are examined and two techniques for measuring the survivaloffreelivingvaranidsarethencompared.

Chapter8containsasynthesisofthephysiologyandecologyofthetwospecies,a synopsis of conclusions presented in the previous chapters and suggestions for furtherresearch.

The potential impact of cane toads on Australian reptiles Lizard runway

Bufomarinus

Cr ocodilerunway

runway Thischapterhasbeenpublishedas: Smith,J.G.andPhillips,B.J.(2006)Toxictucker:thepotentialimpactofcane toadsonAustralianreptiles.PacificConservationBiology12:4049

Varanuspanoptes inlizardrunway

2. ThepotentialimpactofcanetoadsonAustralianreptiles 13

2.ThepotentialimpactofcanetoadsonAustralianreptiles

Abstract

Cane toads are a highly successful invasive species,havinginvadedmorethan20 countries in the last 150 years. In Australia, they currently occupy more than 1 millionkm 2.ToadsarehighlytoxicandAustralianpredatorshavenoevolutionary historywiththecardiactoxinsintoadskin.Assuch,toadsconstituteanoveland extremely toxicprey for Australia’spredators. Australia’s reptiles areperhapsthe largestgrouplikelytobeaffectedbytheinvasionofthetoad.Byexaminingspecies distributions, I conclude that 59% of agamids, 85% of the varanids and all of

Australia’scrocodilesandfreshwaterturtlesarepotentiallyatriskfromtoads.Ithen assayed eleven species of reptile; one freshwater turtle (Chelidae), two crocodiles

(Crocodylidae),twodragons(),onepython(Pythonidae)andfivespecies ofvaranid(Varanidae)forresistancetotoadtoxin.Ifoundahighlevelofvariation betweenspeciesinresistancetotoadtoxinbutinallcases(exceptforonespeciesof crocodile)allspecieswereeasilycapableofeatingatoadlargeenoughtokillthem.

Iconcludethattoadsposearealandongoingthreat to the majority of Australian reptilespeciesIexamined.

2. ThepotentialimpactofcanetoadsonAustralianreptiles 14

Introduction

Theintroduction(intentionalandaccidental)ofneworganismsintoexistingnative habitats is potentially one of the most detrimental processes affecting biodiversity conservation(Diamond1989,Macketal.2000,IUCN2001).Neworganismscan alter the ecology of invaded habitats in many ways including introducing new diseases,alteringthevegetativestructure,orpreyingonnativespecies(Williamson

1996,Sandlundetal.1999).Theoutcomesofecologicalinvasionvaryconsiderably among systems, but potentially one of the most powerful effects involves the invasion of a toxic species into the range of native predators that have had no previousexposuretosuchtoxins(e.g.BrodieandBrodie1999).Insuchcasesnative predatorsmaybeunabletotoleratethenoveltoxinandmaydieinlargenumbersas theyfirstencountertheinvader.

The cane toad, Bufo marinus (Bufonidae),isalarge(upto230mmbodylength) anurannativetoSouthandCentralAmerica(ZugandZug1979).Thespeciesisa highly effective invader of new ecosystems; its distribution now extends to more thantwentynewcountriesthroughouttheCaribbeanandPacific(Lever2001)andit hasrecentlybeenlistedasoneoftheworld’stop100mostinvasivespecies(IUCN

2001). The success of toads as a feral invader canprobablybeattributedtoboth theirhighfecundityandthefactthatalllifehistorystagesaretoxic(Flieretal.1980,

Lawler and Hero 1997, Crossland 1998, Crossland and Alford 1998). The active principlesofthetoxin–bufogenins–areextremelypowerful(ChenandKovarikova

1967)and,asadefensivetoxin,uniquetotheBufonidae(DalyandWitkop1971).

2. ThepotentialimpactofcanetoadsonAustralianreptiles 15

InAustralia,toadswereintroducedin1935asanagentforbiologicalcontrolbythe sugar industry (Lever 2001). They have spread fromtheirinitialreleasepointsin easternQueensland(Qld)toencompassmorethan863,000km 2(50%ofQld,Sabath etal.1981,Sutherstetal.1995).CanetoadsnowextendintonorthernNewSouth

Wales(NSW)andtheNorthernTerritory(NT)andarepredictedtofurtherincrease their range, primarily throughout coastal and nearcoastal regions of tropical

Australia,toencompassanareaofapproximately2millionkm 2(Sutherstetal.1995;

Fig.1).Canetoadscanreachextremelyhighdensitiesinsuitablehabitat(upto2138 individuals ha 1,Freeland1986).Priortothisinvasion,AustraliahadnoBufonid taxa(Lutz1971).Toadsthusrepresentanovel,commonandhighlytoxicpreyitem toAustralianpredators.

There has been limited study of the impacts of the cane toads on native fauna throughoutitsintroduceddistribution.InAustralia,itwasnotuntiltheearly1960s

(>25yearsaftertheinitialintroduction)thatanecdotalreportsofpopulationdeclines innativespeciesbecameapparent:Breeden(1963)reportedobservationsofdeclines in snakes, varanids ( Varanus spp .), frilled lizards ( Chlamydosaurus kingii ) and quolls (a marsupial , Dasyurus spp .) following the appearance of toads.

This was followed by observations of declines in snakes, varanids and birds followingthearrivaloftoadsinsoutheasternQueenslandandnorthernNewSouth

Wales (Pockley 1965, Rayward 1974). Covacevich and Archer (1975) provided further anecdotal evidence for the potential impact of toads on predators by collectingnumerousreportsofterrestrialpredators(snakes,varanids,andmarsupial carnivores)dyingasaconsequenceofattemptingtoingesttoads.

2. ThepotentialimpactofcanetoadsonAustralianreptiles 16

Currentcanetoaddistribution Predicted2030undercurrentclimate Predicted2030globalwarming Australia

0 500 1000 1500 Kilometers Kilometres N

Figure 1. Theapproximatecurrent2004andpredicteddistribution of the

cane toad in Australia. Predicted distribution is shown under

current climatic and 2030 global warming scenarios (after

Sutherstetal.1995).

2. ThepotentialimpactofcanetoadsonAustralianreptiles 17

Large,mobilepredatorsaretypicallyrarelyencountered,wary,andsecretive.Owing tothis,theimpactofthetoadinvasiononterrestrialpredatorshasproveddifficultto quantify(e.g.Catling etal.1999).Preinvasionestimatesofabundancearedifficult to obtain and consequently are often not available. In the face of such challenges researchershavetendedtofocusontheimpactsoftoadsonsmallermoreabundant organisms–typicallypotentialpreyorcompetitors.Quantitativedataoninteractions between small, abundant native species (primarily fish, frogs, and aquatic invertebrates)andtoadshavebecomeavailableinrecentyears(FreelandandKerin

1990,Crossland1998,CrosslandandAlford1998,Catlingetal.1999,Williamson

1999, Crossland 2000, 2001). Several of these studies have concluded that the ecological impact of toads may be less extreme than might be anticipated (e.g.,

Freeland and Kerin 1990, Catling et al. 1999, Williamson 1999). Thismaybean erroneousconclusiontoreachintheabsenceofinformationontheeffectsoftoads on large predators, particularly given the potentially important role large predators playinregulatingcommunities(Paceetal.1999,Terborghetal.1999,Terborghet al.2001).

Despitethefactthatterrestrialpredatorswereidentifiedmorethan30yearsagoas the group most likely to be at risk from toads (Pockley 1965, Rayward 1974,

Breeden 1963, Covacevich 1975), there has been little published quantitative analysesofthepotentialorrealizedeffectsofcanetoadsonthesespecies.Evenif competitionbetweentoadsandsmallvertebratesisminorandtheirroleaspredators oninvertebratesismodest,theymightstillimpose a massive ecological impact if theykillahighproportionoftheanurophagouspredatorsthatattempttoingestthem.

2. ThepotentialimpactofcanetoadsonAustralianreptiles 18

Recently,Phillipsetal.(2003)examinedthepotentialeffectoftoadsonAustralian snakes,andconcludedthatapproximately30%oftheterrestrialfaunawasat risk. Indeed, many of Australia's reptiles are potentially at considerable risk from toadsasmanyspeciespreyuponfrogs(LososandGreene1988,Shine1991a)and, unlikebirdsormammals,reptileshavefewoptionsforpreymanipulation.Reptiles oftenusetheirmouthstoconsumepreyitemsintheir entirety and, hence, cannot avoiddirectexposuretotoxinsinthetoad’sbody.

It can be seen that there is a critical need to evaluate the severity of the probable impact of cane toads on Australian reptiles otherthan snakes. To understand the potential impacts, information is required in two separate areas: (1) how many

Australian species are potentially vulnerable to toads, based on their geographic distributionsanddietaryhabits,whereknown(i.e.,howmanyspeciesarelikelyto eattoadsandliveinareasthattoadswilloccupy); and (2) how many species can tolerate a quantity of toxins equivalent to ingesting a toad (i.e. what is their sensitivitytocanetoadtoxin)?

To answer these questions I reviewed published information on distributions and dietaryhabitsofAustralianreptilesandtestedtheabilityof11“theoreticallyatrisk” reptiletaxatotoleratetoadtoxins.ThepotentialeffectofcanetoadsonAustralian snakespecieshasbeeninvestigatedinanearlierpaper(Phillipsetal.2003),sowith the exception of waterpythons Liasisfuscus (which were notpreviouslyassessed) thischapterfocusesonotherreptiletaxa.

2. ThepotentialimpactofcanetoadsonAustralianreptiles 19

Methods

Numbersofreptilespeciespotentiallyatrisk

To identify species that might be affected by the invasion of the toad, I used ecoclimaticpredictionsofthelikelyeventualdistributionoftoadswithinAustralia

(Sutherstetal.1995)toidentifythosespeciesthatwillorhavecomeintocontact with toads. For each species I estimated the percentage of their range currently encompassed by toads and the percentage of their range that is likely to become affectedastoadsreachthefullextentoftheirlikelyrange.Thisapproachallowed metoestimatetherelativeriskthattoadscouldposetoeachspeciesbasedonthe percentage of the species’ range that will eventually be encompassed by toads. I excluded skinks, and pygopodids from the analysis because the small size and habitat preference of the majority of these species makes them unlikely to be affected. Nevertheless there are likelytobesomespeciesinthesegroupsthatare affected so this analysis is likely to underestimate the total number of species affectedbytoads.

Sutherstetal.(1995)generatedtwomapsofthelikelyfinaldistributionofcanetoads in Australia, one under the present climate and one under a conservative 2030 climate change scenario. The latter method produced a slightly larger predicted distributionfortoads.Iusedbothmapsfortheanalysis(Fig.1)butnotethateven the largerpotential range mightbe a conservativeestimateowingtoadaptationby toads or lack of competition from congeners increasing its range outside the ecoclimatic envelope of its native range (used by Sutherst et al. 1995 to generate predictionsfortheAustralianinvasion).Thus,theseestimatesofthereptilespecies potentiallyaffectedmaybeconservative.

2. ThepotentialimpactofcanetoadsonAustralianreptiles 20

The taxonomic breadth, sheer number of species potentially affected and patchy literatureprecludedadetailedstudyofthelikelihoodthateachspecieswillinclude toadsintheirdiet.Additionally,becausetoadshavelifehistorytraitsthatmakethem unusually likely to become prey for diurnal movementoriented predators such as agamids(seediscussion)onemightfindnopublishedaccountsofconsumptionof anuransbypredatorsbutstillexpectthattoadsmaybecomepreyforthesespecies.

Whiledietandthelikelihoodofconsumingatoadareclearlyveryimportanttothe potential impacts on each species, a careful analysis of each group and their likelihoodofencounteringandconsumingtoadsisaddressedhere(seediscussion).

Reptiles’tolerancetotoadtoxins

I tested 11 species of Australian reptile for their susceptibility to toad toxin. As populationsthatarecurrentlysympatricwithtoadsmayhaveadaptedtothisnovel preytype,animalswerecollectedfromareaswheretoadswereabsent.Table1lists thespeciesstudied,withinformationontheirbodysizesandlocalitiesofcollection.

Otherthanthecrocodiles(whichcamefromacaptivepopulation)allanimalswere collectedfromthefieldandtestedwithin2dofcapture.Thestudytaxaincludedone python (Pythonidae), one freshwater turtle (Chelidae), two crocodiles

(Crocodylidae),twodragons(Agamidae)and5varanidspecies(Varanidae).These species were chosen because they were all identified as “at risk” and were sufficiently common at the study sites to enable collection. Animals that were obviously ill or in poor condition where excluded from this study. All animals

(exceptcrocodiles)werekeptoutsideindryclothbagsthatwerecontainedinplastic boxes,andthereforesubjecttoambient

Table1 .Speciesusedforthisstudy,collectionlocalities,morphologicalstatisticsandresultsoftoxintrials.Totalnreferstothenumberof individuals tested for toxin resistance. Collection localities were all in the Northern Territory, Australia. Numbersinparenthesesrepresent standarderrors.Gapewidthisthedistanceacrosstheheadatthehingeofthejaw.TheID 50 foreachspeciesisexpressedas(1)thedoseoftoxin perbodymassofindividual(0.002ml/g)labelledasID50(conc),(2)Theabsolutedosebasedontheweightofanaverageindividual,expressed inmilligramsofdriedtoadskinequivalentABSID50(mg)and(3)asthepercentageoftheaverageanimal'sgapewidththatatoad’sheadwidth, whosesizeissufficienttoprovidetheabsolutedose,representsID50%Gape(seetextfordetails).

Species Family Location total SVL (mm) Weight (g) Gape width ID50 (conc) ABS ID50 (mg) ID50 % n (mm) Gape

Crocodylus porosus Crocodylidae Captive 14 205.9 (32.8) 1003.8 (120) 46.7 (1.5) - - - Crocodylus johnstoni Crocodylidae Captive 12 124.7 (21) 192.3 (7) 28.2 (1) 2.76 21.28 75.48 Chelodina rugosa Chelidae Fogg Dam 6 220 (18) 1519.8 (312) 35.8 (2) 0.18 18.38 51.29 Chlamydosaurus kingii Agamidae Gunn Point 9 245 (9) 394.8 (55.6) 48.3 (3.9) 0.36 16.02 33.16 Lophognathus temporalis Agamidae Darwin 10 103.7 (6) 30.3 (6) 30.3 (12.6) 0.81 11.03 36.36 Varanus indicus Varanidae Adelaide River 12 395.8 (22) 875 (160) 32.1 (2) 2.21 28.05 87.42 Varanus mertensi Varanidae Lake Bennett 2 525.0 1689 34.2 - - - Varanus mitchelli Varanidae Manton Dam 1 280 214 22.8 - - - Varanus panoptes Varanidae Beatrice Hill 8 500.4 (59) 2848.5 (704.6) 38.8 (4) 0.19 21.47 55.33 Varanus scalaris Varanidae Gunn Point 6 210 (7) 120.5 (12.8) 17.1 (0.6) 0.94 15.29 89.32 Liasis fuscus Boidae Fogg Dam 6 677.7 (277) 541 (178) 17.65 (2.6) 2.76 17.60 99.71 2. ThepotentialimpactofcanetoadsonAustralianreptiles 22

temperature.Bothspeciesofcrocodilewerehousedinaconstanttemperatureroom at32ºC.

Iobtainedtoadtoxinfromskinsof85freshlykilledcanetoadscollectedfromthe

Katherinearea(NT).Toadswerekilledbyfreezing.Singleextractionsoftoadtoxin were taken for the entire study to remove amongtoad variance in toxicity and accuratelycontroldosing.Thirtyfivefreshlykilledtoadsweremeasuredforsnout ventlength,headwidth,andmass.Dorsalskinwasremoved(fromthebackofthe head to the knees) including the parotoid glands and skins and allowed to dry at roomtemperatureoverseveraldaysbeforebeingweighed.Driedskinswereblended with10xv/wof40%ethanol,themixturestrainedandthesolidsdiscarded.The resulting liquid was allowed to evaporate to 50% of its initial volume at room temperature. I recorded the final volume and dispensed the extract into 25 ml containers to be frozen. Bufogenins are stable,partiallywatersolublecompounds with a very high evaporation temperature (Meyer and Linde 1971). It would be anticipatedthattheextractthuscontainstoadtoxins,althoughitispossiblethatsome werelostduetosaturation(seediscussion).Subsamples ofthecombinedextract wereusedtodosethetestanimalstoremovetheeffectsofanyamongtoadvariance intoxicloadings.

I tested the resistance of individual animals to bufogenins using the decrement in locomotor speed following a dose of toxin (methodology modified from that of

Phillipsetal.2003).Aftermeasuringtheanimal’smass,snoutventlength(SVL) and gapewidth, each animal was subjected to a locomotor trial. Before dosing, I subjectedeachanimaltotwolocomotortrialsonehourapart.IneachtrialIrecorded

2. ThepotentialimpactofcanetoadsonAustralianreptiles 23 sixmeasurementsoflocomotorspeed.Thefastestspeedfromeachtrialwastaken and the resulting times averaged over the two trials. This yielded an estimate of maximumlocomotorspeedbeforedosing( b).Mostanimalswouldrunawayfrom theholderassoonasreleased,theoccasionallyreluctantanimalwasencouragedto movebytappingonthetail.

ThefollowingdayIgaveeachanimalaspecificdoseoftoxinthroughafeedingtube attached to a syringe or calibrated micropipette. The tube was inserted into the animal’soesophagustoadepthof30%ofitsSVL.Locomotortrialscommenced one hour after dosing. As for before dosing, I rantwolocomotortrials:onehour postdoseandtwohourspostdose.Maximumlocomotoryperformance(swimspeed or sprint speed) was calculated as before to yield an estimate of maximum speed afterdosing( a).Ithencalculatedthepercentreductioninspeed(%redn)following dosingforeachanimal(%redn=100x(1b/a)).PreviousexperimentsonKeelback snakes (Phillips et al. 2004) illustrate that reduction in locomotor performance followingthismethodologyisduetothetoadtoxinandnotthecarrierfluid.

Given the taxonomic breadth and size range of the species tested, the same locomotor test could not be used for each species. The snake and turtle were subjectedtoswimmingtrialsasperPhillipsetal.(2003)ina2.4mdiametercircular swimmingpoolwithspeedstakenforeachquarterofthepool.Subadultcrocodiles

(<1mtotallength)wereswumina2.4mtroughdividedintofour600mmsections

(speedstakenforthetwomiddlesections).Agamidsandvaranidswererunalonga

15x1mrunwaywithaconcretefloor.Runningspeedsweretakenfromthree4m sectionsofthisrun(allowing1.5mateachendforstartingandstopping).

2. ThepotentialimpactofcanetoadsonAustralianreptiles 24

Apart from the variations in testing maximum locomotory performance, all methodologies(numberoftrials,timingoftrials)werecarriedoutinthesameway.

Given pairs of trials were conducted in the same manner I anticipated that the derivedindexoftoxinresistanceshouldbebroadlycomparableacrosstaxa.

Becausemostofthedatawascollectedintheoutdoors, temperature could not be rigorouslycontrolledacrosstrials(withtheexceptionofthecrocodiles).Forallother species I kept temperature differences between before/after trials within 2ºC by running the postdose trial at a time when the water or ambient temperature was similar to that of the predose trial. Although maximum speed may vary with temperature,therepeatabilityofspeedassaysinsnakes,atleast,hasbeenshownto beconsistentacrosstemperatures(BrodieandRussell1999).Thus,Iexpectedthe percentagereductionmeasuretobeunaffectedbytemperaturedifferencesacrosssets ofbefore/aftertrials.Allanimalswereadjustedtotrialtemperaturebybeingallowed toadjusttoambientorwatertemperatureforaminimumofhalfanhourbeforeeach trial.

Eachspecieswassubjectedtoarangeoftoxindoses,withtheexactrangebasedon observedeffects.Tominimizemortality,Iinitiallytestedanimalsofeachspecieson lowdoses:Aweakorzeroeffectinatrialmeantthatthedosewasdoubledforthe next animal, a lethal effect meant that the next dose was quartered. I tested each animalonceonly.Wheresamplesizepermitted,Itestedmultipleindividualsateach dosage level. Dosage rates were calculated on a volume to mass ratio for each individual(0.002ml/gofbodymass).Differentdosageswereachievedbydilution

2. ThepotentialimpactofcanetoadsonAustralianreptiles 25 oftheoriginaltoxinextractwithdistilledwater.Sixinitialdilutionlevelswereused

(0.025x,0.05x,0.1x,0.2x,0.5xand1x)withsomespecieslatergivenintermediate doses.Higherdoseswereachievedbysuccessivelyincreasingthedosepermassof undilutedextract(thus2x=0.004ml/g,4x=0.008ml/g).

Thisdesignyieldeddataonreductioninlocomotorspeedasafunctionofdosefor each species, with the ultimate aim to determine a lethal dose for each species.

Howevertraditionalapproachestoestimatinglethaldoses(i.e.LD 50 ’s)tendtoresult in high levels of mortality in study animals. Here I estimate the dose required to render50%ofanimalsincapableofmovement(‘ImmobilityDose’ID 50 ).Thisdose tendstobeassociatedwithdeathofthestudyanimal(Phillips,etal.2003)andthus isprobablyagoodsurrogateforanLD 50 estimate.

In almost all cases there was a strong positive relationship between dose and percentage reduction in speed, within the range of doses that elicited an effect.

Percent reduction scores were transformed according to the following formula modifiedfromthatofBrodieetal.(2002):

y’=ln(2/ y1), where yistheproportionalreductioninlocomotorspeed(%redn/100).Therewere threeinstanceswheretheproportionreductionwas<0.Becausethesevaluesdonot transformcorrectlytheywereenteredasaproportionalreductionof0.01(following

Brodie etal.2002).Thistransformationmakesitsimpletoestimatethedosegiving a100%reductioninspeed(TheID 50 , y= 1)when y=1, y’=0.ThustheID 50 isthe

Xinterceptoftheregressionof y’ondosewhichcanbeestimatedas–α/β ,where α

2. ThepotentialimpactofcanetoadsonAustralianreptiles 26 istheinterceptand βisthegradientoftheline.Leastsquaresregressionsof y’on dosewereconductedforeachspeciesandID 50 estimatesmade.

Aspecies’vulnerabilitytotoadswillbedeterminednotonlybytheamountoftoxin thatitcantolerate,butalsobythesizeoftoadsthatitconsumesrelativetoitsown bodymass.Ananimalthateatsonlyverysmalltoadsmightthusbeabletosurvive ingestion, whereas one that takes larger prey relative to its own body size might exceed the lethal dose. Because reptiles are generally gapelimited predators, an animal’sheadsizeoffersanindexofthemaximumsizeofpreythatitcanconsume

(e.g.Shine1991b).Theheadwidthofatoadlargeenoughtocontainapotentially lethal dose of toxin for an averagesized specimenof each species was calculated, andthatpreysizewascomparedtothegapewidthofthisaverageanimal.

ForspecieswithsufficientdataIcalculatedtheID 50 (intermsofabsolutedose)for ananimalofaveragebodysize.Ithenconvertedthisdoseintotheequivalentmass of toad skin and used the toad morphology data (specifically, the relationship between toad body size and skin mass) to calculate the size of toad that would constitutethisID 50 .Tocomparethispotentiallylethalminimumtoadsizetothesize oftoadthatagivenspeciescouldphysicallyingest,Icalculatedtheaveragemassand gapewidth for each species. I then divided the ID50 toad size (expressed as toad headwidth) by the mean gapewidth of each speciestoprovideanindexoflethal preysizerelativetotheanimal'sphysicalabilitytoingestapreyitemofthatsize.

Thatis,theheadwidthofatoadofsizesufficienttoprovidetheID 50 toanaverage sized animal was expressed as a percentage of mean gapewidth for each species.

Percentages of <100% indicated that the animal could easily ingest a lethalsized

2. ThepotentialimpactofcanetoadsonAustralianreptiles 27 toad, whereas higher values make it increasingly unlikely that the animal could ingestatoadlargeenoughtokillit.

Results Speciespotentiallyatriskfromtoads.

Analysis of the distribution of Australianlizards, crocodiles and freshwater turtles suggests that 75 species are potentially at riskfromtheinvasionofthecanetoad

(Table2).Theserepresentbothspeciesofcrocodile,all14speciesoftortoise,37of

63speciesofagamid(59%)and22of26speciesofvaranid(85%).Ofthese75“at risk”species,34(45%)arelikelytohavetheirrangetotallyencompassedbythatof the toad (underpredicted 2030 climate change) and7 (9%) have already hadtheir rangetotallyencompassed.Sixteenofthe75“atrisk”speciesarealreadyrecognized asbeingthreatenedeitheratafederalorstatelevel(Coggeretal.1993).

Tolerancetotoadtoxins

Formostspeciestested,thepercentreductioninlocomotorperformancewashighly associatedwithsurvivalafteringestionoftoxin:mostanimalswith100%reduction inspeeddied12hafterdosing.Animalswith<100%reductiongenerallyrecovered overthecourseof824h,howeversome(notablytheagamidsand C.johnstoni )died

12hsubsequenttolowerdoses.Forthepurposesofthisanalysis,theseindividuals werescoredasshowinga100%reductioninspeed.Afterreceivinghighdosesof toxin,threeoftheagamids(two L.temporalis andone C.kingii )appeareddead(eyes closed,stiffandwithoutmovement)formanyhoursduringandaftertrials,butafter

24hhadrecovered,appearingactiveandalert.

2. ThepotentialimpactofcanetoadsonAustralianreptiles 28

In most species tested (8 of 11), a higher dose (ml toxin/g) resulted in a greater reductioninlocomotorperformance(Fig.2).Theexceptionstothiswereeitherdue toverysmallsamplesizes(e.g. V.mertensi )orbecauseadosethatcausedaneffect onlocomotorperformance(e.g. C.porosus )wasnotreached.

Crocodilians weretheleastsusceptibletotoxin,so much so that an ID 50 estimate couldnotbegeneratedfor C.porosus asthesamplesizedidnotpermithigherdoses.

The estimated ID 50 for C. johnstoni was 15 times that of the lowest estimate ( C. rugosa ).Amongstthevaranids,theestimatedID 50 of V.indicus was>10timesthat of the lowest ( V. panoptes ), however these differences were not statistically significant( F2,11 =2.56,p=0.12).

Overall, I found high levels of variation between species in ID 50 estimates.

NeverthelesswhenIexpressedID 50 asapercentageofgapewidth(allrelevanttoad allometrieshadr>0.96,datanotshown),Ifoundthatallspeciestested(except C. porosus ) are capable of consuming a toad large enough to cause death (i.e. the percentagescoresarelessthan100%;Table1).Functionallythen,ofthosespecies forwhichIcouldgenerateanestimate,mostspeciesexhibitedrelativelylowlevels ofresistancetotoadtoxin.

2. ThepotentialimpactofcanetoadsonAustralianreptiles 29 Table 2. Australian reptile speciespotentially affectedbytheinvasionofthecane toad. Columns 24 give the percentage of the species’ range encompassed by the toad currently and under the predicteddistribution of toads (under present climate anda2030predictedclimaticscenario).

Percent overlap Present Predicted Current 2030 Crocodiles Crocodylus porosus 57 100 100 Crocodylus johnstoni 65 100 100 Freshwater Turtles Chelodina expansa 40 47 53 Chelodina longicollis 38 38 41 Chelodina novaeguinae 91 100 100 Chelodina oblonga 0 14 60 Chelodina rugosa 71 100 100 Chelodina steindachneri 0 3 3 Elseya dentata 61 100 100 Elseya latisternum 88 100 100 Emydura kreftii 100 100 100 Emedura macquarii 25 25 30 Emydura subglobosa 100 100 100 Emydura victoriae 0 100 100 Pseudemydura umbrina 0 0 100 Rheodytes leukops 100 100 100 Agamids Amphibolurus muricatus 32 45 55 Amphibolurus nobbi 62 62 67 Amphibolurus norrisi 0 0 0 Caimanops amphiboluroides 0 0 0 Chelosania brunnea 33 100 100 Chlamydosaurus kingii 74 100 100 Cryptogama aurita 0 0 0 Ctenophorus caudicinctus 10 18 18 Ctenophorus clayi 0 0 0 Ctenophorus cristatus 0 0 0 Ctenophorus decresi 0 0 0 Ctenophorus femoralis 0 0 0 Ctenophorus fionii 0 0 0 Ctenophorus fordi 0 0 0 Ctenophorus gibba 0 0 0 Ctenophorus isolepis 0 0 0 Ctenophorus maculatus 0 19 34 Ctenophorus maculosus 0 0 0 Ctenophorus mckenziei 0 0 0

2. ThepotentialimpactofcanetoadsonAustralianreptiles 30

TABLE 1.(continued) Percent overlap Predicted Present Current 2030 Ctenophorus ornatus 0 7 29 Ctenophorus pictus 0 0 0 Ctenophorus reticulatus 0 0 4 Ctenophorus rufescens 0 0 0 Ctenophorus salinarum 0 0 6 Ctenophorus scutulatus 0 15 15 Ctenophorus vadnappa 0 0 0 Ctenophorus yinniethara 0 0 0 albilabris 20 100 100 Diporiphora australis 100 100 100 Diporiphora bennettii 37 100 100 Diporiphora bilineata 14 100 100 Diporiphora convergens 0 100 100 Diporiphora lalliae 8 13 13 Diporiphora linga 0 0 0 Diporiphora magna 36 100 100 Diporiphora pindan 0 100 100 Diporiphora reginae 0 0 0 Diporiphora superba 0 100 100 Diporiphora valens 0 0 0 Diporiphora winneckei 0 4 4 Hypsilurus boydii 100 100 100 Hypsilurus spinipes 50 50 75 Lophognathus gilberti 24 41 41 Lophognathus longirostris 0 2 2 Lophognathus temporalis 43 100 100 Moloch horridus Physignathus lesueurii 100 94 100 Pogona barbata 48 50 60 Pogona microlepidota 0 100 100 Pogona minima 0 10 20 Pogona minor 0 3 3 Pogona mitchelli 0 7 7 Pogona nullarbor 0 0 0 Pogona vitticeps 0 0 0 Tympanocryptis adelaidensis 0 7 21 Tympanocryptis cephalus 0 0 0 Tympanocryptis diemensis 0 0 25 Tympanocryptis intima 0 0 0 Tympanocryptis lineata 6 11 13 Tympanocryptis parviceps 0 0 0 Tympanocryptis tetraporophora 12 14 16 Tympanocryptis uniformis 32 100 100 Varanids Varanus acanthurus 17 30 30 Varanus baritji 70 100 100 Varanus brevicauda 0 4 4 Varanus caudolineatus 0 4 5

2. ThepotentialimpactofcanetoadsonAustralianreptiles 31

TABLE 1.(continued) Percent overlap Predicted Present Current 2030 Varanus eremius 0 0 0 Varanus giganteus 0 0 0 Varanus gilleni 0 1 1 Varanus glauerti 0 91 91 Varanus glebopalma 42 92 92 Varanus gouldii 20 22 25 Varanus indicus 75 100 100 Varanus kingorum 0 100 100 Varanus mertensi 78 86 86 Varanus mitchelli 39 100 100 Varanus panoptes 37 63 65 Varanus pilbarensis 0 0 0 Varanus keithorni 0 100 100 Varanus primordius 25 100 100 Varanus rosenbergi 0 6 33 Varanus semiremex 100 100 100 Varanus spenceri 64 50 50 Varanus storri 36 50 50 Varanus scalaris 16 100 100 Varanus tristis 21 33 34 Varanus varius 42 44 48

2. ThepotentialimpactofcanetoadsonAustralianreptiles 32

100 A)

50 V.indicus

V.mertensi

0 V.mitchelli

V.panoptes

V.scalaris

50

100 B) Reductioninspeed(%)

50 C.kingii

L.fuscus

C.johnstoni

0 L.temporalis

C.porosus

C.rugosa 50 1 2 3 4 5 6

Ln(100xDose)

Figure2. Percentagereductioninspeedasaconsequenceoftoadtoxindosefor11

speciesofAustralianreptile.Thexaxis,isLn(100xdose)wheredoseis

expressed as a concentration of toxin extract administered at a rate of

0.002ml/g.Plottedpointsrepresentthemeanvalue for all individuals testedateachdosagelevel(errorbarsincludedfortwospecies,therest

omittedforclarity).A)Showsallthevaranidspeciestested,B)showsthe

remainingtaxa.

2. ThepotentialimpactofcanetoadsonAustralianreptiles 33

Discussion

Cane toads are a major problem throughout the Caribbean and the Pacific having successfully invaded many countries previously naïve to toads. In Australia they havebeenspreadingrapidlyfor70years,andwarningsoftheirpossibleecological impactonnativefaunahavebeenvoicedthroughoutthatperiod(Lever2001).Most studiesontoadimpactstodatehaveexaminedtheeffectsoftoadsonpotentialprey items,competitorsandaquaticinvertebratepredators.Severalofthesestudieshave concludedthattoadimpactsarelikelytobeminimalonthiscomponentofnative fauna (Freeland and Kerin 1990). Unfortunately, a lack of effect at lower trophic levels reveals little about potential impacts on higher trophic level predators, a componentofnativefaunathatmaybeaffected.

RecentworkbyPhillipsetal.(2003)usingsimilar methodologytothisstudyhas shown that toads are likely to have a negative impact on greater than 30% of

Australia’s terrestrial snake fauna. These findingsextendthisresulttoencompass other native reptiles. Importantly, the results of the two studies are qualitatively similar–indicatingmosttaxatestedarecapableofingestingatoadlargeenoughto kill them. It is however important to note that these results are conservative for severalreasons.First,Ionlyextractedtoxinfromthedorsalskinoftoads.Toxin that is present in the ventral skin and internal organs was not included in the extraction.Second,theextractionprocessisunlikelytohavebeen100%efficient and some toxin will have been lost (i.e. toxin may have reached saturation in solution).Therefore,theactuallethaldoseintermsoftoadsizeislikelytobeeven

2. ThepotentialimpactofcanetoadsonAustralianreptiles 34 lowerthanthoselistedinTable1.Third,manyreptileswilltakemultiplepreyitems.

Allcalculationsarelimitedtotheeffectofasinglepreyitem.Fourth,lowsample sizesdolittletotakeintoaccounttheeffectsofintraspecificvariationinreposnseto toadtoxin.Despitetheseconservativebiases,theystillsuggestthatmanyspeciesand individualstestedcaneasilyingestasingletoadlargeenoughtobeultimatelyfatal

(Table1).

Furthermore,myanalysisofgeographicdistributionssuggeststhatahighproportion of Australia’s varanids (85%) and agamids (59%) and all freshwater turtles and crocodiles will share at least a part of their futuredistributionwiththetoad.The exact level of impact for each species will depend upon the probability of encountering toads and the likelihood of consuming toads large enough to cause mortality.Unfortunatelytodatetherearerelativelyfewpublisheddataonthediet and foraging methods of many of the “at risk” species. Below I set out a brief discussionofforagingmodesanddietforeachofthesampledfamilies(omittingthe

PythonidaewhichwasdealtwithbyPhillipsetal.2003)commentingonpotential risktoeachfamilybyingestingtoxictoads.

Crocodiles

Both species of Australian crocodiles are generally nocturnal foragers and live in aquatichabitats.Furthermore,amphibianshavebeenfoundinthestomachsofboth species(WebbandManolis1993)andevenlargecrocodilesareknowntoeatsmall preyitems(C.Manolispers.com.).Thesefactorssuggestthatcrocodiliansareata highriskofencounteringcanetoads(breedingadultsortadpoles)andwillprobably attempt to eat them. Freshwater crocodiles C.johnstoni areatahigherriskgiven

2. ThepotentialimpactofcanetoadsonAustralianreptiles 35 thattheyoungindividualstestedweresusceptibletorelativelysmalldosesoftoxin andthatthisspeciesismorereliantonfreshwaterhabitatsthan C.porosus .Larger specimensmaybebufferedinthattheywouldneedtoconsumemuchhigherdoses of toxin to kill them. As a crocodile grows it will certainly reach a size where ingestingevenalargetoadisunlikelytokillit. Therefore, small individuals are likelytobeathigherrisk,anoutcomethatisparalleledinsnakes,albeitfordifferent reasons(PhillipsandShine2006).Saltwatercrocodiles C.porosus arelessatrisk giventhatevencomparativelylargedosesinducedverylittleeffect.

Varanids

Manyvaranidsareactive,farranging,diurnalforagersandallhaveawelldeveloped vomeronasalsystemfordetectingprey(Greer1989).Furthermoremanyspecieshave apropensitytoactivelydiguppotentialpreyitems(KingandGreen1999).Diurnal varanids may even encounter adult toads (which are nocturnal) in their search for foodthroughdiggingthemup.Giventhatallthevaranidstested(3outof5)could easilyingestatoadofsufficientsizetokillthem,Ipredictthatmanyspecieswillbe affected by the cane toad. At particular risk are large, wide ranging, and semi aquatic active foragers. These predictions are supported by anecdotal reports in

Burnett (1997) that document apparent declines in several species of varanids followingthearrivaloftoadsinanarea.

Agamids

Australian agamids are primarily sitandwait predators (Greer 1989). They are extremely visually oriented and arebelieved to make limited use of chemosensory faculties in prey acquisition (Greer 1989). Probably because of this reliance on

2. ThepotentialimpactofcanetoadsonAustralianreptiles 36 visual detection, prey acquisition is a strictly diurnal activity. A wide range of invertebrateshasbeenfoundinthegutsofAustralianagamidsbutvertebratesalso occasionallyfigureintheirdiet.Asagroupitseemshighlylikelythatmostagamids are likely to occasionally consume toads that are dayactive. Importantly, metamorphandjuveniletoadsarediurnallyactive(FreelandandKerin1991,Cohen andAlford1993).FreelandandKerin(1991)reportjuveniletoads(3070mmSVL) asbeingdiurnallyactive(primarilyinthemorning).Metamorphs(<30mm)were activethroughoutthedaybutweremorerestrictedtothewater’sedge.Importantly, theaveragesizeofdiurnallyactivetoadsincreasedwithdistancefromthebreeding site,afindingconfirmedbyCohenandAlford(1993).Basedontheseanalyses,a toad of 30 mm SVL would be sufficient to kill most C. kingii (a relatively large agamid)lessthan200mmSVL,andallindividualsof L.temporalis .A70mmtoad wouldkilleventhelargest C.kingii .Toadsthusposeaseriousthreattoagamids, particularlythoseinthevicinityofhabitatthatissuitablefortoadbreeding.

Freshwaterturtles

Australian freshwater turtles forage exclusively in the water. Most species are omnivorous,subsistingonvegetablematterandcarrionbuttakinganimalpreywhen possible(Cann1998).Afewspeciesappeartobealmostexclusivelycarnivorous.

While it is unlikely that any Australian turtle could consume a mature adult toad

(although see Hamley and Georges 1985), the tadpoles, eggs, juveniles and metamorphs (all of which are toxic) are a likely prey item for many species, particularly those frequenting still water where toads are likely to breed. In these respects,turtlesofthegenus Chelodina arethemostlikelytobeatriskfromtoads.

These longnecked species are betterequipped hunters and thus consume a higher

2. ThepotentialimpactofcanetoadsonAustralianreptiles 37 proportionofanimalprey(Cann1998).Alsotheytendtoinhabitslowmovingto stillwaterbodiessuchasarefavouredbytoadsasbreedingsites.Mydataindicate that C. rugosa atleastisreasonablysensitivetotoadtoxin.Interestingly,Hamley and Georges (1985) were able to maintain several Elseya latisternum onadietof toadsforseveralmonthswithnoapparentilleffects,suggestingthatthisspeciesof turtlehasamuchhigherresistancetotoadtoxin.Furtherworkisobviouslyrequired toassessvariationinresistancetotoadtoxinamongAustralianfreshwaterturtles.

ThisdatasuggestmanyspeciesofAustralianreptilescouldbeadverselyaffectedby the continued invasion of the cane toad. The exact magnitude of the effect will depend onfactorsspecifictoeachspecies(forexamplepreyhandlingability,prey choice)andwhetherornotpopulationscanmountaneffectiveadaptiveresponse.It seemsprudenthowever,totreattheinvasionofthecanetoadasaseriousthreatto

Australian reptiles, and wildlife managers shouldgiveseriousconsiderationtothe impactofthecanetoadonthesespecies.

Cane toads are a problem in more than twenty countries and research into the impactsoftoadsinthesecountriesislikelytobehamperedbythesamedifficulties asfaceresearchinAustralia.Inthesecountries,aswithAustralia,itisimportantto assesstheimpactoftoadsonlargepredators,despitethelogisticaldifficulties.

38

AdelaideRiverstudysite

Study sites and general methods

Partsofthischapterhavebeenpublishedas; SmithJG(2003)Fishandcompanysmellafterthreedays:increasingcapture ratesofvaranidlizards.HerpetologicalReview.35(1):4143

MantonDamstudysite

3.S tudysitesandgeneralmethods 39

3.Studysitesandgeneralmethods

Abstract

Thischapterpresentsthegeneralmethodologiesusedthroughoutthisthesis.Included isadescriptionofthebroadhabitatassociations ofthestudyspecies,selectionof studysites,andthecaptureandprocessingmethodsforeachspecies,includingthe developmentofanewpassivetrapforcapturinggoannas.Theanalyticalframework described in this chapter forms the basis for all analyses in subsequent chapters, unlessotherwisestated.Thischapterservesasamethodologicaldescriptionforall otherchapters,andonlythevariantsinmethodologyusedandtheparticularsofeach statistical analyses pertinent to each chapter are described subsequently. All fieldworkwascarriedoutbetweenJune2001andFebruary2004inthetropicalnorth oftheNorthernTerritory,Australia(Fig.1).

3.S tudysitesandgeneralmethods 40

¡ ¡ ¡¡ ¡ ¢ ¡ ¡¡ ¡ £ ¡ ¡¡ ¡ ¤ ¡ ¡¡ ¡

S tu a rt Adelaide

H ¥

§ ¨ ©

§ # ig §

§ h §

§ w §

© a River site § ¨ y

¥ Darwin

Arnhe mHig

hway

¥

¨ §

§ §

§ §

§ §

§ §

§ ¨ ¥

Manton

Dam site

¥

§ ¦

§ ¥

§ §

§ §

¥ §

¦ § ¥

0 10 20Kilometres Kilometers

s N

¡ ¡ ¡¡ ¡ ¢ ¡ ¡¡ ¡ £ ¡ ¡¡ ¡ ¤ ¡ ¡¡ ¡

Figure1. A mapshowingthelocationof the study region in Australia (bold square, left) and the loc ationofthetwostudysitesin relation to the city of Darwin (above).

3.S tudysitesandgeneralmethods 41

StudySites

MantonDam( Varanusmertensi )

A population of V. mertensi was investigated at Manton Dam, which lies 65 km southofDarwin,NorthernTerritory,Australia(12º87'S,131º11'E;Fig.2).Itisa large (11,675 ha) reserve containing a manmade freshwater body (330 ha).

Melaleuca leucadendra and Melaleuca argentea dominate the vegetation at the watersedge.Sectionsofthebankarelinedwith Nymphaeaviolacea and Eleocharis dulcis ,forupto10mintothewater(Plate1),whereasinothersectionsthebankis rocky and sustains little vegetation cover (Plate 2). The quantity of emergent vegetationalongtheshorelinedictatedtoalargedegreewhichsectionsofthebank wereaccessiblebyboatandthereforeallowedaccesstoanimals.

AdelaideRiver( Varanusindicus )

Liningtheestuarine(northern)sectionofAdelaideRiveraremanydiscretepatches ofmangroveforest(12º33’S,131º22’E).Adjacenttoonesectionthereisafish farm with an associated access road that provides the only yearround terrestrial accesstomangrovesofthistype(Fig.3).Themajorityofresearchconductedon V. indicus wasatthissite.Throughoutthe27.2hasite,themangrovecommunityalong thecreeklineisdominatedby Avicenniamarina and Xylocarpusmekongensis (Plate

3) whilst adjacent to the river are predominantly Brugueira gymnorhiza and

Rhyzophorastylosa (Plate4).Twicedaily,themangroveforestoraportionthereof

(dictatedbytideheight)isinundatedtoamaximumdepthof45cm(onthelandward edge).Astherewasahighpotentialofencounteringestuarinecrocodiles Crocodylus porosus ,particularlyadjacenttothecreeklines,fieldworkwaslimitedtothelowtide periods.

3.S tudysitesandgeneralmethods 42

Kilometres Rockyshore ReedsandLilies

Figure 2. A map of Manton Dam, showing reeds and lilies (dark hatching) and

rockybanks (no hatching), whichprovidedaccesstotheshorelinefor

noosing Varanusmertensi .

3.S tudysitesandgeneralmethods 43

Studyarea boundary

Kilometres

Figure3. Aerialphotographshowingthediscretesectionofmangroveforestalong

theAdelaideRiverwhichwasthestudysitefor Varanusindicus .The

whitelinethroughtheforestpatchdelineatesthesouthernboundaryofthe

studyarea.

3.S tudysitesandgeneralmethods 44

Animalcapture

Previouscapturemethods

Duetothedifficultiesassociatedwithcapturingfreelivingvaranids,manymethods havebeentried.Largevaranidspeciesthatcanbeeasilyapproachedcanbenoosed, althoughthismethodcanresultininjurytotheanimal. Varanids can also be dug from or trapped outside their burrows (e.g., Varanus gouldii , King 1980) but this methodislaborintensiveanddestructivetohabitats.Somespecies( V.tristis )have beencaughtbyfollowingtheirtracksinthesandtotheirrestingsites(Thompsonet al.1999).However,forlarge,widerangingspeciesandthoseusinghabitatswhereit isdifficultforhumanstomoveaboutfreely,conventionalactivecapturetechniques cannotbeemployed.

Passive capture methods have proved effective for some smaller varanid species.

Pitfall traps have been used to capture V. brevicauda, V. eremius, V. gilleni, V. gouldii and V. tristis (Downey and Dickman 1993). Passive nooses (set in likely travel corridors) have been used for the more elusive rockdwelling species V. glebopalma and V .glauerti (Sweet 1999). While effective, thesemethodsrequire constantmonitoring(threetimesdaily),ataskunachievableoverlargeareas,andare unsuitableintidalenvironmentssuchasmangrovesystems.

To circumvent the problems posed by tides, Auliya and Erdelen (1999) devised a floatingcarriontrap(boxtrap)tocapturethelargewatermonitor V.salvator .These traps werebaited with fish or chicken viscera andrelied on avaranidenteringthe trap, grabbing the bait and triggering a mechanism to close the door behind it.

3.S tudysitesandgeneralmethods 45

Although effective, these traps were large, were erectedonsiteandtook57dto constructusinglocalmaterials(bambooandwood).Erectinglargenumbersoftraps ofthistypeislikelytoproveprohibitivelyexpensive.Importantly,throughoutnorth

Australian estuarine environments the estuarine crocodile Crocodylusporosus may beattractedtoandpossiblyinterferewithcarriontrapsofthistype,aswellasposing arisktofieldworkers.

Capturemethodsused

Due to the differences in accessibility between each site, combinations of the following different methods were used to locate and capture each species used in this study. At Manton Dam individual V. mertensi were located from the water using a small, motorised punt. The animal was then approached along the shorelineandcapturedusinganooseattachedtoanextensionpole,orlessoften,by hand.AtAdelaideRiver V.indicus isquiteabundantbutdifficulttosightandeven moredifficulttocapture,duetoitseffectivecamouflageandtendencytoclimbhigh into trees (sometimes 10 m or more) when alarmed (pers obs). To overcome this problem, I developed a new passive trap which proved to be highly effective and easytouse.

Newpipetrap

A specific baited arboreal pipe trap was devised that was suited to the mangrove environmentandovercametheweaknessesofmanyprevioustrapdesigns.Thetraps weremadefrom1mlengthsofPVCstormwaterpipe,sealedatoneendwithPVC pushonendcaps.Trapsareplacedverticallywiththesealedendatthebottomand rely on gravity and the smooth sides of the pipe to prevent escape of varanids

3.S tudysitesandgeneralmethods 46 enteringthem.Trapscouldbemadewithpracticallyanydiameter,dependingonthe sizeofthetargetspecies.Toallowdrainageofwaterafterheavyrainsandfacilitate spreadofbaitodors,three6mmholesweredrilledthroughtheendcapsandthree nearthebase(approximately100mmfromtheendcap)atequalintervalsaroundthe pipe.Thelipofeachtrapwasfiledsmoothtoremovethesometimessharpfinish createdwhencuttingfromalargerlengthofpipe.Dependingontheavailabilityof materials(newvs.secondhandpipe),thesetrapswerequiteinexpensivetoproduce.

Trapswerestrappedverticallyontreesusing10cmwideadhesivetape.Attachment wasquick,andthetrapandanimalsreadilyremovedbysimplycuttingthetapewith asharpknife.Brightlycolouredtapewasusedtoincreasethevisibilityoftrapswhen searchingforthemindenseforest.Ifthetrapswereplacedhighenoughintreesthey couldbeleftset,undisturbedbytheraisedwaterlevelscausedbytidalorseasonal influences. However, lowset traps present no drowning risk to thesesemiaquatic animalsbecausetheyareabletoescapethetrapaswaterlevelsrise.Highsettraps were checked once each day with a small hand held mirror, used to peer into the entrance.

Effectivenessofdesign

Totesttheeffectivenessofthedesign,12pipetrapsoftwodifferentdiameterswere used(6of150mmand6of225mm).Theseweresetwithina2hapatchinthe

Adelaide River study site. Each trapping session took place over six consecutive daysinearlyAugust2001.Trapswerebaitedwithasmallamountofmeat(for6 days)orfish(another6days)andplaced(inthebottomofthetrap),withthetrap

3.S tudysitesandgeneralmethods 47 vertically on the main trunk of mature mangrove trees (predominantly Avicennia marina , Sonneratialanceolata and Xylocarpusmekongensis ).

Pipetrapsofbothsizeswerefoundtobehighlyeffectiveforthisspecies,withan overall trap success rate of 50% (36 captures in 72 trap days). Daily trap success rates(numberofanimalscaptureddividedbytotalnumberoftraps)rangedfrom8%

(1capture)to75%(9captures).Theseresultscompareveryfavourablywithprevious handnoosing results for V. indicus from the same area, which on average yielded lessthanonesuccessfulcaptureperday.Trapswerefoundtobesafe,withnotrap mortality and no obvious traprelated injuries. No trapped animals appeared to be agitatedorexhaustedonremovalandrelease.

Theeffectivenessofthesetrapsappearstoberelatedtothepungencyofbaitsused, asstrongsmellingbaits(rottingfish)tendedtocatchmoreindividuals(Fig.4).Traps setwithless“smelly”fooditems(porkorlamboff cuts, or recently bought fish) caughtnoanimals.Animalswerecapturedmorefrequentlywhenthefreshfishhad been in the traps for extended periods (i.e. once it had begun to decompose).

Recaptures occurred both at the same trap and at different trap locations. On two occasions,twoanimalswerecapturedinthesametrap.

AsmanyotherAustralianvaranidsareattractedtocarrion( V.gouldii,V.panoptes,

V.rosenbergii ,persobs,KingandGreen1999),thesetrapsmayprovetobeusefulin otherhabitatswhereconventionalmethodscannotbeapplied.Careshouldbetaken however,tousetheappropriateattractants.Decomposingfishwasfoundtobemost effectiveforthisstudy,possiblyduetotherancidodorsthatcanbeproducedfrom

3.S tudysitesandgeneralmethods 48 smallquantitiesoffish(RichardsandHultin2001). While this trial used arboreal placement,thepipetrapdesigncanreadilybeadaptedforuseinrockyenvironments or even inground use when matched with an auger of appropriate diameter. This new pipe trap design provided an effective and affordable method for increasing capture rates of V. indicus . The method was tried for V. mertensi , but caught no animals over 5 d despite observations of many individuals throughout the area

(MantonDam)inthattime.

After determiningthatthetrapdesignwaseffective, V.indicus wastrappedquarterly between September 2001 and March 2004 using this method. Trapping was conducted within the same discrete 27.2 ha patch of mangrove forest along the

AdelaideRiver.Twoparalleltraplines(24perline)wereerectedthroughoutthe13.6 ha site (which encompassed beyond where radiotracking occurred, see chapter 6).

Trapswereplaced50mapartrunningparallelwiththeedgesofthemangrovestrip and Adelaide River, baited with fish and checked every day for six days. To minimizetheeffectsofthelargetidalfluctuationsexperiencedthroughouttheregion, trapping during each period was conducted around thespringtidesforthatmonth whichensuredthatthetideswerehighestatthistime.Thisprovidedstandardization of any possible differential behaviour of V. indicus during different tides and was chosenbecause V.indicus alsoappeartobeveryactiveduringthesetimes(persobs).

3.S tudysitesandgeneralmethods 49

18 Rawporkorchicken 9 16 FreshFish 8 8 RottingFish 14 7 7 12 6 10 8 4 6 3 2

%oftotalcaptures 4 1 2 00 00 0 0 0 0 0 1 2 3 4 5 6 Trapday

Figure4. Numberofcapturesof Varanusindicus usingdifferentbaitsinpipetraps

(12traps,6trapdayspersession).Numbersabove bars indicate actual

numbers caught. Baits were retained unchanged for the 6 d sampling

period.Rawporkorchickencaughtno V.indicus .

3.S tudysitesandgeneralmethods 50

Animalprocessing

Initially,allvaranidscapturedweregivenanindividualidentificationnumberwitha transponder (Digivet) implanted subcutaneously under loose skin on the neck.

Subsequent captures allowed these individuals to be readily identified using a scanner (DestronFearing, U.S.A.). At each capture, the following data were recorded:date,time,masstothenearestgramusinganelectronicbalance(Scaleman,

U.S.A.), snoutvent length (SVL), head length (HL), head width (HW), tail length

(TL) where measured to the nearest cm, and gender (where possible, by manual eversion of hemipenes and/or by morphology), reproductive condition and any visiblescarswerenoted.Varanidswerereleasedatthesamepointofcapturewithin

1hour.

Radiotransmitterimplantation At each site, a subsample of varanids was implanted with radiotransmitters

(Holohil SB1 and SB2, Canada). As stated above, gender was determined by palpatingthegenitalregioninanattempttoinducemalestoeverttheirhemipenes, but because the gender of many species of goanna is notoriously difficult to determineinthefield(Shine1986,Gaulke1997),afterJune2001,allvaranidsthat were to undergo implantation surgery at Charles Darwin University were taken to

ParapVeterinaryClinicandthebasalsectionofthetailandpelviswasradiographed to determine gender (Shea and Reddacliff 1986). For V. indicus individuals were determinedtobemalesifthefouranteriorpointingspinestypicalofhemibaculaof the indicus group(ZieglerandBöhme1999)wereevident.Thegenderofvaranids withincompletelyossifiedspinescouldnotberesolved.Adult V.indicus (SVL>320

3.S tudysitesandgeneralmethods 51 mm,WikramanayakeandDryden1988)displayingnoossificationwereclassifiedas females.

Implantationsurgeryinvolvedplacingtheheadandanteriorportionofeachgoanna in a clearperspex tube attached toaFluotech3AnaestheticMachine.Aconstant flow of oxygennitrous oxide mixture was provided, and halothane slowly administered in 0.5% increments. Typically a 3% mixture was needed to anaesthetisegoannas,butthisvariedbetweenspecies.Whenthegoannawasunable to right itself, and showed no reflex action when the tip of its tail was lightly pinched,theoperationcommenced.Thisprocessusuallytook2040min.

All instruments and radiotransmitters were cold sterilized for a minimum of 3 h priortosurgery.Sterilewaterwasusedtorinsetheinstrumentsbeforeuseandsterile glovesandfacemaskswerewornduringtheoperation.Priortomakinganyincision the goanna's scales were swabbed with 80% ethanol and a betadine solution and placedonacleansheet.

SurgicaltechniquesfollowedcloselythoseusedbySweet(1999).Asmallincision, approximately12cmlong,wasmadeontherighthandsideofthegoanna,below theliverandanteriortothegonads.Theincisionwasmadeontheanimal’ssideso thattheresultantwounddidnotrubagainsttheground. Muscle layers were then gentlyteasedapartwithsteriletweezers.Theradiotransmitter(rinsedwithsterile water)wasgentlyinsertedintothebodycavityandmassagedanteriorlysothatitdid notrestonthewound.ThewoundwassewntogetherusingEthicon50sutures.

Antiobioticpowderandamedicalsealant(Histoacryl)wereplacedoverthesutures to prevent any bacteria entering the wound or body cavity. Following surgery,

3.S tudysitesandgeneralmethods 52 goannaswereplacedincleanclothbagsandkeptfor24handthenreleasedatthe point of capture. Due to mortality, battery failure or movement out of telemetry range,animalswerefollowedforvaryingperiodsthroughoutthestudy.

Analyticalframework

All ecological systems are comprised of complex interactions between many elements and hence the questions ecologistscanask about individual units within thesesystemsarehinderedbyeitherhavingtocontrolfortheseelementsand/orby restrictingquestionsaboutsuchsystemstosimpledichotomies(Johnson1999).This is particularly the case with the hypothesis testing (frequentist) based approach, whereby simple dichotomies (significant vs. nonsignificant) are developed for an

“isolated” situation or question whose boundaries (for significance) are arbitrarily defined(Yoccoz1991,Nester1996).Recentlyhowever,moreobjectivetechniques such as the InformationTheoretic paradigm (Burnham and Anderson 2002) have beendeveloped,whichallowmorepowerfulinferencestobemade.

Ratherthanisolatingandaskingindividualquestionsaboutasystemthatisknown a priori to be multifaceted, this approach advocates the development of multiple workinghypotheses.Thesemultiplehypotheses(thecandidateset)arebasedonwhat isalreadyknownofthesystem,anddevelopingaheuristic measure of “distance” between conceptual reality and each approximating model. This process has been termed KullbackLiebler (KL)informationandisbasedonBoltzmann’stheoryof entropy(BurnhamandAnderson2001).

3.S tudysitesandgeneralmethods 53

Inthisapproacheachmodelinthecandidatesetiscomparedtoeachothermodel, given the data that has been collected. One way of comparing these models is by usingAkaike’sInformationCriterion(AIC),whichisaformalrelationshipbetween

KL information and the theory of maximum likelihood (Burnham and Anderson

2001).Duringthemodelrankingprocess,eachmodelissubjectedseparatelytothe principleofparsimony,wherebymodelsthatcontainthemostparameters(andcould potentiallydemonstratespuriousresults)aremostheavilypenalized.Themodel(or models)forwhichAICissmallestisthenselectedasmostlikelygiventheempirical dataathand.

Thismethodisthereforenotatestinanyway;itisbasedonnotionsofinferenceand strength of evidence, and is a more objective method for asking more relevant questions about complex ecological systems. Because the ratio of sample size to parameterswasalwayslowinthisstudy,thesecondorderbiascorrectedformAIC c was used as the basis for model selection (Burnham and Anderson 2002). These

AIC cvaluescanberescaledassimpledifferences( i)allowingaquickcomparison of the ranking of candidate models (Burnham and Anderson 2002). Models were deemedtohavesubstantialsupportif ifellwithin12ofthebestmodel(Burnham and Anderson 2002).Akaikeweights( wi)werecalculatedtoprovideameasureof therelativelikelihoodofeachmodelinthecandidateset,andinmanycasesfurther inferencewasdrawnfromtheaveragedparameterestimatesfromallmodelsinthe candidate set (weighted according to the Akaike weights). This averaging allows model selection uncertainty to be incorporated into parameter standard errors and reducesbiasinparameterestimates,particularlywhenthereareanumberofmodels withsimilarAIC c(BurnhamandAnderson2002).

3.S tudysitesandgeneralmethods 54

Analysesthroughouttheremainderofthisthesis(excludingChapter5)areallbased onthisapproach.BurnhamandAnderson(2002)andmorerecentlyStephensetal.

(2005) have advocated that where orthogonally designed experiments are used, hypothesis testing is still valid and consequently this method is preserved in the chapterthatexaminesthephysiologyof V.indicus (Chapter5).

3.S tudysitesandgeneralmethods 55

Plate1. AninaccessiblesectionofbankwithintheMantonDamstudysite,covered in Nymphaeaviolacea and Eleocharisdulcis.

Plate2. SectionofthebankatMantonDam(foreground)thatiseasilyaccessibleby boatforspottingandcatching Varanusmertensi .

3.S tudysitesandgeneralmethods 56

Plate3. AsectionoftheAdelaideRiver V.indicus studysite,showingmature Avicenniamarina and Xylocarpusmekongensis alongthecreekline.

Plate4. Asectionofthe V.indicus studysitealongtheAdelaideRiver,dominated by Bruigeiragymnorhyza and Rhyzophorastylosa.

57

Using morphometrics to predict gender in varanids

Thischapterhasbeenpublishedas; Smith J G, B. W. Brook, A. D. Griffiths and G. G. Thompson. (2007) Can morphometrics and information theory predict gender in varanids? Journal of 41:133140

4. Usingmorphometricstopredictgenderinvaranids 58

4.Usingmorphometricstopredictgenderinvaranids

Abstract

Varanidlizardsaredifficulttosexinthefieldbecausecommonlyusedtechniques are not completely reliable and definitive techniques are not logistically or economically feasible for many fieldbased applications.Previousworkhasshown thatvariationinmorphometricvariablescanbeused to determine gender in some speciesofvaranid.HereIbuildonthesepreviousexploratoryanalysesbydeveloping asetof apriori models(containingmorphometricvariables)topredictgenderforsix species of Australian varanid, and thenexaminingtheir relative support under the

InformationTheoretic framework. I then use crossvalidation procedures to determine the reliability of the bestsupported models’ predictive ability. This analysis suggests that a very large sample size is required for building models to predict gender in many species, to the extent that most models could not predict genderatall.Themostimportantsexuallydiagnosticfeaturesformanyspecieswere anumberofheadvariablesand(toalesserextent)scalingoflimbproportions.This analysis provides some useful statistical tools for the fieldsexing of adult and juvenile V.gouldii withaknownlevelofreliability,anditalsoservestohighlightthe danger of extrapolating from potentially spurious results when using exploratory methodsornullhypothesistesting.

4. Usingmorphometricstopredictgenderinvaranids 59

Introduction

Manyaspectsofananimal’sbiologyaresexrelated.Habitatpreferences,homeand activity range size, behavior and feeding strategies are some of the ecological parametersaffectedbygenderdifferences(Calder1984,Shineetal.1998b).Despite this, little isknownabouttheinfluenceofsexon varanid life histories, primarily becauseitisverydifficulttodeterminetheirsexinthefield(GreenandKing1978,

Shine1986,Gaulke1997,Sweet1999).

Avarietyofmethodshavebeenutilisedtodeterminesexinvaranids(Piankaetal.

2004).Adultsofsomespeciescanbesexed exsitu bytheradiographicvisualisation ofhemipenialbonesifpresent(SheaandReddacliff1986),buttheabsenceofthese bonesdoesnotalwaysguaranteeafemaleorsmallossificationsinsomefemalescan be confused with hemipenial bones. Fiberoptic laparoscopy (Davis and Phillips

1991) and coelioscopy (Schildger et al. 1999) can be used for the sexing of individualsofalmostanyage,however,logisticalandfinancialconstraintsgenerally prohibit these techniques being readily available to researchers in the field. Adult males of many species in the Odatria subgroup can be identified by scalation differences adjacent to the vent (G. Husband pers. com., Gaulke 1997), whereas other species exhibit sexual dimorphism in head length (Pianka 1994), snout size

(Bennett1998),andoverallbodysize(Shine1986,Auffenbergetal.1991).Manual orautoeversionofhemipenes(Auffenbergetal.1991,Thompson1992a,Weavers

1993, Thompson et al. 1999), and probing of hemipenial pockets (Auliya and

Erdelen1999,Gaulkeetal.1999)havealsobeenusedassexdeterminingtechniques althoughfemalesofsomespeciesareknowntopossesssimilarlyeversiblestructures

4. Usingmorphometricstopredictgenderinvaranids 60 (Böhme1991)andconsciouswildvaranidsactivelyresistprobingandattemptsat manual eversion (Gaulke 1997). More recently, Mayes et al. (2005a) used a combinationofhemipeneeversionandsexhormoneratioswithconsiderablesuccess.

However,thecostandeffortassociatedwiththehormonalanalysisexcludesitasa usefultoolinthefield.

Althoughnumeroustechniquesfordeterminingvaranidsexexist,allhavepitfalls.

Afterreviewingthesetechniques,Gaulke(1997)cautionedthatnofieldmethodsof sex determination in varanids is completely reliable; including behavioral observationssuchascombat(oncepresumedtobeonlymales)andthevisitingof egglaying sites following egg deposition. Importantly, the uncertainty inherent in estimatingavaranids’genderinthefieldisnotamenabletodirectquantification,and assuchanunmeasuredyetimplicitlevelofuncertaintyisalwayscarriedforwardinto further analyses,but hitherto never accounted for. This maybe at leastpart of the reason why past attempts at determining gender with statistical methods havemet withmixedsuccess.

Thompson (2002) determined that bodylength to headlength ratios could not be usedtodeterminesexinmanyspeciesofthe Varanus subgenus,butcouldbeuseful

(whencombinedwithothermethods)inassessinggenderinsomemembersofthe

Odatria . Exploratory analyses (using stepwise discriminant analysis) of various morphological characters in Australian varanids of known sex using museum specimenssuggestedthatmorphologicalcharacterscouldbeusedtopredictgender in ten of the 18 Australian varanid species they studied (Thompson and Withers

4. Usingmorphometricstopredictgenderinvaranids 61 1997).However,theyfoundnosinglemorphologicalvariable,orsuiteofvariables thatcoulddiscriminatereliablybetweensexesforthisgenus.

OuraimistobuildontheexploratoryanalysisofThompsonandWithers(1997)by examiningthemorphometricvariablesthattheynotedforgenderprediction(among othersderivedfromtheliteratureandotherfieldworkers)forsixspeciesofvaranids fromthetropicalnorthofAustralia,usingthelargestdatasetyetassembledforthese species.Becauseexploratoryanalysislacksanybasisforstronginference,Iusedan

InformationTheoretic framework (Burnham and Anderson 2001) with the goal of developingasuiteofmorphologicalvariablesthatcanbemeasuredinthefieldand usedtopredictgenderwithaknownlevelofreliability.

Materialsandmethods A review of the relevant literature and conversations with many varanid field biologistsandcaptivebreederswascarriedouttogenerateasuiteofmorphological variables most likely to enable the determination of gender (Fig. 1). The only variableschosenwerethosethatwereunlikelytochangefollowingpreservationof specimens.Thesemorphologicalvariablesweremeasuredinsixspeciesofgoannas from the Museum of the Northern Territory, the Queensland Museum and the

WesternAustralianMuseum(Table1).Measurementsweremadeto+1mmwiththe bodyofeachspecimenplacedintheapproximatepositionshowninFigure1.For some specimens, where the end of the tail had obviously broken off, the tail measurementwasnotused.Theactualgenderofeachindividualwasdeterminedby visualinspectionofthegonads.

4. Usingmorphometricstopredictgenderinvaranids 62

Table 1. Numberofspecimensexamined,meansnoutventlengths(SVL)+SEand subgenericclassificationforsixspeciesofvaranidsmeasured.

Species Subgenus gender n SVL V.gouldii Varanus M 96 310.90 + 0.98 F 59 267.46+ 1.16 V.mertensi Varanus M 30 348.03 + 3.56 F 21 347.38+ 2.74 V.panoptes Varanus M 22 315.55 + 6.92 F 11 324.00+ 7.24 V.eremius Odatria M 40 148.43 + 0.43 F 23 134.04 + 1.06 V.glebopalma Odatria M 24 313.79 + 1.53 F 7 251.71+ 3.86 V.mitchelli Odatria M 25 206.04 + 2.31 F 19 214.58 + 1.59

4. Usingmorphometricstopredictgenderinvaranids 63

HW MeasurementsKey HL HeadLength HW HeadWidth HH HeadHeight FL ForelimbLength UFL UpperForelimbLength LFL LowerForelimbLength FL HL HindlimbLength UHL UpperHindlimbLength UFL LHL LowerHindlimbLength TA ThoraxabdomenLength TL TailLength SVL SnoutVentLength L TOTL TotalLength(SVL+TL) SVL TA

UHL HL

LHL HH

HL

TL

Figure1. Morphometricmeasurementsusedinmodelconstruction.

4. Usingmorphometricstopredictgenderinvaranids 64 Modeldevelopment

FollowingtherecommendationsofBurnhamandAnderson(2002),multipleworking hypotheses were developed a priori in an attempt to explain which morphometric variablescanbestpredictgender.Thesehypotheseswerebasedonareviewofthe relevant literature, discussions with fellow varanid biologists and the authors’ experience.

Manyparameters were derived from relationshipsbetween morphometricvariables

(Table2)andthenasetofmodels(incorporatingsinglederivedvariables,multiple variables or combinations of variables, Table 3) was developed to represent each hypothesis.Inaddition,afurthermodelwasgeneratedseparatelyforeachspecies, incorporating the best supported parameters that Thompson and Withers (1997) foundtopredictgenderinvaranids.

ConsistentwithBurnhamandAnderson(2001),thenumberofmodels(R)compared to sample size for each species was kept low (R = 9 for all species except V. mitchelli ,whereR=8,see Table3),bydismissingsomehypothesessuspectedtobe unrealisticoruninformativeforthisdataseton apriori grounds.Forexample,many museum specimens had broken tails and therefore the hypothesis that males have longer tails in some species (Gaulke 1997, Shine et al. 1998a), could not be examined.Sinceverylargeadultsofmanyspeciescanberecognisedasmales(Shine

1986), the question of whether the gender of individuals of similar size can be discernedbymorphometricsismoreinterestingandapplicabletofieldresearchers, thereforethehypothesisoftotalsizewasalsoexcluded.Becausethecandidatesetfor eachspecieshadonemodelthatdifferedfromtheotherspecies,theresultantglobal

4. Usingmorphometricstopredictgenderinvaranids 65 models (which incorporate all parameters in every model) were correspondingly different. A null model (where nomorphologicalvariablecanpredictgender,with thepredictionbasedsimplyontheobservedproportion of male: female) was also incorporatedintoeachcandidateset,asthisisanotherplausiblehypothesis.

Modelfitting

Eachmodelinthecandidatesetwasanalyzedasabinomialgeneralizedlinearmodel withalogitlinkfunctionusinggenderastheresponse variable, in theprogram R

(version1.9.0,RDevelopmentCoreTeam2004).Generalizedlinearmodelswerefit firsttotheentiredatasetofeachspecies.Thenwheresamplesizeallowed(n>20), datasetsweresplitintomatureindividuals(basedonsizeatknownmaturityfrom the literature) and the same models were refit to each oftheadultsubsetandthe juvenilesubset.

Modelselection

Model selection was performed using InformationTheoretic model selection methods based on Akaike’s Information Criterion (AIC, Burnham and Anderson

2002). This procedure uses KullbackLeibler information as an objective basis for selectingthemodelthatexplainsthemostsubstantialproportionofvarianceinthe data, yet excludes unnecessary parameters that cannotbejustifiedbythedata(the most"parsimoniousmodel", sensu BurnhamandAnderson2002).

4. Usingmorphometricstopredictgenderinvaranids 66

Table 2. Explanationofallderivedparametersusedinmodelconstruction.

Parameter Derivation Explanation HeadL HL/SVL HeadLengthdividedbySVL HeadW HW/SVL HeadWidthdividedbySVL HeadH HH/SVL HeadHeightdividedbySVL AVL ((FL*2+HL*2)/4)/SVL AveragelengthofalllimbsdividedbySVL HV 648.05*exp (0.0093*SVL) TherelationshipbetweenHeadVolume ((HeadWidth*HeadLength*Head Height)/2)andSVL HL_FL (HL/FL)/SVL (HindLimbLengthdividedbyForelimb Length),alldividedbySVL UpperFL UFL/SVL UpperForelimbLengthdividedbySVL UpperHL UHL/SVL UpperHindLimbLengthdividedbySVL Tail TL/SVL TailLengthdividedbySVL Ta TA/SVL ThoraxAbdomenLengthdividedbySVL LowerHL LHL/SVL LowerhindLimbdividedbySVL UpperFL UFL/SVL UpperForelimbdividedbySVL LowerFL LFL/SVL LowerForeLimbdividedbySVL

4. Usingmorphometricstopredictgenderinvaranids 67 Table 3. Candidatemodelsetsforpredictinggenderofeachspecies,thehypothesis examined under each model and references concerning sexual dimorphism in varanidsleadingtoeachmodel.Thefirstsevenmodelswereusedforeveryspecies. Aneighthmodelforeachspecieswasdeveloped,incorporatingparameterssuggested byThompsonandWithers(1997).Theglobalmodelsarethereforemodelninewith the addition of the new terms included in model eight for that species. Varanus mitchelli hadnonewparametersaddedandthereforeitsglobalmodelismodelnine. No.Model. Hypothesis Reference 1 HL Hindlimblengthvariesinrelationto Gaulke(1997) bodysize(SVL)betweensexes

2 HeadW Headwidthvariesinrelationtobodysize Thisstudy (SVL)betweensexes

3 AVL AverageLimbLengthvariesinrelationto Gaulke(1997) bodysize(SVL)betweensexes Bennett 4 HeadV HeadVolumevariesinrelationtobodysize (1998) Thompson (SVL)betweensexes (2002) 5 HeadV+AVL AcombinationofAverageLimbLengthand Gaulke(1997) HeadVolumevaryinrelationto andthisstudy bodysize(SVL)betweensexes

6 HL_FL AratioofHindlimblengthtoForelimb Gaulke(1997) Length,variesinrelationtobodysize(SVL) betweensexes 7 ~1 nullmodel:Noparametersmeasuredareabletopredictgender V.glebopalma AcombinationofUpperForelimbLength, Thompson 8 UpperFL+UpperHL+Tail varyinrelationtobodysize(SVL)between andWithers sexes (1997) V.gouldii AcombinationofUpperHindlimbLengthand 8 UpperHL+HeadH HeadHeight,allvaryinrelationtobodysize “ (SVL)betweensexes V.mertensi AcombinationofThoraxAbdomenLength, 8 Ta+LowerHL+Tail LowerHindlimbLengthandTailLength,all “ varyinrelationtobodysize(SVL)between sexes V.eremius UpperForelimbLengthvariesinrelationto 8 UpperFL “ bodysize(SVL)betweensexes V.panoptes AcombinationofUpperHindlimbLength,Lower LowerHL+LowerFL 8 ForelimbLengthandUpperForelimblength,all “ +UpperFL varyinrelationtobodysize(SVL)betweensexes HeadL+AVL+HeadV Globalmodel:Allparameterstogetherpredict 9 +HeadW+HL_FL gender.*plusadditionalparametersinmodel8 (above)foreachspecies

4. Usingmorphometricstopredictgenderinvaranids 68 Becausetheratioofsamplesizetoparameterswasalwayslow,thesecondorderbias corrected form AIC c was used as the basis for model selection (Burnham and

Anderson 2002). These AIC c values were then rescaled as simple differences (i) allowing a quick comparison for the ranking of candidate models (Burnham and

Anderson2001).Akaikeweights( wi)werecalculatedforeachspecies’candidateset ofmodels,thusprovidingameasureoftherelativelikelihoodofeachmodel,given each data set and each candidate set. Models were deemed to have substantial supportif ifellwithin12ofthebestmodel(BurnhamandAnderson2001).

Toexaminetheutilityofeachmodelasapredictivetool,theKfoldcrossvalidation predictionerror(Blumetal.1999)wasestimatedforallmodelsineachcandidateset withasubstantiallevelofsupport.Inthisprocedure,dataaredividedrandomlyinto

K groups. For each group the generalized linear modelisfittodataomittingthat groupandthepredictionerror(interpretedaspercentages)associatedwithpredicting observedresponses(i.e.thoseleftoutofthefitting)ineachgroupfromthemodelfit, isgenerated.Inthiscase,leaveoneoutcrossvalidationwasused(whereK=number ofindividuals),allowingallpossiblesplitsofthedatatobeexamined.Thesevalues werethenexpressedaslevelsofpredictionreliability(1predictionerror).

Characteristicbodysize

Kratochvíletal.(2003)recommendcautiousinspectionofbodyscalingparameters before analyses and interpretations of sexual dimorphism are made. Therefore to establishwhichofthreehighlycorrelatedvariablesbestcharacterized“bodysize”of avaranid(foruseinmodeldevelopment),snouttoventlength(SVL),totallength

(TOTL) and thoraxtoabdomen length (TA) were fit as generalized linear models

4. Usingmorphometricstopredictgenderinvaranids 69 (withgenderastheresponsevariable)separatelyacrossallspecies.Allthreemodels had substantial support,allhaving iwithin12ofthebestmodel.Theytherefore couldnotbediscernedfromoneanother(BurnhamandAnderson2001).SVListhe mostwidelyusedintheliterature(Wikelskietal.1997,Shineetal.2001,Webbet al. 2001, Perry and Garland 2002) and was therefore chosen as the characteristic bodysizedeterminant.

Manyphysiologicalvariablesdonotcovaryinalinearfashionwithbodymassand theinterceptoftheregressionlinebetweenthemdoesnotgothroughzero(Packard and Boardman 1999). To examine this potential bias in the data, I plotted all variablesusedagainstSVLandfiteachinterceptthroughzero.AllvariableshadR squaredvaluesofover0.8,withtheonlyexceptiontothisbeingthevariableHead

Volume (HV) whose relationship was shown to vary exponentially with SVL.

Therefore each equation for this relationship was incorporated into all models containingtheHVparameter.

Results

Combinedadultandjuvenilevaranids

Forthree( V.panoptes,V.mitchelli and V.mertensi )ofthesixvaranidsstudied,the most parsimonious model selected in each candidate set was the null model, indicatingthatnoneofthosemodelsexaminedwereabletopredictvaranidgender substantiallybetterthanchance.Allcandidatesetsthatrankedthenullasthemost likely model also ranked models containing head variable parameters with substantial support. Amongst the most supported models in most other species, variousheadvariables,eithersolelyor(lessoften)incombinationwithlimblength

4. Usingmorphometricstopredictgenderinvaranids 70 parameters, were more prevalent in higher ranked models than models containing limblengthparametersonly.For V.eremius ,themodelcontainingthesinglevariable

HL_FLwasclearlythemostsupportedinthecandidateset,explaining61.5%ofthe total variance. The crossvalidation prediction reliability however was 63.0%, indicating that using this parameter alone to determine gender is again not much betterthanchance(50%:50%).

The model set for Varanus gouldii contained three models that were ranked with substantial support. None of the models could be easily distinguished from each other, as indicated by the Akaike weights (Burnham and Anderson 2002). The resultant crossvalidation prediction reliability across the three best ranked models

(mean=57% + 0.05 SD) indicated that these parameters are of little use for determining gender in this species. Varanus glebopalma was the only species for whichamodelorcombinationofotherparameters(HVandAVL+HV)werethebest supportedmodels.Theglobalmodelfitforthisspecieswas58%andtheresultant crossvalidationpredictionreliabilityestimationsaveraged82%.

Adultvaranids

For two of the three species where sample sizes of adults were large enough for analysis ( V. mertensi and V. mitchelli) , two closely ranked best models both contained elements of head and limb variables, suggesting that the morphological differencesbetweenmalesandfemalesinthesespeciesiseitherveryslightand/or areassociatedwithachangeinoverallallometry,ratherthanonesingleattribute.

4. Usingmorphometricstopredictgenderinvaranids 71 The global model for adult V. gouldii was ranked as the best model, as it was eighteentimesbetterthanthenextbestmodelinthe candidate set (basedontheir evidenceratios,AndersonandBurnham2002).Crossvalidationpredictionreliability wasveryhigh(84%)indicatingthattheglobalmodelforthisspeciescouldprove usefulforpredictinggenderinadults(Table4).Standardizedregressioncoefficients

(as used by Conroy and Brook 2003) for the global model showed that the head volume parameter (HV) accounted for three times the variation of the other parameters.

Juveniles

Onlythreespecieshadsufficientsamplesize(n>20)ofjuvenilesforthisanalysis.In juvenile V.panoptes thenullmodelcouldnotbediscernedfromtheotherhighest rankedmodelsmodelsetindicatingthatnomodelcouldbeusedtopredictgender.

The V. mitchelli juvenile dataset had HL_FL ranked as the best model, and its evidence ratio indicated it was 3.4 times better than the next best model. The V. mitchelli globalmodelexplained41%ofthetotalvariationandthecrossvalidation predictionreliabilityforthismodelwas70%.Thismodelispotentiallyausefultool forsexing V.mitchelli .ThethreebestrankedmodelsforsexingjuvenileV.gouldii werethesamebestrankedmodelsintheadultandallindividualscombineddatasets.

Average crossvalidation prediction reliability forthesemodelswithinthejuvenile subsetwas68%.

Previoushypotheses

Acrossallspecies,inallexpandeddatasetsandadultsubsets,noneofthemodels predictedbyThompsonandWithers(1997)wererankedwithin i=12ofthebest

4. Usingmorphometricstopredictgenderinvaranids 72 model, and only 6% of the time they were ranked amongst those models with a reasonablelevelofsupport( i≤ 10).

Genderpredictionin Varanusgouldii

Because the V. gouldii dataset was the largest (n = 155) and the resultant global modelsfortheadultsubsethadareasonablelevelofexplaineddeviance(64%)and high crossvalidation prediction reliability(84%), equations were derived from the globalmodelstopredictgenderinthisspecies.

Male and female V. gouldii appear to mature at different sizes (Shine 1986), and therefore the utility of the following equation is only practical when applied to specimenslargerthanthesizeatmaturityformales.Tosolveforgender(male; y >

0.5< y;female)inanadult(SVL>320mm) V.gouldii with84%reliability;

1 y= 1+ e (Model) where Model = 14.9+(1*AVL)+(0.0037*HV)+(5125.9*HL_FL)+(11.34*UpperHL), the terms AVL, HL_FL and UpperHL are as defined in Table 2 and

HV=648.05*exp (0.0093*SVL) .Tosolveforgender( y)inajuvenile(SVL<280mm) V. gouldii with71%reliability;

1 y = 1+ e (Model) where,Model=6.9+(19.3*AVL)+(0.00557*HV)+(325*HL_FL)(35.7*UpperHL), the terms AVL, HL_FL and UpperHL are as defined in Table 2 and

HV=648.05*exp (0.0093*SVL) .

4. Usingmorphometricstopredictgenderinvaranids 73

Table 4. Summary of secondorder Akaike’s information criterion (AIC c) and associatedstatisticsforallcandidatemodelsfortheanalysisofgenderpredictionin adult and juvenile V. gouldii subsets.Allmodelsarerankedaccordingtosupport, thus i=0forthebestmodel(boldtype).log( L)isthemaximisedloglikelihoodof themodel,AIC cistheselectioncriterion,Kisthenumberofestimatedparameters,

i is the difference between themodel’sAIC cvalueandtheminimumAIC cvalue and wiistheAkaikeweight.Leaveoneoutcrossvalidationpredictionreliabilityfor allmodelswithsubstantialsupport( i≤ 2)arealsoshown.Onlymodelsdisplayinga reasonablelevelofsupport( i <10)areshown.

cv. log( L) Model AIC c K i wi reliability(%) adults (n=83) global 20.791 54.150 6 0.000 0.909 84 HV 26.782 59.722 3 5.572 0.056 AVL+HV 26.326 60.919 4 6.768 0.030

juveniles (n=69) global 33.706 79.980 6 0.000 0.401 71 HV 36.954 80.068 3 0.087 0.383 67 AVL+HV 36.721 81.709 4 1.729 0.168 67 HL_FL 39.572 85.304 3 5.324 0.028

4. Usingmorphometricstopredictgenderinvaranids 74

Discussion Sexualdimorphismiscommoninlizardspecies(Olssonetal.2002),withthemost consistentlydimorphictraitsbeingheadsize(maleshavinglargerheads)andtrunk length (the distance between the front and hind legs) is greater in females. This analysisalsosuggeststhatvariousheadvariables(principallyheadvolume)and(toa lesserextent)scalingoflimbproportionscanalsobeimportantdiagnosticfeatures for gender prediction in some species of varanids.Bennett (1998) stated that male

Varanus salvadorii and Varanus albigularis develop bulbous snouts with extreme oldage.Investigationofsexuallymatureindividualsoftheseandotherspeciesmay showsimilarheadvolumedissimilarities.

Althoughsexualdimorphismhasbeenrecordedamongneonatesnakes(Kingetal.

1999),allometricsexualdimorphismmaynotbepresentinvaranidsuntilmaturation.

Inthisanalysis,thecandidatesetsfittoadultvaranidsshowedahigherproportionof models that could be discerned from null models and higher levels of explained deviance.However,thedegreeofprecisionbywhichtheseparameterscanbeusedto determine gender, basedonthecrossvalidationassessment,wasinmostcasesnot highenoughtowarranttheiruseasapredictivetool.

The most effective gender prediction tool was developed for V. gouldii , wherethe globalmodelforadultvaranids,whichcombinedseveralheadandlimbproportion variables,wasabletopredictgenderwithareasonablyhighlevelofaccuracy.Given thatgenderpredictionin V.gouldii appearsmuchmorereliablethaninotherspecies, withhigherlevelsofvariationexplainedbytheglobalmodelandhighpercentageof correctpredictions,either V.gouldii ismoresexuallydimorphicthanotherspecies,

4. Usingmorphometricstopredictgenderinvaranids 75 or larger sample sizes may be required for effective sex prediction models to be developedforotherspecies.

None of the models Thompson and Withers (1997) found significant using null hypothesis testing were well supported for any of the species I analyzed. This strikingdifferencebetweenresultsofthetwostudieshighlightsthelimitationsofthe nullhypothesisapproachandshows,assuggestedbyAndersonandBurnham(2002), howexploratoryanalysiscansometimesproducespuriousresults.Clearly,although datadrivenmethodscanbeusefulintheearlystagesofanalysis,wenowhavethe benefit of more objective techniques, such as the InformationTheoretic paradigm

(BurnhamandAnderson2002),whichallowmorepowerfulinferencestobemade.

Varanidlizardsprobablyrecognizethegenderofconspecificsusingbehavioralcues andpheromones.Asvaranidscanbeextremelyshyanimals,behavioralobservation studies can be very labor and timeintensive, and discerning gender by behavioral observation is not possible for most research projects unless definite mating / copulatorybehaviorisobserved(e.g.KingandGreen1979,Auffenberg1981,Carter

1990, McCoid and Hensley 1991). Long term studies of varanids could take advantageoftheolfactorysensitivityofadogtrainedinrecognisingdifferentsexes of a certain species by their odor. Other predictive techniques that have been suggested by various authors, such as examination of scale rosettes cranial to the vent in males (Auffenberg 1981) and more prominent skin flaps and scale micropores(S.Sweetperscom.,Gaulke1997),shouldbeinvestigatedinmoredetail forothervaranids.

4. Usingmorphometricstopredictgenderinvaranids 76 Themostreliable(albeitexpensiveandtimeconsuming)methodofsexingvaranid lizardsisbydirectexaminationofthegonads(e.g.Schildgeretal.1999).However forthefieldbiologist,sexspecificDNAprobes,requiringabloodsampletobetaken from each individual, would probably be less costly, both economically and logistically.Suchprobesareavailablefor Varanuskomodoensis (Murphyetal.2002) and Varanusrosenbergii (W.Smithpers.com.)butfurtherworkneedstobedone beforetheyareavailableforotherspecies.

Creatinglargerdatasetsofmorphometricsforotherspeciesandanalyzingthemusing an apriori multipleworkinghypothesisapproachcouldprovidemoreusefulgender predictionmodels.Whenusedinconjunctionwithothermethods,thesemodelswill help expand the capabilities of researchers and others to predict the gender of varanidsinthefield,quickly,inexpensively,andwithaknownlevelofuncertainty thatcanbeappropriatelypropagatedinfurtherstatisticalanalyses.

77

Varanus indicus physiology

Remotedataloggerforrecording V.indicus bodytemperatures Thischapterhasbeensubmittedforpublicationas;

Smith,J.G.,Christian,K.&Green,B.Physiologicalecologyofthemangrove dwellingvaranid, Varanusindicus .JournalofZoology

5. Varanusindicusphysiology 78

5. Varanus indicus physiology

Abstract

Some species of terrestrial lizards in wetdry tropical climates reduce their body temperaturesandactivity,andlowertheirmetabolicratesduringthedryseasonwhen food and water resources are scarce. At least one semiaquatic varanid ( Varanus mertensi )inthisregiondoesnotrespondinthisway,presumably because of year round access to food and water. Varanus mertensi also selects lower body temperatures (T b)thanitsterrestrialcounterparts.Toinvestigatewhetherthereisa trend for reduced (but seasonally constant) T b selection and seasonally constant metabolic rates in other semiaquatic varanids, I studied the thermal biology, energetics and water flux of Varanus indicus, a semiaquatic, mangrove dwelling varanidintropicalnorthernAustralia. Varanusindicus selectsconsistentlylowerT bs than terrestrial varanids, and although they remain active year round, they reduce theiractivityinthedryseason,butnottotheextent of terrestrial varanids. Thus, although food and water depletion are the driving forces behind decreases in dry season T b selection and energeticsformanyvaranids, V.indicus appearsnottobe subjecttothesepressurestothesameextent. Varanusindicus fieldmetabolicrates decreaseby38%inthedryseason,duemostlytoareductioninactivity.However theirfieldmetabolicratedoesnotdiffersignificantlyfromotherterrestrialvaranids or another semiaquatic varanid from the same region. In contrast, the water flux ratesof V.indicus arelowerthanV.mertensi butnotdifferentfromanysimilarsized terrestrialvaranidsstudiedtodate.

5. Varanusindicusphysiology 79 Introduction

Lizards worldwide inhabit a wide range of habitats and climates (Pianka and Vitt

2003) and are therefore subject to a variety of seasonal and thermal conditions.

Studiesofseasonalenergeticsoflizardsinthewetdrytropicshaverevealedvarying responsestotheslightlylowerambienttemperaturesandloweravailabilityoffood andwaterwhichcharacterisethedryseason(Christianetal.2003).Allspecieshave lowernighttimebodytemperatures(T b)inthedryseasonbecauseoftheprevailing environmentalconditions(Christianetal.1999b),somespeciesactivelyselectlower

Tbs during the day (Christian et al. 1983, Christian and Bedford 1995, 1996,

Christian et al. 1999a), some depress their metabolic rate (Christian et al. 1996b,

Christianetal.1996c,Christianetal.1999a),andalldecreasetheiractivityduring thedryseason.Consequently,thefieldmetabolicrates(FMR)ofthesespeciesare lowerinthedryseasonthaninotherseasons(ChristianandGreen1994,Christianet al. 1995, Christian et al. 1996b, Christian et al. 1996c, Christian et al. 1996d,

Christianetal.1999a,Christianetal.2003).

AlthoughsomespeciesselectlowerT bsduringtheday,itisimportanttonotethat thethermalenvironmentinthewetdrytropicspermitsforlizardstoattainhighbody temperatures(T b)throughouttheyear(ChristianandBedford1995,1996,Christian andWeavers1996).Incontrast,thesemiaquaticvaranid Varanusmertensi, doesnot change its seasonal T bs, resting metabolic rates or activity levels considerably betweenseasons(ChristianandWeavers1996,Christianetal.1996d).Althoughthe fieldmetabolicratesof V.mertensi arelowerinthedryseasonthaninthewet,this seasonaldifferenceislargelyattributabletothepassiveconsequencesoflowernight

5. Varanusindicusphysiology 80 time body temperatures (Christian et al. 1996d). Varanus mertensi may be less affectedbyseasonalchangesinthewetdrytropicsbecausethehabitatsitoccupies provide it with year round access to water and food (Christian et al. 1996d). To furtherexaminetheseapparentseasonaltrendsinsemiaquatic,tropicalzonelizards,

Iinvestigatedthethermoregulationandenergeticsof Varanusindicus (Daudin1802), asimilarlysizedsemiaquaticvaranidthatoccupiesmangrovesystemsinthewetdry tropics of northern Australia and other parts of Asia. Given that V. indicus also inhabitshabitatsthatareostensiblyproductiveyearround,Ihypothesizedthatthey would remain active throughout the year without the striking metabolic and behavioural adjustments of terrestrial species in response to the dry season conditions. Because other semiaquatic varanids appear to select lower T bs than terrestrial species of similar size (Wikramanayake and Green 1989, King 1991,

WikramanayakeandGreen1993,ChristianandWeavers1996),Ialsohypothesized that V.indicus wouldthermoregulateatrelativelylowT bs.

Materialsandmethods

Radiotelemetry

Varanus indicus were captured at the Adelaide River study site using baited pipe trapsasoutlinedinChapter3,placedinindividualbags,andtransportedtoCharles

Darwin University, Darwin. Within 2 d of capture, temperature sensitive radio transmitters (Holohil Systems, Canada, model SB2) were implanted intraperitoneally. Beforehand, transmitters were calibrated at 5°C increments between5°Cand40°Cinawaterbath(Grant,USA)usingamercurythermometer traceabletoastandard.Thefinalmassoftransmittersrangedbetween413gandall

5. Varanusindicusphysiology 81 implanted transmitters weighed <3% of an animals’ body mass. Transmitters were surgicallyimplantedin13 V.indicus (6822173g)between2002and2004usingthe methodoutlinedinSweet(1999)andChapter3.

Thermoregulation

I recorded body temperatures of freeranging V. indicus by using an automated system with a fixed antenna, receiver and digital processor (Telonics, USA) connected to a data logger (Campbell CR10X, USA) in2003andacoupledATS

(AdvancedTelemetrySystems,MN)datalogger(ModelR2100)andreceiver(Model

D5041A)in2004.Bothdigitalprocessorsanddataloggerswerecalibratedinthe laboratory prior to taking measurements in the field. Where possible, body temperatures of multiple individuals were recorded at the same time at 15 min intervals.Subsequently,hourlymeanswerecalculatedforeachindividualandgrand meanswerecalculatedforall V.indicus sampledinaseasonforuseinenergybudget calculations.

A wooden thermal gradient was created in the laboratory(4mx1.5m)inanair conditionedroom.Two60wattheatlamps(0.5mabovethebottomofthecontainer, andconnectedtotimers)werespaced0.5mapartfromoneendofthecontainer,thus providing a continuous gradient of substrate temperatures that ranged from 19 to

42 °Cduringthedaytimehours(07:00–18:00).Individual V. indicus were placed oneatatimeinsidethegradientwithathermistorinserted~50mminsidethecloaca.

The thermistor was attached to a HOBO XT temperature datalogger (Onset

Computer Corporation, U.S.A.), which was taped to the side of the tail using an

5. Varanusindicusphysiology 82 adhesive bandage after being calibrated. The T b of each V. indicus was recorded everyminuteovera2dperiod.

Thesetpointrangehasbeendefinedasthe‘preferred’T bofananimal,asmeasured inthelaboratorywithoutotherecologicaldemandsof the environment which may influenceT b(Hertzetal.1993,ChristianandWeavers1996).Thesetpointrangefor

V.indicus wasestimatedusingthecentral50%oftheT bfromthethermalgradientto definetheupperandlowerlimits(Hertzetal.1993).

IrecordedmicroclimatedataasdescribedinChristianandWeavers(1996).Various environmental measurements (mud, water, ambient, inside hollow temperatures) were measured every 15 min for two weeks each season. All measurements were recorded with Hobo Pro series dataloggers (Onset ComputerCorporation,U.S.A.), witha1.5mthermistorattached,allowingsimultaneous measurements ofambient and other substrates (mud, water, or hollow log) temperatures. Shaded air temperaturesweremeasuredat2mabovetheground.

Operative temperatures (T e) represent the interaction between an animal and its environment by incorporating aspects of the physical characteristics of an animal

(e.g., absorptivity and surface areas) and the microhabitat in which it is situated

(PorterandGates1969,Bakken1981,Bakkenetal.1985,Bakken1992).TheT emax andT eminwerecalculatedfromasteadystatebiophysicalmodelbasedonequations inTracy(1982)andsimilartomodelsusedbroadly(PorterandGates1969,Porteret al. 1973, Porter and James1979,PorterandTracy1982, Waldschmidt and Tracy

5. Varanusindicusphysiology 83 1983) including input data based on animal characteristics and microclimate data collected from the study site. An absorbtivity value of 87% was measured for V. indicus usingmethodsoutlinedinChristianetal.(1996a).

Because of the relatively large size of V. indicus (mean mass =1265 g ± 43) the animalsdonotchangeT binstantly.ThereforeT esalonearenotsufficientasanindex ofbodytemperaturesastheanimalsmovethroughathermallycomplexenvironment

(Christian et al. 2006). Thus, to develop thermoregulatory indices, I used the null modelbasedapproachofChristianetal.(2006),asynopsisofwhichisgivenbelow.

A null distribution of predicted T b (predT b) between the maximum (T emax) and minimum operative temperatures (T emin) was generated (in True BASIC). The predT b represents the body temperatures achievable by the animal based upon V. indicus ’bodysize,T e,andthebodytemperatureoftheanimalintherecentpast(as theanimaliswarmingorcooling).TocalculatepredT barandomstartingplacewas assigned(correspondingtoasiteinwhichthemicroclimateatthattimeisbetween

TemaxandT emin),andarandomlengthoftimeforthemodeledanimaltoremainin that spot was also assigned. The predicted body temperatures (predT b) was calculatedfortheanimalinthatplaceforeachminutethattheanimalremainedthere.

This calculation was done using T e as the driving force, and the thermal time constant, (takenfromregressionequationsgeneratedfromdatain(Dzialowskiand

O'Connor2001)toincorporatebodymass.Theformoftheequationis:

T=T0+(T eT0)*e1/ where T0 is the temperature at the time the animal first enters the new place.

Different time constants were used for warming and cooling. The program then

5. Varanusindicusphysiology 84 assigned a new random place and time, calculated the corresponding predT b, and continuedthesestepsoverthecourseofthewholeday(24h),repeatingthisprocess for1000dtogenerateanulldistributionofrandompredT bachievablethroughoutthe day.

Usingthisnulldistribution,Ideterminedanumberofthermoregulatoryindicesfor anytimeduringtheday(Table1).IcalculatedthemeanpredT bforeachhourofthe day and then compared these values with the actual animal T b (as measured by telemetry)ateachhourusingtheindicesofHertzetal.(1993).Themeandeviation ofananimal’sfieldactivebodytemperaturesfromitssetpoint(orpreferred)range,

db,asdefinedbyHertzetal.(1993)wascalculated.Thisindexisanindicationofthe accuracy of thermoregulation. A measure of the thermal quality of the animal’s environment ( de), is the mean deviation of T e from the animal’s setpoint range

(Hertz et al. 1993) was also calculated. For large ectotherms, it is appropriate to substitute the mean achievable body temperature (predT b) for mean T e to calculate de.

The“Effectiveness”ofthermoregulationasdefinedbyHertzetal.(1993)as:

E=1–( db/ de) was calculated, where a value for E of 0 indicates a random selection of thermal environments, and a value for E of 1 indicates careful thermoregulation. An alternative to this index, simply de db, was suggested by BlouinDemers and

Weatherhead (2001). The “Exploitation” of the thermal environment (Ex) was calculatedas:Ex=(amountoftimeananimalhasabodytemperaturewithinitsset

5. Varanusindicusphysiology 85

Table 1. Definitions of the parameters and indices used for quantifying

thermoregulationby V.indicus .

Indexorsymbol Definition Derivation

Tb Bodytemperature Measuredremotelyvia radiotelemetry

Te Operativetemperature Theequilibrium temperaturethatthe lizardswouldobtainina givenmicroclimate.

Tset SetpointrangeofT bs Thecentral50%ofthe Tbsselectedinthe thermalgradient.

db Anindexoffieldbody Meanoftheabsolute temperaturesrelativeto valueofthedeviationsof thesetpointrange fieldactiveT bsfromT set .

de Anindexofaverage Meanofthedeviationsof thermalqualityofa TefromT set . habitat

E Effectivenessof 1(d b/d e) temperatureregulation

Ex Exploitationofthe Thetimeinwhichan thermalenvironment animal’sT bsarewithin Tset ,dividedbythetime availablefortheanimal tohaveitsT bwithinT set .

5. Varanusindicusphysiology 86 pointrange)÷(amountoftimeduringthedayinwhichitispossiblefortheanimalto achieveitssetpointrange)(ChristianandWeavers1996).

Fieldmetabolism

3 18 Thedoublylabeledwater( HH2 O)technique(LifsonandMcClintock1966)was usedtomeasurefieldmetabolicrates(FMR)andwaterfluxoffreeranginganimals overameanperiodof21dinthewetseasonand31dinthedryseason.Blood samples(0.3ml)weretakenfromthecaudalveinbeforeinjectionsof440 L(mean value)of 18 Oand1mloftritiatedwater,8to12hafterinjection,anduponrecapture.

IsotopicsamplesweremeasuredattheDivisionofSustainableEcosystems,CSIRO,

Canberra.Thetechniquesforsampleanalysistodetermineisotopicmeasurementsof

FMR and water flux are described in detail elsewhere(ChristianandGreen1994,

Christian et al. 1995, Christianetal.1996b,Christian et al. 1996c, Christian and

Weavers1996,Christianetal.1996d).

For comparison, I used the empirical equation for reptiles (Nagy et al. 1999) to predicttheFMRof V.indicus ,usingthemeanmassoftheanimalsIsampledineach ofthetwoseasons.Allometricequationsforreptilesfromaridandtropicalregions

(Nagy1982)wereusedtocalculatepredictedwaterfluxratesforcomparisonwith measuredvaluesfrom V.indicus .

Energybudgetcalculations

EnergyexpenditurewasderivedfromfieldCO 2estimatesusingathermalequivalent

1 of26kJL CO 2.FieldmetabolicratewaspartitionedintocomponentsduetoT b and activity for each season by combining field and laboratorydata.Aregression

5. Varanusindicusphysiology 87 equation was derived to relate body temperature to resting metabolism (as determinedfromlaboratorymeasurements,Schultz2002).Thiswasthencombined with field body temperatures separately for both seasons, during the day (09:00 –

18:00 h) and night (the remaining 14 h) to estimate the total resting metabolism

(TRM)underfieldbodytemperatureconditions(BenabibandCongdon1992).The oxygen consumption values were converted to units of energy using the energy

1 equivalentof20.08kJL O 2(BenabibandCongdon1992).

Activityrespiration(AR,BenabibandCongdon1992)iscalculatedasthedifference between the FMR and TRM and provides an index of the amount of energy expended in activities such as locomotion, digestion, and reproductive costs (van

Marken Lichtenbelt et al. 1993). The percentage of the total field metabolism allocatedtoactivity(%AR)iscalculatedasAR/FMRX100(AndersonandKarasov

1981). The field maintenance scope is derived from the ratio of FMR/TRM

(CongdonandTinkle1982),andiftheanimal'sbodymasschanges<1%d 1,thiscan betermedthesustainedmetabolicscope(SusMS,Petersonetal.1990).

Statisticalanalyses

Seasonal means were compared using ANCOVA with body mass as a covariate.

Differences between means were considered statistically significant when P≤ 0.05 and means are presented ±1 SE. I report results of new statistical comparisons

(ANCOVA)withotherspeciesof Varanus ofsimilarsizefromthesameregionusing datacollectedinpreviousstudies(Christianetal.1995,Christianetal.1996d).

5. Varanusindicusphysiology 88 Results

Thermoregulation

Themeanmassofthe V.indicus usedinthecalculationofstandardmetabolicrate

(SMR,997±204,Schultz2002)wasslightlysmallerthanthoseoftheanimalsused inthecalculationsofFMR(1265±43).Thesetpointrangeselectedby V.indicus was30.9–33.5ºC(Table2).Inthewetseason, V.indicus grandmeanT boverlaps thesetpointrangefor4.5hours(15:3020:00)andinthedryseason,thegrandmean

Tb overlaps the set point range for 6.0 hours (13:0019:00; Fig. 1). The daytime grandmeansinthewet(30.0 °C)versusthedryseasons(29.5 °C)wereverysimilar, as were the night time grand means (29.5 and 28.0 °C respectively). Maximum temperaturesselectedby V.indicus duringthedryandwetseasonswereverysimilar

(33.1and32.1 °Crespectively)andtherewasonly1.8 °Cdifferencebetweenthewet

(27.0 °C)anddryseason(25.2 °C)minimumtemperatures.

Table3showsvariousthermoregulatoryindicesandthenumberofhoursperdaythat varanids can and do achieve their setpoint range, comparing V. indicus from this study with V. panoptes, V. gouldii and V. mertensi from Christian and Weavers

(1996).Duringthehoursbeforeandaftersunset,inboththewetanddryseasons,the

Tbsof V.indicus arehigherthaneitherT evalue,indicatingthattheanimalsarein treehollows(aphenomenonalsosupportedbyradiotelemetry observations) which provide a warmer microhabitat than ambient external temperatures (Christian and

Weavers1996).

5. Varanusindicusphysiology 89

Table2. ThesetpointrangesandmeanT b(asmeasuredinthelab)for V.indicus and othervaranidsfromthesameregion(datafromChristianandWeavers1996).

Lowerset Upperset MeanT b inlab

Species point( °°°C) point( °°°C) (°°°C)

V. indicus 30.9 33.5 32.3

V.panoptes 35.8 37.6 36.7

V.gouldii 34.0 36.3 35.1

V.mertensi 33.1 35.5 34.2

5. Varanusindicusphysiology 90 Table 3. Summary of body temperature data and thermoregulatory indices of V.

indicus (bold,thisstudy)andthreeothervaranidsfromthesameregion(Christian

andWeavers1996)duringthewetanddryseasons.

Time Timeset Grand setpoint point Mean Midday range range T T b b possible exploited Ex Species (°C) (°C) de db dedb E (h) (h) (%) WetSeason V. indicus 30.3 30.6 3.2 0.9 2.31 0.7 10.0 2.6 26 V.panoptes 36.4 35.2 7.0 1.5 5.5 0.8 8.7 1.0 12 V.gouldii 35.9 35.9 6.4 0.2 6.15 0.9 9.1 8.7 96 V.mertensi 34.0 34.0 8.9 0.5 8.45 0.9 11.3 8.1 72 DrySeason V. indicus 29.7 31.4 1.6 1.0 0.66 0.4 8.0 5.1 64 V.panoptes 36.2 36.2 2.1 0.9 1.28 0.6 7.3 5.0 68 V.gouldii 28.2 28.2 1.9 5.7 3.75 2.0 7.8 0.0 0 V.mertensi 33.4 33.4 1.4 1.0 0.48 0.3 8.1 6.0 74 Tb =Bodytemperature Te = Operativetemperature db = FieldT brelativetosetpointrange de =Averagethermalqualityofhabitat E=Effectivenessoftemperatureregulation Ex =Exploitationofthethermalenvironment

5. Varanusindicusphysiology 91

Duringthedryseason,thed eisapproximatelyhalfwhatitwasinthewetseason,a resultofsuitablemicroclimaticconditionsfor V.indicus tostaywithintheirsetpoint range.AccordingtoChristianandWeavers(1996), V.mertensi alsoexperienceslow de during this season. During the wet season V. indicus is the least careful thermoregulatorofallsimilarsizedtropicalAustralianvaranidsstudiedtodate(as indicated by index E, Table 3). Varanus indicus also does not thermoregulate as carefullyinthewetasinthedryseason(E=0.40 versus E = 0.72 respectively).

Varanus indicus in the dry season exploits 64% of available time in its setpoint range,whereasinthewetseason V.indicus spendsverylittletime(Ex=26%)within itssetpointrange.

Fieldmetabolism,waterfluxandenergybudget

Sixlizardswererecapturedafterinjectionwithisotopesinthewetseasonandfour wererecapturedinthedryseason.Recapturedwetseasonlizardsgainedameanof

10%bodymass,anddryseasonanimalslostameanof1%bodymass.Totalbody waterestimatesremainedthesameinthewetanddryseasons(Table4).Waterinflux rates were significantly lower ( P =0.0006)inthedryseason,representinga43% decreaseinwaterfluxandwetseasonwaterinfluxratesweremuchhigherthanthose predicted for lizards in arid andtropicalzones(Nagy 1982). However, in the dry season,thepredictedwaterinfluxratesfortropicallizardsexceededthosefoundin

V.indicus. Duringthedryseason V.indicus waterfluxwassignificantlylowerthan

V.mertensi (P=0.02)butnotdifferentfrom V.panoptes or V.gouldii .Duringthe wet season, V. indicus water flux was significantly higher than V. panoptes ( P =

0.0007)butnotdifferentfrom V.mertensi or V.gouldii .

5. Varanusindicusphysiology 92 TbWet TbWet a) 50 predTadjTbWetbWet

TTemaxWetemaxWet TTeminWeteminWet

u 40 setpointrange l

30 Temperature(°C) 20

10 0 2 4 6 8 10 12 14 16 18 20 22 24 Hour TTbDrybDry 50 b) predTadjTbDrybDry

TemaxDry TemaxDry TeminDry TeminDry 40 u setpointrange l

30

Temperature(°C) 20

10 0 2 4 6 8 10 12 14 16 18 20 22 24 Hour Figure 1. Grand mean body temperatures (T b; as measured by radiotelemetry),

predictedT b(predT b),setpointrange,andoperativetemperatures(T emax

andT emin)asafunctionoftimeofdayforfreerangingV.indicus during the(a)wetseasonand(b)dryseason.

5. Varanusindicusphysiology 93

Table4. Waterfluxrates,totalbodywater(TBW=%bodymass,derivedfrom 18 O dilution),asdeterminedfromisotopicanalysis,andwatereconomyindex(WEI,see textfordetails)forfieldactive Varanusindicus duringwetanddryseasons.Sample sizesandmassesareasinTable1.Standarddeviationsareinparentheses.Therates of water flux predicted by the allometric equations for arid and semiarid zone reptilesandfortropical,subtropicalzonereptiles(Nagy1982)arealsoshown.

Wetseason Dryseason (n=6) (n=4) Mass(g) 1210(580) 1242(618)

Waterinflux(mld 1) 83.4(9.4) 35.8(10.8)

Predicted:arid(mld 1) 24.4 25.0

Predicted:tropical(mld 1) 51.0 51.9

Waterinflux(mlkg 1d 1) 81.3(32.6) 32.2(13.3)

TBW(%) 71.2(3.0) 70.0(2.7)

WEI(mlkJ 1) 0.5(0.14) 0.3(0.05)

5. Varanusindicusphysiology 94

Thewatereconomyindex(WEI)istheratioofwaterfluxtoFMRwiththeunitsof ml kJ 1 (Nagy and Peterson 1988). During the wet season WEI was significantly higher(64%, P =0.02)thanthedryseasonvalue.Duringthedryseason V.indicus’

WEI is lower than V. mertensi ( P = 0.009) but not V. gouldii (P= 0.66) or V. panoptes ( P =0.70).DuringthewetseasontheWEIishigherin V.indicus thanin V. gouldii ( P= 0.02)and V.panoptes ( P=0.04),butnotdifferentfrom V.mertensi ( P =

0.54).

TheFMRwassignificantlylowerinthedryseasonthaninthewet(Table5, P =

0.01),representinga38%(69.6kJd 1)reductioninFMR.Thedecreaseindryseason

FMRisdueinparttolowernighttimetemperatures(3%)butmostlytoadecreasein activity(97%).ThewetseasonFMRof V.indicus wasnotdifferentfrom V.gouldii,

V.panoptes or V.mertensi ,norwasthedryseasonFMRdifferent.Allotherindices

(AR, SusMS and AS) were higher in the wet season than the dry (Table 6). The predictedvaluesofFMRforareptile(Nagyetal.1999)weremuchlowerinthewet butverysimilartothoseof V.indicus inthedryseason.

Thedensityof V.indicus alongAdelaideRiverisestimatedas10.9adultanimals’ ha 1 using recapture estimates and the number of captures per trapping session

(Chapter8).Usingthisvalue,theestimatedenergyexpenditureforthepopulationis

1328kJha 1d 1inthewetseasonand826.7kJha 1d 1inthedryseason(62%ofwet seasonexpenditure).

5. Varanusindicusphysiology 95

Table 5. Field metabolic rate and water flux rates of V. indicus (this study) and another semiaquatic varanid, V. mertensi (from Christian et al. 1996d) and two terrestrial species from the same northern Australian region (from Christian et al.

1995).

FMR Waterflux Species Period (kJkg 1d 1) (mlkg 1d 1) V. indicus wetseason 161.4 81.3 dryseason 98.7 32.2 V.mertensi wetseason 120.7 63.1 dryseason 81.1 66.6 V.gouldii active 196.4 50.7 inactive 66.5 19.5 V.panoptes active 143.2 41.4 inactive 56.3 21.0

5. Varanusindicusphysiology 96 Table 6. Carbondioxideproduction,fieldmetabolicrates(FMR), and meanbody mass of freeranging Varanus indicus during the wet and dry seasons. Standard deviations are shown in parentheses. Predicted FMR was calculated with the equation for reptiles from Nagy et al. (1999).Thetotalrestingmetabolism(TRM) was calculated using field body temperatures in the laboratorydefined equation relating body temperature to resting metabolism, summed over 24 h and can be dividedintorestingmetabolismduringactiveperiods(RMA)andrestingmetabolism duringinactiveperiods(RMI).Theamountofenergyexpendedinactivity(AR)is estimated as the difference between the FMR and TRM. The sustained field metabolic scope (SusMS) is calculated asFMR/TRM.The percentage of the total fieldcostsallocatedtoactivity(%AR)iscalculatedbyAR/FMRx100.Thefield activityscope(AS)is=(FMRRMI)/RMA.

Wetseason Dryseason (n=6) (n=4) Mass(g) 1210 (580) 1242(618)

CO2(mlg 1h 1) 0.36 (0.05) 0.16(0.06)

FMR(kJkg –1d–1) 161.4 (31.4) 98.7(35.3)

FMR(kJd –1) 184.4 (71.8) 114.8(45.1)

PredictedFMR(kJd –1) 107.8 110.4 RMA(kJkg –1d 1) 11.1 11.2 RMI(kJkg –1d 1) 14.9 13.0 TRM(kJkg –1d 1) 26.0 24.2 AR(kJkg –1d 1) 135.4 74.5 %AR 83.9 75.5 SusMS 6.2 4.1 AS 13.2 7.6

5. Varanusindicusphysiology 97

Discussion Thermoregulation

Althoughnostatisticalcomparisonsweremade,theT b’sselectedby V.indicus were

4ºClower(inbothseasons)thanthemiddayT b’s of the semiaquatic V. mertensi , whichselectssignificantlylowerT b’sthantwoterrestrialvaranids( V.panoptes and

V.gouldii )fromthesamearea(ChristianandWeavers1996).Varanusindicus also uses the widest range of temperatures of the northernAustralianlizardsstudiedto date.

If V. indicus were inactive throughout the dry season, in order to maximize their savingsofenergyandwater,theycouldselectdeepshadefortheentiredayinorder toachievethecoolestT bspossible.However,Fig.1(b)showsthataround09:00T bs arethesameasT eminbutrapidlyincreasefrom11:00untiltheirT biswithintheir setpointrange,thenT bgraduallydecreasesfromaround14:00fortheremainderof theday.Thissuggeststhat V. indicus remain active during the dry season,atrend thatissupportedbyradiotrackingdata(Chapter6).Furthermore,thissuggeststhat these lizards are actively thermoregulating in the dry season, albeit not to the maximumextentpossibleintheirthermalenvironment.Theycouldemerge,baskand achievetheirsetpointrange1.5hearlierinthedryiftheyexploitedtheirthermal environmenttothefullest(Fig.1b).

All three tropical varanids (including V. indicus ) that remain active during the dry season show a similar trend of exploiting their thermal environments to a greater extent during this time. Varanus indicus spend some days in one place (in tree hollowsorinthesametree,Chapter6).Thesurroundingfloodedwetlandsandhigh

5. Varanusindicusphysiology 98 tidelevelsduringthewetseasonwithinAdelaideRiverprobablyprovidesufficient food(allanimalsgainedmassduringthistime)suchthatanimalswouldnothaveto forage each day. It is possible that removing these days from the analysis may increasetheExvaluesforbothseasons.However,asT bwasloggedremotelyforthis study,daysofinactivityforeachindividualcouldnotbedetermined.

Duringthedryseason,thed eisapproximatelyhalfthewetseasonvalue,indicating moresuitablemicroclimaticconditionsfor V. indicus tostaywithintheirsetpoint range. Varanusmertensi alsoexperienceslowd eduringthisseason,withthehabitat for V. panoptes and V. gouldii being slightly less thermally favourable relative to theirsetpointranges(ChristianandWeavers1996).Itseemslikelythat V.indicus thermoregulate at T b’s that embody a tradeoff between saving energy and water, whilebeingabletoremainactive(HueyandStevenson1979).If V.indicus remain activetoforage,theywouldalsoneedtobeabletoavoidpredators(Christianand

Tracy1981)anddigestanyfoodtheyobtain.

Meanmidday(11:00h16:00h)T bsweremarginallylowerthanthesetpointrange duringbothseasonsandwereconsistentlylowerthantheotherthreetropicalspecies.

ThemeanlabT bselectedby V.indicus wasalsolowerthan V.panoptes , V.gouldii and V.mertensi . Varanusindicus’ setpointrangeandmiddayT bsarealsolowerthan othertropical,terrestrialspeciesbutsimilartothesemiaquatic V.mertensi andother semiaquatic varanids (Wikramanayake and Green 1989, Traeholt 1995,

WikramanayakeandDryden1999).Themangroveforeststhat V.indicus inhabitare generallyheavilyshaded(meancanopycoverrange=5175%),andalthoughthermal microhabitatsarepresentallyearthatwouldenabletheirsetpointtemperaturestobe

5. Varanusindicusphysiology 99 attained,itispossiblethat V.indicus selectslowerT b’sbecausetheeffortrequiredto shuttle between these patches of sun may outweigh the advantages of higher T b selection (Hertz et al. 1993). In this way, V. indicus share some similarities with

Hypsilurus spinipes , an agamid that lives in deeply shaded rainforest and is a completethermoconformer(Rummeryetal.1995).

Giventhatsemiaquaticvaranidsevolvedfromdifferentvaranidlineages(Ast2001), thethermaldatapresentedhereandelsewhere(Christianetal.1996d)suggestthat the relatively low T b’s selected by semiaquatic species are not related to phylogenetichistory.

Waterflux

Water influx rates of V. indicus were much higher in the wet season than those predictedforlizardsinaridandtropicalzones(Nagy1982),butinthedryseason,the influxrateswerelessthanthepredictedvalue. Varanusmertensi hasgreaterratesof water flux than those predicted by Nagy (1982) in both the wet and dry seasons

(Christianetal.1996d).However,thewetdrytropicsofnorthernAustraliadonot fitneatlyintothesecategoriesbecausealthoughthewetseasonishumidandcould beclassedas‘tropical’,thedryseasonhascharacteristicssimilartothoseinthearid zone.

Given that V. indicus inhabitenvironmentsthatabutfloodplainsandriversystems yearround,itisreasonabletoassumethattheyhaveaccesstowaterthroughoutthe yearandthereforeobtainatleastpartoftheirwaterfromsourcesotherthanfood.To copewithestuarineenvironmentstheymaypossessspecializedsaltsecretoryglands

5. Varanusindicusphysiology 100 like another Australian varanid mangrove specialist, V. semiremex (Dunson 1974).

ThedryseasonwaterfluxratesofV.indicus arelowerthanthoseof V.mertensi but notdifferentfromthesimilarsizedterrestrialspeciesstudiedtodate(Christianetal.

1995,Christianetal.1996b). Varanusmertensi (whichisactiveyearround)showed noseasonalchangeinwaterfluxrate,whereas,like V.indicus ,thedryseasonwater fluxratesin V.panoptes and V.gouldii (whichreducetheiractivityforsomemonths) werehalftheirwetseasonvalues.

Thewatereconomyindex(WEI,NagyandPeterson1988)assessesthewaterfluxes of animals relative to their energy expenditure. The lower the ratio, the less water animalsuseforthesameenergyoutput,andthusdesertanimalstendtohavelower

WEIthannondesertspecies.ThedryseasonWEIfor V.indicus waslowerthanthe semiaquatic V.salvator andtheterrestrial V.bengalensis (calculatedfromDrydenet al.1992,dryseasonvaluesreportedonly).BothofthesespeciesinhabitareasinSri

Lanka with abundant water supplies, and they obtain approximately 60% of their water from drinking and pulmocutaneous exchange. Although water is always availablefor V.indicus ,foodmaybelessabundantduringmonthlylowtidephases inthedryseason(whentheadjacentfloodplainis also dry), and hence V. indicus mayforageless.

Fieldmetabolicratesandseasonalenergybudgets

Theextentofseasonalmetabolicreductionexhibitedby V.indicus (38%)duringthe dryseasonislowcomparedtoothervaranidspeciesintheregion,except V.mertensi

(33%, Christian et al. 1996d) . In V. mertensi , the reduction is due to the passive consequence of lower night time temperatures, whereas this phenomenon only

5. Varanusindicusphysiology 101 accounts for 3% of the dry season reduction in V. indicus , the remainder due to decreased activity. This observation is supportive of other radio tracking data

(Chapter6)indicatingthat V.indicus islessresponsivetoseasonsthanthesavannah species, but more so than V. mertensi .Sofar,alllizardsstudiedintheAustralian wetdrytropicsexhibitlowerFMRsinthedryseason,buttherelativecontributions ofthebehavioralandphysiologicalmechanismstoachievethisvariesamongspecies

(Christianetal.2003).

Theestimatedenergyexpenditureforthe V.indicus populationinthewetseasonis

1,328kJha 1d 1andinthedryseason,827kJha 1d 1.Theenergeticexpenditureof anislandpopulationoftheiguana Cycluranubila wasestimatedas4,800kJha 1d 1

(Christianetal.1986).Thishighvalueresultedfromthecombinationoflargebody sizes(upto6,000gc.f. V.indicus max=3,750g)andahighpopulationdensity,over two times the maximum value estimated for V. indicus along Adelaide River ( C.

1 1 nubila 23ha cf V.indicus 10.9ha ). Cycluranubila alsoselecthigherdaytimeT b’s

(30.538.6 °C)whichwouldcontributetothishighervalue. [0]

Apopulationofthesmall(mass=30–40g)insectivorous agamid Lophognathus temporalis ,whichlivesintropicalsavannahsofnorthernAustralia,expends113kJ ha 1d 1inthedryseasonand612kJha 1d 1 inthewetseason(Christianetal.1999a) even though they can persist at much higher population densities than V. indicus

(107125 lizards ha 1). Similarly the densities of Anolis bonairensis (mean= 8 g) ,

Cnemidophorusmurinus (mean=77g)and Gonatodesantillensis (mean=1g)inthe

Caribbean were 1318, 561, and 4200 individuals ha 1 respectively (Bennett and

Gorman1979)andtheirfieldactiveestimatesofenergyexpenditurewere693,2,510

5. Varanusindicusphysiology 102 and 379 kJ ha 1 d 1, respectively. The herbivorous Galapagos marine iguana

Amblyrhynchuscristatus canreachdensitiesof2,000individualskm 1ofcoastline on some islands (Wikelski et al. 1997) and the daily energy expenditure of a representative 1kg adult is 70 kJ d 1 (Nagy and Shoemaker 1984), which is approximatelyhalftheaveragevaluefor V.indicus.

Clearly the amalgam ofbodysize,density,foragingmode,seasonalityandactivity levelsdeterminetheenergyflowthroughdifferentlizardspeciesindifferentsystems.

Varanus indicus provides an interesting example because it shows generally intermediatephysiologicalresponsestoseasonalchanges,betweenthesemiaquatic

V. mertensi that remains active year round and the terrestrial V. gouldii and V. panoptes thatspendatleastsometimeinactiveduringthedriestpartoftheyear.An investigation of the seasonal productivity of the mangrove system along Adelaide

River(particularlywithregardto V.indicus ’preyitems)wouldhelptodeterminethe causesoftheirreducedactivityandenergyexpenditureinthedryseason.

103

Xrayphotographof V.indicus showinglocationof implantedtransmitterandantenna,aswellas hemipenealossifications.

Home range and movements of

V. mertensi and V. indicus

6.Homerangeandmovements 104

6.Homerangeandmovementsof V. indicus and V. mertensi

Abstract

Varanidsaresomeoftheworld’slargestlizardswithmanylargeterrestrialspecies occupyinglargehomeranges.Littleisknown,however, about space use by semi aquatic varanids. I used radiotelemetry and markrecapture techniques to examine differences in space use between sexes, seasons, andbodysizesinthetwosemi aquaticAustralianvaranids, Varanusmertensi and Varanusindicus .Both V.mertensi and V. indicus were active throughout the year, unlike other terrestrial varanids in

Australia that are limited byresources(particularlyfoodandwater)duringthedry partsseason.Varanusindicus hasasurprisinglysmallhomerangewhencomparedto thatofothersimilarsizedvaranids,andthesizeof Varanusmertensi ’shomeranges varysubstantially,thefullextentofwhichmaynothavebeendetecteddespitethe duration of this study. Body size was the only discernible influence on the home range of V. indicus (larger animals having larger home ranges), whereas no influences on the home range of V. mertensi could be detected. An interaction betweenbodysizeandgenderinfluencedthedistances V. indicus moved, whereas interactionsbetweenbodysize,gender,andseasonalityallinfluencedthedistances

V.mertensi moved.Giventhelinearnatureofthespaceutilisedby V.mertensi ,the calculationofhomerangeasymptoteswerenotconsideredrealisticforthisspecies, becausebootstrapandsimilarmethodshavenoflexibility at present for removing sectionsofminimumconvexpolygonsthatareunlikelytobeused.Incontrast,the twoyear markrecapture data for V. indicus supported the precision of the home rangeestimatesderivedfromradiotracking.

6.Homerangeandmovements 105

Introduction

Itisgenerallyacceptedthatmostanimalslimittheir movements to a defined area over a period of time and this area is typically referred to as a ‘home range’

(Kernohanetal.2001).Considerableworkhasbeendevotedtoexaminingthefactors thataffectinterandintraspeciesvariationinhomerangesize.Lizardhomeranges increasewithbodymassanddecreasewithincreasedhabitatproductivity(Turneret al.1969,ChristianandWaldschmidt1984,PerryandGarland2002).Largerspecies withhigherenergeticrequirementsmustoccupylargeareastoobtainsufficientfood, butevensmallspeciesoccupyrelativelylargehomerangeswhentheavailabilityof foodislow(StannerandMendelssohn1987).Variationinhomerangesizeamongst lizardshasalsobeenattributedtodifferencesinageandsex(SchoenerandSchoener

1982), dominance status (Schoener and Schoener 1982), trophic level (Schoener

1968),andforagingmode(Rose1982,ChristianandWaldschmidt1984,Perryand

Garland2002).

Pronouncedseasonaldichotomiesinmanyclimatesleadstoreducedactivityoreven inactivitybylizardsduringcolderorlessproductiveperiods(GreenandKing1978,

Christianetal.1995,Griffiths1999).Somespeciesofterrestriallizardsinwetdry tropicalclimatesreducetheirbodytemperaturesaswellastheiractivity,andlower their metabolic rates during the season when food and water resources are scarce

(Christian and Weavers 1996, Christian et al. 1999a). Two semiaquatic lizards

(Varanusmertensi and V.indicus )fromtropicalAustraliadonotrespondinthisway, ostensiblybecauseofyearroundaccesstofoodandwater.Chapter5andChristianet al.(1996d)havedemonstratedthattheycanbothspeciesremainactivethroughout

6.Homerangeandmovements 106 theyear,buttowhatextenttheiruseofspaceiseffectedbyseasonalityhasnotyet beenexamined.

Severalstudieshaveexaminedtheuseofspacebyvaranidsinvariouspartsofthe world,andingeneral,thesestudieshavefoundthatmalestendtomovefurtherthan females in the breeding season (Stanner and Mendelssohn 1987, Carter 1990,

Thompson et al. 1998, Guarino 2002, Ibrahim 2002, Perry and Garland 2002).

Varanids also show large home range overlap and little evidence for territoriality

(althoughseeSweet1999foranexception),andsome studies over longer periods have demonstrated that some varanids do not form fixed home ranges at all

(Auffenberg1981,1988,1994).

Northern Australia has a high diversity of varanids with as many as 11 species occurring in the same region (Sweet 1999). Clearly, varanids have been able to exploit a wide variety of niches and habitats: saxicoline ( V. glebopalma, V. acanthurus ),arboreal( V.prasinus,V.glauerti ),semifossorial( V.primordius )and semiaquatic ( V. indicus, V. mertensi, V. mitchelli, V. semiremex) (Pianka et al.

2004).Theuseofspacebyvaranidsinthesestructurallycomplexenvironmentswill no doubt be different to the ground dwelling species (e.g. V. gouldii and V. panoptes ).

There are four semiaquatic species of varanid in Australia, and the larger two,

Varanus mertensi and Varanus indicus , inhabit ostensibly different aquatic environments.Theobjectiveofthisstudywastoexaminetheuseofspacebythese two large, semiaquatic varanids in the tropical north of Australia. Specifically, I

6.Homerangeandmovements 107 examine whether gender, body size and seasonality affect the spaceused by these species. In keeping with the findings of Chapter 5 and Christian et al. (1996d), I hypothesizethatseasonaleffectson V.indicus and V.mertensi’ sspaceusewillbe less pronounced than in other sympatric varanids and that body size will scale positivelywithspaceuse.Ialsopredictamalebiastowardsgreatermovements,in agreementwithallotherworkonvaranidstodate.

Materialsandmethods

Radiotelemetry

ForstudysitesofbothspeciesandallcapturemethodsemployedrefertoChapter3.

Individuals of both species were implanted intraperitoneally with VHF radio transmitters (Holohil SB1 and SB2, Canada). Prior to implantation, the 13 V. mertensi analysedinthisstudyweresexedusingexternalmorphologicalfeaturesand hemipenial eversion (where possible), and all 11 V. indicus were xrayed to determinegender.

Varanus mertensi was radiotracked manually by boat at least once every month between August 2000 and March 2002. Individuals were located using an ATS

Receiver (Advanced Telemetry Systems, U.S.A.) and hand heldYagiantenna.All locations were recorded using a GPS (Garmin 12XL). The majority of fixes of V. mertensi were obtained during the wet seasons of 2000 and 2001, and seasonal comparisonsofmovementsarelimitedtothefixesofonlyfiveindividualsinthedry seasonof2001duetotransmitterfailures.

6.Homerangeandmovements 108 For V.indicus ,dailylocationsofeachlizardwererecordedwithinatwoweekperiod in both the wet season and dry seasons (see Chapter 3 for definitions) of 2002.

Because many V. indicus were located in the same place after many consecutive days,amoreintensiveperiodwasundertakeninthe2003dryseason,incorporating four fixes d 1 (where possible, restricted by tides), three hours apart, to examine whetherindividualsweremovingthroughoutthedaybutthenreturningtothesame locations. The poor condition of the access trackin 2003 wet season prevented a similarlyintensivewetseasonsample.Theclosestadjacentmangrovestriptothe V. indicus study site was located downstream on the eastern (opposite) bank; it was surveyed numerous times for missing radiotracked varanids to document possible dispersaleventsorlargerhomerangeareas;howevernonewereeverrecorded.

Homerangesof V.mertensi and V.indicus

For animals that occupy linear habitats such as river systems, conventional calculations ofhomerangesizearenotapplicable(Tuckeretal.1997,Kay2004).

For animals whose movement patterns are geographically restricted, GIS software canbeusedtosubtractunusedhabitatfrominitialcalculationsofhomerangearea.

Linearhomerangeshavebeenusedtoquantifyhomerangesoffreshwatercrocodiles

(Tucker et al. 1997), river otters (Melquist and Hornocker 1983), and estuarine crocodiles(Kay2004).Givenanytwopointsalongthebankinalinearhomerange, thepaththeanimaltraversedisknownatthebroadscale.Thisdefinitionbecomes lessprecisewhenconsideringanimalstraversingalinearhabitataroundapolygon, suchasadam(i.e.animalscouldswimacross,ratherthantravelaround).Although many conventional methods of space use analysis are advantageous because of greater comparability between studies and the relatively objective criteria for

6.Homerangeandmovements 109 determining ‘normal’ movements and activity centres,thesemethodsweredeemed inappropriatefor V.mertensi .Ithereforeestimatedthehomerangeof V.mertensi in alinearfashionthatIdefinedasthedistanceinmetresalongthebankbetweentwo mostdistantpointsrecordedforeachindividual,delineatedbya10mbuffereither sideofthebankedge.Thisbufferwaschosenbecause V.mertensi seldomtraveled furtherthan10mawayfromthewater’sedgeevenwhenbeingpursued(persobs) andwereoftendetectedinreedsorliliesupto10mintothewater.Noobservations weremadeof V.mertensi swimmingacrossthedam,eitherdirectlyorinsuccessive dailytelemetrylocations.Therefore,theselinearhomerangesareconsideredavalid estimate of the space use for this species. For V. indicus , conventional Minimum

ConvexPolygons(MCPs)weregenerated,andunusedhabitats(e.g.floodplainsin thedryseason)wereremovedfromtheresultantpolygons.

Analyses

AllspatialanalyseswereperformedusingArcViewGISsoftware(ver.3.2a,ESRI,

Redlands,California)withtheanimalmovementextension(AMAEver.2.04,Hooge and Eichenlaub 2001) and georeferenced base layer maps from the Northern

TerritoryGovernment,DepartmentofNaturalResources,EnvironmentandtheArts.

Common automated methods, such as bootstrapped areaobservation curves and incrementalanalysiswerenotappropriatefor V.indicus becauseofalargenumberof fixes from the same location (see Results). Random selection of subsets of these pointsinmanyinstanceswillnotdefineanMCP.Incrementalareacurveswerenot constructedfor V.mertensi becausethehomerangesof V.mertensi arehighlylinear; therefore, the only way that area curves would not asymptote isifeachindividual

6.Homerangeandmovements 110 continuously traveled in the one direction around the bank of the dam and thus increasingitshomerange,aclearlyuntenablenotion.

Although locations obtained over short intervals such as the two week periods examined for V. indicus are generally termed ‘activity ranges’ rather than home ranges(Thompson1994,Thompsonetal.1998,Thompsonetal.1999),Iexamined the accuracy of the home range estimates by comparing them with data from a simultaneousmarkrecapturestudy(Chapter7).Usingthesedata,Icalculatedhome rangesfromthemaximumstraightlinedistancesbetweenthetwofurthesttrapsin whichanindividualwascaught.Inthisanalysis,Iusedonlyindividualsthatwere captured more than three times and whose entire recapture record was contained withintheinsideofthetrappinggrid(i.e.,withnorecordsattheextremeendsofthe site),wereused.

Rangeoverlap

Static interactions between individuals were stimated using percentage overlap of

100%MCPsfor V.indicus, andLHRfor V.mertensi :

R1,2 =A 1,2 /A 1andR 2,1 =A 1,2 /A 2, where R 1,2 istheproportionofAnimal1’srangeoverlappedbyAnimal2’srange,

R2,1 istheproportionofAnimal2’srangeoverlappedbyAnimal1’srange,andA 1,2 is the area of overlap between R 1 and R 2 (Kernohan et al. 2001). Straightline distancestraveledwerecalculatedusingtheAnimalMovementpackageforArcview

3.2(for V.indicus ),andthenetworkanalystfunction(Arcview3.2)for V.mertensi .

Thelattermodel constrainedalldistancecalculationswithinthelinearhomerangeof eachanimal.

6.Homerangeandmovements 111

Dataanalysis

Threeexplanatoryvariablesthathavebeenshowntobeinfluentialonthespaceuse of varanids were used to generate multiple working hypotheses to examine which variables best predict various spatial statistics in both species. I hypothesize that eithergender(StannerandMendelssohn1987,Carter1990,Thompsonetal.1998,

Ibrahim2002,PerryandGarland2002),bodysize(Turneretal.1969,Christianand

Waldschmidt1984),season(GreenandKing1978,Auffenberg1988,Auffenberget al. 1991, Ibrahim 2002), or combinations of these variables, would influence the movementsandhomerangesof V.indicus and V.mertensi .Accordingly,thesewere used as single variable models, or in combinations, to represent each hypothesis

(Table1).

Each model was run as a generalised linear model (GLM) in the program R (ver

1.9.0, R Development Core Team 2004). Because the ratio of sample size to parameterswasusuallylow,thesecondorderbiascorrectedformofAIC(AIC c)was used as the basis for all model selection (Burnham and Anderson 2002). For calculations of the distance an animal is likely to move and the probability of an animalmoving(asbothofthesedatasetscontainedrepeatedmeasuresofthesame individuals), model selection was undertaken using mixed effects models that account for individuals as a random effect (Crawley 2003). Examination of subsequentinteractionswascarriedoutonthefulleffectsmodelsusingtheeffects packageinR(Fox2003).

6.Homerangeandmovements 112 Table 1. Candidatemodelsetsforpredictingvariousspatialstatisticsin V.mertensi and V.indicus ,thehypothesisexaminedundereachmodelandreferencesconcerning spaceuseinvaranidsleadingtoeachmodel.

No. Model. Hypothesis Reference 1 sex Maleandfemalevaranids Stannerand demonstratedifferencesintheir Mendelssohn1987, useofspace. Carter1990,Thompson etal.1998,Ibrahim 2002,PerryandGarland 2002 2 SVL Differentsized(SVL)varanids Turneretal.1969, utilisespacedifferently(e.g.larger Christianand animalstravelfurther). Waldschmidt1984 3 season Varanids’movementpatternsand GreenandKing1978, homerangesvaryaccordingto Auffenberg1988, seasonality. Auffenbergetal.1991, Ibrahim2002

6.Homerangeandmovements 113

Results Homerange

Withinbothspecieshomerangesizesvariedgreatlyamongindividuals(Figs1and

2,Table2),and V.indicus displayedhomerangesthatweremoretypicalofsmaller varanids(Fig.3). Varanusmertensi meanlinearhomeranges(BA)were13.6haand

6.3haformalesandfemales,respectively.Meanhomerangesize V.indicuswas4.7 haformalesand0.9haforfemales(Table3).

Bodysize(SVL)wasthebestrankedinthecandidatesetformodelingthehome rangesof V.indicus (Table4),having94%likelihoodofbeingthebestmodel(19 timesmorelikelythanthenextmodel)andexplaining 28%ofthetotalvariation.

Figure 4 shows the fitted model curve (with 95% confidence intervals) over the actual range of values recorded, which illustrates that home ranges of V. indicus increaseonlyslightlyasanimalsincreaseinbodysize.Thelargehomerangeoutlier inFigure4isfromonelargemale(2050g,meanof100animalswas1102g)whose movementsweremuchgreaterinthedryseasonof2002.

Differencesinhomerangesbetweenseasons,gendersorbodysizesof V.mertensi couldnotbediscerneddefinitivelyasthenullmodelwasthebestsupported(Table

4)andtheunivariatemodelssex,seasonandSVLexplainedverysmallamountsof thevariance(mean=1.6%).

6.Homerangeandmovements 114

Metres

Figure 1. Home ranges of Varanus indicus throughout 2002 and 2003, based on

Minimum Convex Polygons clipped to remove unused habitat. Open

polygons: males; stippled polygons with thick borders: females. Inset:

GenerallocationofstudysiteinAdelaideRiver,Australia.

6.Homerangeandmovements 115

Kilometres

Figure 2. Schematic representation of the home ranges of V. mertensi around the

bankofMantonDam. Solidlines:males,dottedlines:females.Inreality

theselinearhomerangesoverlayonthebankofthedam.Inset:General

locationofstudysiteinAustralia.

6.Homerangeandmovements 116

Table2 .Seasonalhomerangesandsummarydatafor Varanusindicus and Varanus mertensi . One fix per day was taken, except for individuals M1, F3, F4 and F5, wheretheintensivedryseasonfixeswererecorded.Homerangeisestimatedusing

100% Minimum Convex Polygons (MCP) for V. indicus and linear home ranges

(LHR)for V.mertensi (seetextfordetails).M=Male,F=Female.

Wetseason Dryseason max max Sex SVL Mass # MCP dist. # MCP dist. &ID (mm) (g) fixes (ha) (m) fixes (ha) (m) V. indicus M1 360 900 4* 3.0 238 45 0.43 104 M2 435 1200 12 0.4 123 13 0.12 160 M3 480 2050 13 2.8 157 12 12.00 667 M4 450 1550 12 0.7 97 13 2.70 321 M5 380 900 15 1.7 174 15 0.14 134 M6 440 1350 14 0.4 179 F1 390 900 12 0.3 87 22 N/A** 44 F2 420 1000 12 0.4 111 14 0.92 192 F3 390 640 45 0.20 104 F4 360 500 45 0.27 93 F5 430 900 45 0.49 76 LHR LHR V. mertensi (ha) (ha) M1 420 950 23 2.1 558 27 16.8 4633 M2 500 1850 30 5.1 1620 30 1.9 727 M3 525 2350 59 3.1 964 M4 540 2500 38 7.7 M5 510 2250 30 2.7 1304 M6 520 2400 32 6.0 1990 M7 485 1650 40 6.3 2142 M8 415 1150 20 6.9 3345 F1 460 1750 32 3.1 852 29 5.2 2217 F2 510 2250 29 13.4 2982 14 4.0 969 F3 410 990 31 11.2 964 19 1.1 365 F4 430 1250 31 3.0 F5 485 1350 14 3.0 *Onlyfourfixescouldbeobtainedandthenanimalcouldnotbefollowedonto floodplaininwetseason **AnimalstayedintwotreesforentireperiodandthereforeanMCPcouldnotbe generated

6.Homerangeandmovements 117

70

60 V. griseus

50

40

30 V. tristis 20 V. rosenbergi Meanrange(ha) V. glauerti 10 V. gouldii V. mertensi V. glebopalma V. indicus V. olivaceous 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 Meanmass(g) Figure3. Relationshipbetweenrangesizeandbodymassforselectedmediumsized

varanids (V.rosenbergi ,GreenandKing1978, V.olivaceous ,Auffenberg

1988,V.indicus,V.mertensi ,thisstudy, V.gouldii ,Thompson1994, V.

glauerti ,Sweet1999, V.glebopalma ,Sweet1999, V.tristis ,Thompsonet

al.1999, V.griseus ,Ibrahim2002).Closeddiamondsarereportedhome

ranges,opensquaresarereportedactivityranges(hencehomerangesmay

belarger).

6.Homerangeandmovements 118 Table 3 . Home range sizes and summary data for Varanus indicus and Varanus mertensi . Note that the number of fixes for V. indicus M1 also incorporates the intensivedryseasondata(4fixesperday,seetext).

Sex SVL Mass # MCP # &ID (mm) (g) fixes (ha) zeromoves V. indicus M1 360 900 49 4.9 0 M2 435 1200 25 1.1 13 M3 480 2050 25 12.0 3 M4 450 1550 25 3.1 14 M5 380 900 30 2.4 8 F1 390 900 34 0.3 14 F2 420 1000 26 1.6 8 LA V. mertensi (ha) M1 420 950 50 21.8 0 M2 500 1850 60 5.3 0 F1 460 1750 61 3.7 0 F2 510 2250 43 14.0 0 F3 410 990 50 1.1 1

6.Homerangeandmovements 119

Table4 .SummaryofmodelselectionusingAIC cfortheanalysisofhomerangesize in V.indicus and V.mertensi ,usinggeneralisedlinearmodeling(family:Gamma). log( L)isthemaximisedloglikelihoodofthemodel,AICcistheselectioncriterion,

Kisthenumberofestimatedparameters, iisthedifferencebetweenthemodel’s

AIC cvalueandtheminimumAIC cvalueand wiistheAkaikeweight.Allmodelsare ranked according to support, thus i=0forthebestmodel(boldtype).Theterm

%dev describes the amount of deviation each model explains (%). Only models displayingareasonablelevelofsupport( i<10)areshown.

Model log( L) AIC c K i wi %dev V. indicus SVL 15.615 36.153 2 0.000 0.940 28 sex 18.574 42.070 2 5.917 0.049 14 null 21.729 45.744 1 9.590 0.008 V. mertensi null 166.564 335.461 1 0.000 0.545 sex 166.346 337.782 2 2.321 0.171 3 season 166.491 338.073 2 2.612 0.148 1 SVL 166.563 338.216 2 2.755 0.137 0

6.Homerangeandmovements 120

14

12

10

8

6 Activityrange(ha)

Homerange(ha) 4

2

0 360 380 400 420 440 460 480 Snoutventlength(mm) Figure 4. Relationship between home range and snout vent length (and 95%

confidenceintervals)in V.indicus aspredictedbytheSVLmodelinTable

4.Singledotsrepresentobservedindividuals.

6.Homerangeandmovements 121 Distancestraveled

Mean daily and maximum distances traveled varied greatly both between seasons and between sexes (Table 2). Mean maximum distances traveled during the wet seasonwere147mfor V.indicus and1672mfor V.mertensi .Inthedryseasonthese distanceswere189mand1782mfor V.indicus and V.mertensi, respectively.Body size, gender and season all influenced the distances V. mertensi move, with the global model including all of these variables being the best supported in the candidateset(Table5).Thesethreevariablesalsoinfluencethedistances V.indicus move,withthebestmodelbeingtheinteractionbetweensexandbodysizebutwith substantialsupportforseveralothermodels.

Inthedryseasonsimilarsizedmaleandfemale V.indicus movesimilardistances, withlargerindividualsofbothgendersmovingfurther.Inthewetseason, V.indicus malesofallsizesarelikelytomovesimilardistances, whereas in the dry season, smallerfemalesarelikelytomovefurtherthanlargerones.Thelongestmovements recordedfor V.indicuswerelessthan V.mertensi ,butmale V.indicus movedgreater distancesinboththedry(447mvs.136m)andwetseasons(340mvs.96m).

Larger male V. mertensi inthedryseasonmovelessthansmallermales,whereas femalesofallsizesappearlikelytomovesimilardistances.Bothlargermalesand females move further in the wet season than smaller ones. In the wet season, the longestlineardistancetraveledby V.mertensi was1240mbyamaleand2403mby afemale.Duringthedryseason,thelongestlineardistancestraveledwere3073mby amaleand1276mbyafemale.

6.Homerangeandmovements 122 Table5 .SummaryofmodelselectionusingAIC cfortheanalysesofactualdistances movedin V.indicus and V.mertensi ,usingmixedeffectsmodeling(family:Gamma) incorporating individuals as a random effect. All models are ranked according to support, thus i = 0forthebestmodel(boldtype).log( L)isthemaximisedlog likelihoodofthemodel,AIC cistheselectioncriterion,Kisthenumberofestimated parameters, iisthedifferencebetweenthemodel’sAIC cvalueandtheminimum

AIC c value and wiistheAkaikeweight.Theterm%devdescribesthe amount of deviation each model explains (%). Only models displaying a reasonable level of support( i<10)areshown.

Model log( L) AIC c K i wi %dev V. indicus sex*svl 40.114 90.715 5 0.000 0.248 14 sex*season 40.258 91.004 5 0.289 0.215 13 season*svl 40.238 90.964 5 0.249 0.219 13 sex 42.673 91.539 3 0.824 0.164 8 svl 42.880 91.952 3 1.237 0.134 7 season 45.531 97.256 3 6.541 0.009 2 null 46.478 97.051 2 6.336 0.010 globalmodelfit 36% V. mertensi global† 130.295 279.996 9 0.000 0.743 13 season*svl 136.362 283.178 5 3.182 0.151 9 sex*season 136.780 284.014 5 4.018 0.100 9 season 141.767 289.713 3 9.716 0.006 6 globalmodelfit 13% † V.mertensi globalmodel:sex*season*svl

6.Homerangeandmovements 123

Dailymovementsof V.indicus

Thedryseasonintensiveradiotrackingsurvey(4fixesperday,3hapart)revealed that V.indicus individualstendtomovesmalldistancesmoreoftenthanwasdetected by daily recordings of location, but they do not move far from their previous location. In 61% records, animals did not move (between consecutive fixes), and many individuals remained in the same tree for up to seven days. Others moved occasionallythroughouttheday,butgenerallyonlysmalldistances(35–65m),and mostmovementwasinthemiddleoftheday(Fig.5).

Overlap

Therewashomerangeoverlapbetweenindividualsofbothspecies,bothbetween and within sexes and mean overlaps in V. indicus home range were consistently greaterthanthoseof V.mertensi (Fig.6).Intraspecifically,therewerefewobvious patterns except that the male tofemaleoverlapfor V.indicus increasedinthewet season. The lowerfemaletofemaleoverlapinboth species probably results from fewerradiotrackedfemales.

6.Homerangeandmovements 124

160

140

120

100

80

60

40 Meandistancemoved(m) 20

0 09:00 12:00 15:00 18:00 Time Figure5. Meandistances(±SD)movedby V.indicus throughoutthedayduringtwo

weeksofradiotelemetryinthedryseasonof2003.Valuesshownaremeans

of 39% of records, taken 4 times daily(wherepossible according to tide

height).Intheremaining61%ofrecords,individualsdidnotmove.

6.Homerangeandmovements 125 a) 50

45 40

35

30 25

Overlap% 20 15

10 5 0 FtoF MtoF MtoM

b) 100 90 80 70 60 50 40 Overlap% 30 20 10 0 FtoF MtoF MtoM Genderandseasons Figure 6. Mean(±SE)homerangeoverlapbetweenandwithingenders of a) V.

indicus andb) V.mertensi .Openbars:dryseason;filledbars:wetseason;

stripedbars:bothseasonscombined.Theyaxesarenottouniformscale.

6.Homerangeandmovements 126

Theseestimatesforbothspeciesarelikelytobeconservativebecauseradiotracked

V.indicus werefoundinthesametreeandsomewereoccasionallyinthesametree as other individuals that were notbeingradiotracked (5% of observations) and V. mertensi wereoftenseentogether,particularlywhenbaskingonlargerocks.

Discussion

Spaceuseofsemiaquaticvaranids

Typically,theareasoccupiedbyterrestrialvaranidsofsimilarsizeto V.mertensi and

V. indicus arelarge(King1980,Thompson1992a,Weavers1993, Christian etal.

1995, Ibrahim 2002), and many larger terrestrial varanids (>5000g) have home rangesexceeding150ha(Auffenberg1981,Philipps1995,Guarino2002). Varanus indicus, however, has home ranges that are typical of smaller species (Thompson

1993, James 1996, Sweet 1999). Previous relationships between body size (mass) andhomerangesize(basedmostlyonsmallspecies,Turneretal.1969,Christian andWaldschmidt1984),includingthemostrecentbyGuarino(2002,whichtakes intoaccountlargermonitors),alsoestimatedmuch higher home range values than thoserecordedherein for V.mertensi and V.indicus .Cautioninthesecomparisons must be stressed because all the home ranges of varanids reported to date vary in studydurationandsamplesize,andfewofthesestudieshaveexaminedhomerange asymptotesintheiranalysis.

Onepossibleexplanationforthesmallerthanexpectedhomerangesof V.indicus is thattheydonotneedtotravellongdistancestoforage.Dailytidalfluctuationsmay

6.Homerangeandmovements 127 bringinmanyoftheirpreyitemssuchasfish,mudskippers and crabs (Lugo and

Snedaker1974,LososandGreene1988,Robertsonand Daniel 1989, Saenger and

Snedaker 1993, Smith et. al. unpublished data) and their arboreal nature and the abundance of hollows may provide other known food sources such as birds eggs, smallmammals,otherreptilesandarthropods(pers obs,LososandGreene1988).

Similarly,thearboreal Varanusolivaceous hassmallhomerangesatcertaintimesof theyearbecausetheydonottravelfarfromthefruitingtreesuponwhichtheyfeed

(Auffenberg 1988). For both V. indicus and V. olivaceous , the unrecorded but prominentverticalcomponenttotheirspaceusewouldincreasethevolumeoftheir home ranges (Perry and Garland 2002). A more informative measure may be to define threedimensional home ranges for these species(JenssenandNunez1998,

Lovern2000).

Incontrastto V.indicus , V.mertensi tendnottoformstablehomeranges,atleastnot throughoutthe3yearsofthisstudy.Someofthe particularly large home ranges observed for V. mertensi were heavily influenced by single radiotracking fixes, occasionallylargedistancesfromwheretheseanimalswereusuallyencountered.For exampleoneanimaltraveled5.47kmin5days.Rose(1982)postulatedthatlizards that are not territorial and continually forage in search of food may cumulatively increasetheirhomerangesizes.Itisthuspossiblethat V.mertensi similarlywander

(astheydoinothermanmadewaterbodies,Christian2004)astheyforagealongthis linear strip. Similarly Auffenberg (1981, 1988, 1994) reports that some Varanus komodoensis and Varanusbengalensis aretransientinthisway.

6.Homerangeandmovements 128 WhileIstudied V.mertensi’ suseofspaceinalargemanmadewaterbody,itshome range dynamics may differ in other natural permanent water bodies such as billabongs which are comparatively small. In the wet season, V. mertensi can be foundfarfromthesewaterbodieswhenwaterisabundantinthelandscape(Christian

2004).Whethertheseindividualsdisperseawayfromorreturntothesamelocations eachyearremainstobeinvestigated.

Homerangesizesof Varanusbengalensis and Varanusalbigularis havebeenfound tovaryaccordingtotheavailabilityoffood(Auffenbergetal.1991,Philipps1995).

However, for varanids in regions where temperature is more or less constant and wherefoodisavailableyearround(whichmayoccurinpermanentaquaticsystems), less pronounced seasonal effects would be expected. Indeed this is the case throughout for the semiaquatic Varanus salvator (Gaulke et al. 1999).

Themostpredominantpreyitem( Holthuisanasp. ;freshwatercrabs ) of V.mertensi in manmade irrigation channels of Western Australia, were present during all seasonsinboththesestudies(Shine1986,Mayesetal.2005b).MantonDammaybe asimilarsourceofyearroundresourcesfor V.mertensi .

Although mangrove systems are highly productive (Finlayson et al. 1988), worldwide they show distinct seasonal fluctuations in fish (Robertson and Duke

1990,RookerandDennis1991),crab(Emmerson1994) and arthropod abundance

(Lefebvreetal.1994),withthehighestabundancesbeingassociatedwithincreased rainfall. Many predatory species respond to this seasonality in resources by being more active, and breeding, during these resource rich times (Lefebvre et al. 1994,

Noske1996).Similarly, V.indicus couldberespondingtodecreasedproductivityin

6.Homerangeandmovements 129 themangroveforestduringthedryseasonbyeatinganddrinking(andthusmoving) less (Chapter 5). Even if the large seasonal differences in prey abundance usually experiencedbyvaranidsinterrestrialhabitatsareminimisedbyregulartidalinfluxes fromtheAdelaideRiver,largerindividualsmaystillneedtotravelfurther,ormore often, to meet their relatively larger energetic requirements (Garland Jr 2002).

Further research is required to determine to what degree food resources fluctuate throughouttheyearfor V.indicus .

Distancestraveled

Both species and individuals in this study showed great variation in the distances traveled,bothwithinandbetweenseasons,gendersandthroughouttherangeofbody sizes.Previousstudieshavesimilarlyshownthatdailydistancestraveledbyvaranids can vary greatly between days, seasons and individuals (Auffenberg 1981, Stanner andMendelssohn1987,Auffenberg1988,Auffenbergetal.1991,Thompson1992a,

Weavers1993,Philipps1995,Thompsonetal.1999).Auffenbergetal.(1991)found no significant relationship between the body size of adult V. bengalensis and the distances they moved each week, and no relationship between sex and distance moved,althoughsomemalesmovedmorethanfemalesinsomeseasons.

One particularly large V. indicus (2050 g, mean of 104 animals 1102 g) showed movements during the dry season that greatly increaseditshomerangeandwhich wereallmadeonconsecutivedaysinJune.Theseobservationsareconsistentwith otherrecordsofmalevaranidstravelinglargedistancestovisitfemalesduringtheir breedingseason(Gaulkeetal.1999,Thompsonetal. 1999). Apairof V. indicus werealsoseenmatingonatreebranch(inacopulationpositionasdescribedbyKing

6.Homerangeandmovements 130 andGreen1999)duringthistime.Thus,itappearsthat large male V. indicus also travel greater distances during their breeding season (late June/early July), presumablytofindmates.

Varanusindicus dailyactivity

Intensive (3hourly) radiotracking (and trapping data) showed that V. indicus occasionallymoveshortdistancesduringthelower tides throughout each day,but never very far, and thus the daily measurements were not recording the small movements they make as they emerge (presumably to forage) for a small distance and then return to their original tree. Varanus indicus movedrelativelylittlewhen comparedtoothersimilarsized,terrestrialvaranids(GreenandKing1978,Kinget al. 1989, Auffenberg et al. 1991, Ibrahim 2002), V. mertensi (this study) and the larger but also semiaquatic Varanus salvator (Gaulke et al. 1999). Again, by decreasing their activity (i.e., not moving for many days or moving very little) V. indicus woulddecreasetheirenergyexpenditure(asdemonstratedinChapter5)and needtoforageless.Itislikely V.indicus areemployingthissedentarystrategywhilst occupyingaproductivesysteminordertoenablethemtoattainsuchacomparatively large body size. These findings agree with Perry and Garland (2002), who have shown that the distance lizards move (hence home range sizes) are mediated by dietaryneedsandfoodavailability.

Theactivityof Varanusindicus duringhightideperiodsisunknown,althoughthey areobservedmorecommonlyasthetideisrising(persobs).Preliminaryspooland line tracking suggested that they travel along small runoff channels within the

6.Homerangeandmovements 131 mangroveforestasthewaterrecedes,toforageonpreytravelingoutwiththetide

(persobs),ashasbeenobservedfor Crocodylusporosus (persobs).

Overlap

Thelargeoverlapofhomerangesbetweenthesexesandthroughoutseasonsforboth

V. indicus and V. mertensi is consistent with otherstudiesthatshowvaranids are generally not territorial (Green and King 1978, Auffenberg 1981, Stanner and

Mendelssohn1987,Thompson1992a,Thompson1994,althoughseeSweet1999for anexception).Furthersupportforthisresultwasprovidedbythe V.indicus trapping data, where many individuals were captured simultaneously, including up to three individualscaughtinthesametrap(Chapter3).This,togetherwiththefactthatother

V. indicus were commonly observed in the area, clearly shows high densities of animals with overlapping home ranges, further evidence for high productivity (at leastfor V.indicus ’food)inthismangrovesystem.

Overlap values for V. mertensi were only derived from the edges of each animals homerange(astheyarelineararoundthebankedge),andthesevaluesare probably alsounderestimatedsinceonly22%ofthe57individualscaughtinthestudyperiod wereradiotracked,andindividualswereobservedmanytimesbaskingtogetheron large rocks. Christian (2004) also records large overlapping home ranges for V. mertensi.

Homerangeestimation( V.indicus )

Trappingresultsshowthatthehomerangeestimatesderivedfromradiotracked V. indicus areprobablyveryclosetotheentirespacetheyuse . Eleventrappingsessions

6.Homerangeandmovements 132 (conducted quarterly overthreeyears),hadanaveragemaximumdistancebetween thetwofurthestrecaptures(upto16foroneindividual)of152m(Fig.7).Themean maximum distance between all recapture points for each individual was 188 m, indicating that the combined wet and dry season activity ranges as determined by radiotelemetryareprobablyrepresentativeofhomerangesforthisspecies.

Previousstudiesonsmallmammalshaveshownthattrappingproducessmallerhome rangeestimatesthanradiotracking(Paveyetal.2003),particularlyatlowdensities

(Ribbleetal.2002).Thisphenomenondoesnotseemtobethecasefor V.indicus, and may be partly explained by the discretenatureofthemangroveforestandthe effectivenessofthetrapdesign.Forinstance,radiotelemetryrevealedthatveryfew animals(n=2animals,1.7%oftotalfixes)venturedoutintotheadjacentfloodplain orfishfarmduringthisstudy.Giventhattherecaptureratesfor V.indicus canbe quitehigh(Smith2004,Chapter3),itislikelythatsedentaryindividualswerebeing recapturedsufficientlyfrequentlytoestimatetheirhomerangetoasimilarprecision asthatdetectedbyradiotracking.

6.Homerangeandmovements 133

400 350 R2=0.53 300

250

200 150

100

50

Maximumdistancebetweentraps(m) 0 0 5 10 15 20 No.ofrecaptures Figure 7. Number of recaptures of V. indicus against maximum distance (m)

betweenthefurthesttwotrapsinwhicheachindividualwasrecaptured.

6.Homerangeandmovements 134 Conclusions

Influencessuchasseasonandbodysizegovernthespatialdynamicsof V.indicus and V. mertensi , yet these effects are less influential for these two semiaquatic speciesthanforterrestrialvaranids,mostlikelybecauseoftheapparentlyhigh(and moreseasonallyconstant)availabilityoffoodandwaterforthesespecies.

Examinationofthevaranidliteraturerevealsthatmuchvariationexistsinbothinter andintraspecificspatialinteractionsandnosinglevariableorsmallsetofvariables islikelytogoverntheirspaceuse.Thisisareflectionofvaranid’sbroadecological variationandlifehistorytraits.WhiletheuseofGISbasedsoftwarehasincreased our understanding of animals’ use of space, development of more sophisticated programstoexaminecomplexsystems(suchasthethreedimensionaluseofspace by arboreal or semiaquatic species, Lovern 2000) would provide more realistic estimationsofthespaceusedbyspeciessuchas V.indicus and V.mertensi .

135

Settingpipetrapsinthemangroves Asetpipetrap

Population dynamics of V. mertensi and V. indicus Searchingfor V.mertensi atMantonDam

7.Populationdynamics 136

7.Populationdynamicsof V. mertensi and V. indicus

Abstract

ThepopulationdynamicsofAustralia’stwolargestsemiaquaticvaranids, Varanus indicus and Varanus mertensi , form the basis for this chapter. Estimation of V. indicus’ survivalprobabilitywasattemptedusingmarkrecapturedatafrom3years oftrappingdata,whilst V.mertensi survivalprobabilitywasderivedfromknownfate modelingofradiotrackedindividuals(2.6years).Violationoftheequalcatchability assumptionby V.indicus precludedanyinvestigationintotheprobablecausesofany variationinapparentsurvivalprobabilityforthisspecies.Howeverfor V.mertensi, I demonstratedefinitivelywhatintuitionsuggests;thatapparentsurvivalprobabilityin longlivedlizardsishighovershortsamplingperiods,withbodysize,gender,anda linear trend all influencing these estimates. Both species, in particular V. indicus showedveryhighdensitieswhencomparedtoothervaranidsoftheirsize,thishigh density likely results from the highly productive habitats with which they are associated. Radiotracking was found to be more effective for the longterm monitoringofvaranidpopulations;however,removalofalltrapsandoldbaitsources between markrecapture sampling periods is a possible method to reduce trap shyness in further studies of this type. For survival estimation in populations of speciesaslonglivedasvaranids,longertermstudies(perhapsspanningdecades)are required.

7.Populationdynamics 137

Introduction

Lizardsareacommoncomponentofmanyfaunalassemblagesthroughouttheworld

(PiankaandVitt2003)andhaveevolvedavarietyoflifehistorystrategies(Ballinger

1983,DunhamandMiles1985,Shine1985,Dunhametal.1988,Vittetal.2003).At the population level, these variants in life history traits ultimately correspond to differencesinlongevity,fecundity,andabundanceamongstthetaxa(PiankaandVitt

2003). Two major generalisations can be made about the population dynamics of lizards:1)longevityishighlyvariablebetweentaxa(Auffenberg1981,Thompsonet al. 1992, Bull 1995, Elmouden et al. 1997, Hutchinson et al. 2001, Slavens and

Slavens 2003); and 2) most species (of any size) have very high mortality of hatchlingsandjuveniles(Auffenberg1981,CivantosandForsman2000,Piankaand

Vitt 2003). Survival of adult lizards can vary between sexes (Laurie and Brown

1990b),animalsofdifferentbodysizes(LaurieandBrown1990a),andwithseasons

(Tinkle 1967, Ferguson et al. 1980, Bauwens 1981, Lebreton et al. 1992).

Importantly, introduced species of both predators (Berry and Gleeson 2005,

Schoener et al. 2005) and prey (Doody et al. 2006) can dramatically alter lizard populations.

Paststudiesofsurvivalinlizardsexaminedrelativelyshortlivedspecies(Turneret al. 1970, Ferguson et al. 1980, Andrews 1991, Diaz 1993, Tinkle et al. 1993,

Schoeneretal.2004)orestimatedsurvivalforindividualsduringtheearlylifestages only (Andrews et al. 2000, Civantos and Forsman 2000, Fox and McCoy 2000,

OlssonandMadsen2001,Hareetal.2004,LeGalliardetal.2005).Demographic

7.Populationdynamics 138 studiesoflonglivedspecieshaveshownthattheprobabilityofsurvivalinadultsis highbetweenanygivenyears(Auffenberg1981,Bull1995).

AlthoughthedemographyandlifehistoryofmostvaranidsinAustraliaisunknown

(Bennett1998,althoughseeJames1996)varanidsingeneralarelonglived(Flower

1933,1937,Auffenberg1981,SmirinaandTsellarius1996,deBuffrénilandHémery

2002). Many varanid populations in northern Australia are threatened by the introduced cane toad Bufo marinus (Doody et al. 2006, Chapter 2). Any large population reduction of longlived varanids could have strongly negative implicationsfortheirlongtermpersistenceandrepercussionsthroughoutfoodwebs inwhichtheyarecomponents,particularlybecausetheyareoftenthetoppredators

(Pough1973,LososandGreene1988).

Here I estimate the survival probability of two northern Australian species of varanid, Varanus mertensi and Varanus indicus . Both are mediumsized, semi aquaticvaranids,whichinhabitfreshwaterandestuarineenvironments(respectively) throughouttropicalnorthernAustralia(Piankaetal.2004).Thisstudyrepresentsthe firstattempttoquantifythepossibleeffectsofseasonality,genderandbodysizeon theprobabilityofsurvivalinthesespecies.Ipredictthatsurvivorshipishighinboth speciesand(basedoninformationinotherchapters)thatseasonalityhaslittleeffect on this parameter. I also report on the sex ratios of V. mertensi and V. indicus , discuss the precision of these estimates, and investigate the implications for each speciesontheirestimateddensities.

7.Populationdynamics 139

Methods

Regionalclimate

AlthoughnorthAustraliahasamonsoonalclimatecharacterisedbydistinctwet(high rainfall, high humidity) and dry (little rainfall, low humidity) seasons (Bowman

2002),thefurthertwotransitionalperiodsofhighhumidityandlittlerainfall;late wetearlydryandlatedryearlywetwerealsoused.Theseperiodscoincidewiththe trapping periods for V. indicus (see below), and the wetdry dichotomy enables comparisonsbetweenotherstudies.

Studyareasandcapturedetails

Varanus indicus was trapped quarterly (48 traps, 6 days each period) between

September2002andMarch2004(seeChapter3)inapatchofmangroveforest.This patchisboundedbytheAdelaideRiver,itsassociatedfloodplainsandacommercial fishfarm,allofwhich V.indicus rarelyenter(Chapter6).Thus,emigrationfromthe sitewasexpectedtobeminimalduringeachtrappingoccasion,andonlytheendof thetraplinefacingtheuntrappedsectionofforest(200mwide)constitutedanarea withahighprobabilityofdispersalintooroutofthetrappinggrid.

7.Populationdynamics 140

Varanusmertensi werecapturedalongtheshorelineofMantonDam(12º87'S,131º

11'E)usingasmall,motorizedboatandnoosingpole.Twentytwoadult V.mertensi were implanted with radiotransmitters (Holohil SB1 and SB2, Canada), and an attemptatresightingwasmadeeachmonthbetweenAugust2000andApril2002

(seeChapter3fordetails).

Modeldevelopmentandparameterestimation

FollowingtherecommendationsofBurnhamandAnderson(2002),multipleworking hypotheses were developed a priori to identify the variables (or combinations thereof)thatweremostlikelytoinfluencesurvivalofvaranids(Table1).Asetof additive capturemarkrecapture or known fate models was then developed to represent each hypothesis. Model selection was performed using Information

TheoreticmodelselectionmethodsbasedonAkaike’s Information Criterion (AIC,

Burnham and Anderson 2002) and model averaged values were then used to investigateanychangeinsurvivalprobabilityoverthecourseofthestudy.

7.Populationdynamics 141

Table 1. Group andindividualcovariatesusedintheparameterisation of survival andrecaptureprobabilitymodelsfor Varanusmertensi and Varanusindicus .

Covariates/Factors Values Description Group covariate Sex(sex) *† F Male Gender Female Time specific group covariates Trend(tr) *† C Aspernumberof Variableforlineartrend captureintervals overthecoarseoftheexperiment Season(seas) *† F Wet Twomajorseasonalperiods Dry Totalrainfall(mm)fromthethree * C Rainfall(r) monthsprecedingeachcapture period(recorded10kmaway) Period(per) *† F Earlywet,Latewet, Dividestheyear Earlydry,Latedry intofour3monthlyperiods Uniformprobabilityacrossall *† Constant(.) Novariation groups andtimeintervals Individual covariate SnoutVentLength(SVL) *† C Bodysizeexpressedassvl(mm) atfirstcapture *= V. indicus F=Factor †= V. mertensi C=Continuousvariable

7.Populationdynamics 142

Survivalmodeldevelopment

Both V.mertensi and V.indicus appeartobelessresponsivethanterrestrialvaranids

(sensu home ranges, movements andphysiologicalresponses) to the vast seasonal fluctuationsoftheregion,becausetheybothinhabitareas(mangrovesandpermanent water bodies) ostensibly with access to resources throughout the year, unlike the majority of other varanid species (Chapters 5 and 6, Christian et al. 1996d).

Nevertheless, the seasonal parameters (rainfall, seasonanditssubset,period)were incorporatedintothecandidatemodelsetstoinvestigatethepotentialeffectofthese phenomena.Becausethebodysizeandgenderoflizardsinfluencestheirhomerange size(Turneretal.1969,SchoenerandSchoener1982,ChristianandWaldschmidt

1984,PerryandGarland2002)andtheirexposuretopredators,thesevariableswere also included in the survival models. A null model (with no fixed differences in apparentsurvival)andalineartrendinsurvivalovertimewerealsoincorporatedinto each candidate set. Gender was incorporated as a group factor because individual covariates draw on more computer processing power but have no effect on model parameterestimatesormodelselection(Franklin2000).

Survivalestimation

Theencounterhistoriesdevelopedbyrelocatingradiotracked V.mertensi eachmonth were implemented into a known fate analysis in Program MARK (White and

Burnham 1999). This analysis estimates the apparent survival parameter S when unhinderedbyrecaptureprobability(CoochandWhite2006).

Survival of V. indicus was estimated using CormackJolly Seber (CJS) models, which consider survival and recapture probability separately, in Program MARK

7.Populationdynamics 143

(Cooch and White 2006). Goodness of fit of the global model ф s+l+r+seas+per ps+l+r+seas+per (without the individual covariates) was assessed using the parametric bootstrap approach in Program MARK. One thousand bootstrap simulations indicated that the probability of obtaining adeviance as large, or larger, than that observed for the global CJS model, was 0.088, thus the model ф s+l+r+seas+per ps+l+r+seas+per showed no strong violation of the catchability assumption. However becausethenumberofrecapturesdeclinedmarkedlyafterthefirsthalfofthestudy

(Fig. 1), trap ‘shyness’ (where among individuals captured at occasion i, the “old” individuals tend to be less recaptured than the “new” individuals) was tested for usingtheprogramUCare(Choquetetal.2003).

Densityestimation

ThedensityatMantonDamwascalculatedfromthenumberofindividualcaptures dividedbytheareathattheyareknowntooccupy(theshorelineincorporating10m intothewaterand10monthebank,Chapter6)aroundtheentirebank.Thisvalueis theminimumdensityofanimalsknowntobepresentatMantonDam.

Estimatesofthepopulationdensityof V.indicus werecalculatedusing:

N(D)=(N/P) pi(A) whereN(D)isthedensityofanimals(ha),Nisthenumberofanimalscaught , Pis therecapturerateandpi(A)istheproportionofthestudyareaencompassedbythe trappinggrid(Matlocketal.1996).Thefourthtrappingperiodwasusedtoestimate density because high numbers were still being captured at that time, and the recaptureratehadnotyetstartedtodecline(seeResults).

7.Populationdynamics 144 Results Recapture

Throughoutthecapturerecapturestudyof V.indicus (3,168trapdays),atotalof100 individuals(93adults)werecaptured,withover76%(meanSVL=445mm,range=

310590mm)ofthesesubsequentlyrecapturedatleastonce.Themaximumnumber ofcapturesinonesixdayperiod(288trapdays)was37individuals,withrecaptures increasingoverthefirsthalfofthestudyandgraduallydeclininginconcertwiththe numberofcaptures(Fig.1).Trap‘shyness’wasconfirmedusingUCare(χ 2=29.4, twosided test, df= 31, P = 0.027), thus violating the assumption of equal catch abilityamongstindividualsandprecludinganyfurtheranalysesofrecapturerate.

Survival

Theaveragequaterlyadultapparentsurvivalprobabilityof V.indicus wasestimated fromtheglobalmodelas0.70andannualadultsurvivalprobabilitywasestimatedas

0.24. Because the assumption of equal catchability of V. indicus was violated, no modelrankingorfurtherinferencescouldbemadeabouttheirapparentsurvival .

Overthetwoyearsofthestudy,onlyone V. mertensi (a female) was found dead, withthetransmitterandsomeremainslocatedatthebaseofawhitebelliedseaeagle

Haliaeetusleucogaster nest.Fivesurvivalmodels,incorporatingsex,alineartrend, and the effect of periodicity for V. mertensi , could not be differentiated from one another(asthe iwerealllessthan2;Table2)andtogethercomprised66%ofthe model weights. Modelaveraged values indicate that average monthly survival probabilitywas0.99forbothmalesandfemalesduringhalfofthestudyperiod,with agradualdeclinetowardstheconclusionofthestudy(Fig.2),parallelingadeclinein

7.Populationdynamics 145

40 1

0.9 35 0.8 30 0.7 25 0.6

20 0.5

0.4 No.captures 15

0.3 Recaptures/captures 10 0.2 5 0.1

0 0 Late Early Late Early Late Early Late Early Late Early Late Dry Wet Wet Dry Dry Wet Wet Dry Dry Wet Wet 2002 TrappingPeriod 2004

Figure1. Numberofcapturesofmaleandfemale(combined) V.indicus (bars)and

proportionofrecaptures/captures(line)withineachtrappingperiod.

7.Populationdynamics 146

Table2 .SummaryofAkaike’sinformationcriterion(AIC c)andassociatedstatistics forcandidateknownfatemodelsfortheanalysisofthesurvivalprobability( S)of V. mertensi .Allmodelsarerankedaccordingtosupport,thus i=0forthebestmodel

(bold type). log( L) is the maximised loglikelihood of the model, AICc is the selection criterion, K is the number of estimated parameters, i is the difference betweenthemodel’sAIC cvalueandtheminimumAIC cvalueand wiistheAkaike weight.Theterm%devdescribestheamountofdeviationeachmodelexplains(%).

Onlymodelsdisplayingareasonablelevelofsupport( i <10)areshown.

Model log( L) AIC c K i wi %dev

Str 3.959 12.000 2 0.000 0.277 34 Ssex+tr 3.216 12.595 3 0.595 0.206 47 Ssvl+tr 3.653 13.469 3 1.469 0.133 39 S. 6.014 14.055 1 2.055 0.099 Ssex 5.182 14.445 2 2.445 0.082 14 Ssex+SVL+tr 3.142 14.558 4 2.558 0.077 48 Sseas 5.363 14.807 2 2.808 0.068 11 Ssex+SVL 5.015 16.194 3 4.194 0.034 17 Sper 4.882 18.037 4 6.037 0.014 19 Ssex+per 4.068 18.550 5 6.550 0.010 32 Subscripts: sex=gender tr=lineartrend seas=season per=period .=constant SVL=snoutventlength

7.Populationdynamics 147

1

0.9 0.8 0.7

0.6

0.5

0.4 0.3 Survivalprobabilityф 0.2

0.1

0 Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul01 Aug Sep Oct Nov Dec Jan Feb Mar 00 00 00 00 00 01 01 01 01 01 01 01 01 01 01 01 02 02 02 Date

Figure2. Maleandfemale V.mertensi monthlysurvivalprobabilities(±95%CI)

basedonmodelaveragedvaluesfromallmodelsinTable2.Males;solid

line,females:dottedline.

7.Populationdynamics 148 functioningtransmitters.Annualadultsurvivalprobabilityfor V.mertensi was0.89 forbothsexes.

Densityandsexratios

Amaletofemalesexratioof1.7:1wasrecordedfor V.mertensi andtheminimum densityof V.mertensi aroundMantonDamwasestimatedas4.6adultvaranidsha 1

(note: each hectare is designated as a 500 m long, 20 m wide linear trace of the shoreline).Amaletofemalesexratioof2.2:1wasrecordedfor V.indicus andthe densityof V.indicus wasestimatedas10.9(95%CIupper=26.2,lower=10.1)adults ha 1.

Discussion

V.indicus recapture

Many varanids, including V. indicus , display movement and home range size disparities between genders across different body sizes (Stanner and Mendelssohn

1987,Carter1990,Thompsonetal.1998,Ibrahim2002,PerryandGarland2002,

Chapter6).Inthisstudy,maleswerecapturedand recaptured more often, lending further credence to the findings of Chapter 6 that males (particularly large ones) movemoreoftenthanfemales.

Survival

Thehighsurvivalprobabilitiesestimatedfor V. mertensi throughoutthisstudyare notsurprisingbecausevaranidsgenerallyareknowntobelonglived.Forexample, the time to maturation for many varanidsisbetween 13 years (King and Rhodes

7.Populationdynamics 149

1982,Auffenberg1988,Bennett1998,deBuffrénilandRimblotBaly1999)and V. komodensis take56yearstoreachmaturity(Auffenberg1981).Themaximumage offreeliving V.griseus hasbeenestimatedat1214yearsformalesand67years for females (Smirina and Tsellarius 1996) and wild V.glebopalma can live for at least8years(persobs). Varanusindicus incaptivityhassurvivedforover17years and V.mertensi over20years(SniderandBowler1992).Captive Varanusflavescens livesforatleast5yearsand8months,captive V.gouldii and V.varius havesurvived foralmost7years(Flower1937)andacaptive V.niloticus livedfor15years(Flower

1933). Wild Varanus komodensis are reported to live for 20 years and have an estimatedlifespanoffiftyyears(Auffenberg1981).Thus,varanidsaresomeofthe longestlivedsquamates.Inaddition,mortalityin lizards is generally at its highest amongthehatchlingsandjuveniles(Auffenberg1981,CivantosandForsman2000,

PiankaandVitt2003);survivalofmostadultvaranidswithinanytwoyearperiodis highlyprobable.

Although V.mertensi showedrelativelyconstantsurvivalprobability,thedecreasing survivorshipdetectedinthelast5monthsofthestudyweredrivenpresumablyby thedeclineofbatterylifeinimplantedtransmitters.Theeffectivenessofusingpipe trapstocaptureand(moreimportantly)recapture V.indicus declinedafterthefirst year as they became increasingly trap shy. Hence, violation of the assumption of equal catch ability in V. indicus is the probable cause of the lower (relative to V. mertensi )survivalprobabilityestimate.Annually,theprobabilityofanindividual V. indicus surviving(asderivedfromthismodel)tothenextyearisverylow(24%)for such an apparently longlived species. Clearly, thisvalueisnotaccurate,anditis probablyamuchhighervalue,suchasthatfoundfor V.mertensi.

7.Populationdynamics 150

Usingtheestimatedsurvivalratesfromthisstudy,lifeexpectancy(themeannumber of years an adult individual could be expected to survive) was predicted by the equation:

−1 Lifeexpectancy= ln(s) where s =meanannualsurvivorship(vanderToorn1999).Usingthisequation,and assumingasimilarannualsurvivalrateforbothspecies,lifeexpectancyis7.8years.

This value is lessthanhalfthevalueofsomecaptive V. mertensi and V. indicus specimens (Snider and Bowler 1992). Longevity records taken from captive individuals however, commonly signify upper age limits and do not represent the realisticlongevityofanindividuallivingundernaturalconditions(Foufopoulosand

Ives1999).

ShineandCharnov(1992)demonstratedacurvilinearrelationshipbetweentheageat maturityandtheannualsurvivalrateoflizardsandsnakes.Theirmodel,however, onlyconsideredsmalllizardspecies.Althoughtheageatmaturityformostspecies

(including V.mertensi and V.indicus )isunknown,ithasbeenestimatedat13years for many species of varanid (King and Rhodes 1982, Auffenberg 1988, Bennett

1998, de Buffrénil and RimblotBaly 1999) and at between 56 years for V. komodoensis (Auffenberg1981).Thefindingsofthisstudy(andothers),ofsurvival amongstlargerspecies,concurwithShineandCharnov(1992,Fig.3).Indeed,given theprobablehighlongevityofmanyvaranids,itislikelythatmostvaranidswould occurinthissectionofthecurve.

7.Populationdynamics 151

8 7 V. komodoensis 6 5 V. mertensi and V. indicus 4

3

Ageatmaturity(years) 2

1

0.1.2.3.4.5.6.7.8 .91 Annualadultsurvivalrate Figure3: Relationshipbetweenageatmaturityandknownsurvivalratesoflizards

(closedcircles)andsnakes(opencircles)(takenfromShineandCharnov

1992).Thedottedovalsrepresentthelikelylocationsof V.mertensi and

V.indicus ,and V.komodoensis inthisrelationship.

7.Populationdynamics 152

Whichmethodbestpredictsvaranidsurvival?

AlthoughemigrationfromapopulationcannotbeseparatedfromdeathsinCormack

JollySeber models (Cooch and White 2006), massive emigration (or deaths) as wouldbeneededfortheapparentsurvivalprobabilityof V.indicus reportedhereto be real, is highly unlikely, which calls into question the utility of the pipe trap methodforlongtermstudiesofthistype.Emigrationonthisscalecanalsoberuled out based on various quantitative data. For instance 11 individuals (11% of the marked population) were implanted with radio transmitters (Chapter 6) and no dispersal across the Adelaide River or out across the adjacent floodplain was detectedduringthatstudy.

Further evidence for a sedentary V. indicus population(foratleastthemajorityof individuals)isprovidedbythecapturehistoriesthemselves.Astrappingcontinued throughoutthestudy,thenumbersofanimalscaptureddecreased,butofthosethat were recaptured, many had been captured early on, or many times throughout the study.Ofthelastfourtrappingperiods,77%ofcaptureswerefromtheendofthe trapping grid that faces the only edge of the forest where no traps were, i.e. these werenewanimalswhosehomerangepossiblycoversonlysomeofthetrappinggrid, not animals that had already been caught before. Similarly, James (1996) pitfall trapped111 Varanusbrevicauda butrecapturedonly19individualsoverthreeyears, thus,trappingvaranidsoverthelongtermmaynotbe a reliable way ofcollecting longtermpopulationdata.

Thepipetrapcapturemethodwasveryusefulininitiallyobtaininghighnumbersof

V.indicus; however,knownfatemodelingusingradiotelemetrydataappearstobea

7.Populationdynamics 153 much more reliable method for the long term population modeling of varanids.

Radiotrackingislesssubjecttobiasesinsurvivalestimationbecauseeachindividual canbesightedateveryinterval.

Apossiblemodificationtothepipetrappingmethodwouldbetheremovalofthe trapsattheendofeachtrappingperiod.Duringthisstudy,trapswereinvertedafter eachperiodandthesubsequentbaitpileontheforestwaseventuallydisposedof, presumably by the many scavengers (including V. indicus, pers obs) in the mangroves(KathiresanandBingham2001)andthetide.Althoughatthebeginning of each new trapping session (three months hence) no bait was evident. It is still possible that V. indicus could detect any odors present due to their enhanced vomeronasal system (Cooper 1997), and were habituated to the smell without the presenceofbait,and/or,theyassociatedthetrapswithhumanpresence.Movingsuch alargenumberoftrapsintoandoutofthemangroveseverythreemonthswasnot doneoverthecourseofthisstudybecauseofthelogisticaldifficulties.

Density

Previous studies have estimated the density of varanids from riverside counts

(Erdelen 1991), observations (Stanner and Mendelssohn 1987, Auffenberg 1988), singlesearches(Bennett2000)andmarkrecapture(James1996,Bennett2000).This study is the first to estimate the densities of varanids as derived from recapture probabilities. Caution should be stressed in the overinterpretation of these results however, given that they are derived from a model whose main assumption was violated. Even with this caveat in mind, the simple number of varanids ha 1 estimationascalculatedfor V.mertensi leadsto7.4for V.indicus ,asimilarvalue.

7.Populationdynamics 154

The density of the adult V. indicus population along Adelaide River is high, especially when compared to other, similar sized varanids. For instance Varanus griseus densitieshavebeenestimatedatbetween0.010.02animalsha 1(Piankaetal.

2004) in various desert localities throughout its range, with differences in some instances attributed to environmental factors such as annual rainfall (Stanner and

Mendelssohn 1987) and habitat productivity (Auffenberg 1989). Mean adult V. komodoensis densitieshavebeenestimatedat0.03animalsha 1andtheseestimates varied greatly over five sites due to food and shelter resource availability

(Auffenberg 1981). Varanus olivaceous has been recorded at densities of 0.61 animalsha 1(Auffenberg1988).Theminimumdensityof V.mertensi (derivedfrom capturesonly)werelowerthan V.indicus ,althoughstillhigherthanothervaranids recordedtodate.

Semiaquatic varanids in tropical regions can sustain higher levels of activity throughout the year than terrestrial varanids (Christian et al. 1996d, Chapter 5) because of the apparently constant availability of food in these more productive environments (Mayes et al. 2005b). Varanus indicus in particular has small home rangesanddoesnotmoveveryfarthroughouttheyear(Chapter6).Theostensibly greaterconcentrationofresourcesavailabletosemiaquaticvaranidsmayallowfor the high population densities seen in this study. Densities of the similarly semi aquatic Varanus salvator in Sumatra (Indonesia) have been estimated at between

0.0020.01animalsha 1fromriversidecounts(Erdelen1991),buttheirmethodonly provides an index of abundance (Williams et al. 2002) and hence the reported

7.Populationdynamics 155 densities were much lower than those estimated by experienced varanid skin suppliersfromthesamearea(Erdelen1991).

The productivity of the environmentplaysacrucial role in determining both prey abundance (Shine and Madsen 1997) and habitat quality (Greenberg 2001, Galán

2004),andhenceeffectstheunderlyingpopulationsizesofmanytaxa(Madsenand

Shine 2000). The resultant biomass in these large populations of semiaquatic varanidsalsosurpassesthoseofterrestrialspecies.OnKomodoIsland,thebiomass of V. komodoensis is 335.9 g ha 1, and on Padar it is 231.6 g ha 1, both from an averageanimalmassof6000g(Auffenberg1981).Theaveragemassof V.indicus is

1102 g and the biomass is therefore 7900 g ha 1. The biomass of V. mertensi is similarlyhigh,at6700gha 1(meanmass=1455g).However,throughoutmuchof

V.mertensi’srange,thedensityandresultantbiomassmaydiffergreatlyfromthose reported here, because during the dry season they would have no choice but to migratetoresidualwaterbodiesasthefloodwatersfromthewetseasonrecede.These smallerwaterbodiesmaynotsustainsuchhighdensitiesofanimals.

Sexratios

Thesexratiospresentedherearebasedongendersdeterminedinthefield,onspecies thatarenotoriouslydifficulttosex(Chapter4);thusthesedataareimprecise.The maletofemalesexratioof2:1,calculatedfor V.indicus ,islowerthanthe3:1ratio recorded by Wikramanayake and Dryden (1988) based on98individual V.indicus fromanintroducedpopulationon.Thesexratioofallcaptured V.mertensi wassimilar(1.7:1).Moststudiesofvaranidpopulationshaverecordedamalebias

(Auffenberg 1981, Shine 1986), even from the majority of preserved collections

7.Populationdynamics 156

(Pianka1969,1971,KingandGreen1979,Auffenberg1981).Abiastowardsmales inthemajorityofthesestudiesislikelyaconsequenceofmalesbeingmoreactive

(more visible) and, hence, captured more often (King and Rhodes 1982). For example, a 22 month study of V. olivaceus recorded a 1:1 ratio, even though the malesweremoreactiveandmovedfurther(Auffenberg1988).Thiswasattributedto the use of hunting dogs to find animals, rather than relying on more passive

(trapping) or “incidental” (active searching) methods. A further study of V. acanthurus museumspecimensthatwerecollectedwhilstinrefugia(i.e.notactive) alsorecordeda1:1ratio(KingandRhodes1982).Thus,itislikelythatthesexratios offreerangingpopulationsofvaranidsareequalinmostpopulations.

Conclusion

Thischapterhasdemonstratedquantitativelythattheshorttermsurvivalprobability oflonglivedvaranidsishighandthatradiotrackingisamuchmorerobust,albeit sometimeslessreliablemethodofsurvivalestimationthanmarkrecapture.Longer term studies, probably in the order of decades, would be required to definitively quantify differences in survival probability between male and female varanids of differentsizes.Thesexratiospresentedherereflecttheeasierdetectabilityofmales

(asfoundinChapter6)and,therefore,aswithmanyotherfieldstudiesareprobably notrepresentativeofthesexratiosinfreerangingpopulations.

The densities of both V. mertensi and V. indicus surpass those of similar sized varanids in dissimilar habitats, leading again to the conclusion that high resource productivity plays an important in role in buffering semiaquatic varanids (from water and presumably prey abundance differences) between seasons.

157

Varanus mertensi and Bufo marinus

Synopsis

Varanus indicus

8.Synopsis 158

8.Synopsis Throughout this thesis I have examined variation in the physiological, spatial, seasonal and population ecology of V. mertensi and V. indicus . The two major questions addressed herein have both been answered to the affirmative; i) yes, V. indicus demonstrates year round activity like V. mertensi ; ii) yes, semiaquatic varanidsaredifferentfromterrestrialvaranids,physiologically,morphologically,in theiruseofspace(bothinrelationtomovementsandinthedensitiestheyattain),and importantly,inhowtheyrespondtoseasonality.Ofthetwosemiaquaticvaranidsin this study, Varanus mertensi is the least responsive to seasonality. This, the final chapter will recapitulate the main findings of each chapter and highlight some avenuesforfutureresearchfocus.

Australianreptilesandthethreatofcanetoads

In chapter 2 I demonstrated that the cane toad is a serious threat to much of

Australia’s reptile fauna. This work and other recent studies (Phillips et al. 2003,

Oakwood2004)supportandreiteratethewarningsaboutthepossibleeffectsofcane toads on large predators that have been voiced since their introduction in 1935

(Breeden 1963, Pockley 1965, Rayward 1974, Covacevich, 1975). Earlier works

(FreelandandKerin1990,Catlingetal.1999,Williamson1999)suggestingthattoad impacts are likely to be minimal (on all species) because of studies on small, abundantfauna,arenowcalledintoquestion.

Populations of predatory species will probably be affected to different degrees, dependingontheirpreychoiceandhandlingabilities,giventhatformanyofthese species,onepredatoryencounterisenoughtokillthemandmanyotherspecieswill

8.Synopsis 159 undoubtedlybeaffected,eitherdirectlyorindirectly,fromflowoneffectsdownthe food chain. Consequentially, the faunal composition of many ecosystems may be quitedifferenttopresentdayandthistransitionperiod,suchasweareexperiencing at present in northern Australia, provides many avenues for further research. In particular additional research opportunities exist for investigating whether V. mertensi ,V.indicus andothervaranidpopulationscanmountaneffective,longterm, adaptiveresponsetocanetoads.

Theproblemofsexingvaranidsinthefield

Myanalysisdemonstratesthatvariousheadvariables,principallyheadvolume,and toalesserextent,scalingoflimbproportionscanbeimportantdiagnosticfeaturesfor genderpredictioninsomespeciesofvaranids.Howeverdefinitivelydeterminingthe sexofmanyvaranidspeciesinthefieldislikelytoremainfraughtwithuncertainty.

Giventhatthedatasetusedinthisthesisallbut exhausts the supply of preserved specimens in most Australian museums, it is unlikely that this analytical method usingmorphometricscouldbedevelopedanyfurther.Intheabsenceofother,more definitive tools, such as DNA probing, further confidence in reliably field sexing varanids could be gained by developing a variety of diagnostic measures (both qualitative and quantitative). These techniques need to be species specific and the particularsoftheseformanyspeciesstillneedtobedetermined.

My analysis found that none of the models developed by Thompson and Withers

(1997) using null hypothesis testing were well supported for any of the species I analysed.Thischapterhighlightsthelimitationsofthenullhypothesisapproachand in particular how exploratory analysis can sometimes produce spurious results

8.Synopsis 160

(AndersonandBurnham2002).Theuseofmoreobjectivetechniquessuchasthe

InformationTheoreticparadigm(BurnhamandAnderson2002)andcrossvalidation proceduresasappliedhere,allowedmorepowerfulinferencestobemadeandmore robustconclusionstobereached.

Thephysiologyof Varanusindicus

Varanus indicus shows intermediate physiological responses to seasonal changes, betweenthesemiaquatic V.mertensi thatremainsactiveyearround(Christianetal.

1996),andtheterrestrial V.gouldii and V.panoptes thatspendatleastsomeoftheir time inactive during the driest part of the year (Christian et al. 1995). Thus, V. indicus ,like V.mertensi, isnotsubjecttothepressuresofdryseasonfoodandwater depletiontotheextentthatterrestrialonesare. Although V. indicus remain active yearround,thedecrease intheirdryseasonactivity(andFMR)couldbecausedby reduced food resources at that time of year. An investigation into the seasonal productivityofthemangrovesalongAdelaideRiver(particularlywithregardto V. indicus ’preyitems)wouldhelptoclarifythis.

Intraandinterspecificdifferencesbetweenterrestrialandsemiaquaticvaranids

Semiaquatic varanids share many life history characteristics with terrestrial varanids;malestravelfurtherinthebreedingseason,largeranimalsaremorelikely tomovefurther,andthereislargeoverlapbetweenthehomerangesofconspecifics.

In many other ways however, semiaquatic varanids (at least V. mertensi and V. indicus )aredifferentfromterrestrialones,themostimportantbeingthattheycanbe active throughoutperiodsoftheyearwhenterrestrialonescannot.Ostensibly(and basedonsomeindirectevidence,Christianetal.1996d,Martin2005,Mayesetal.

8.Synopsis 161

2005b, and this thesis), mangroves and freshwater bodies contain food items and water for V. mertensi and V. indicus year round, thereby enabling continuous activity.

Varanusmertensi has acatholicdiet(Shine1986,LososandGreene1988,Mayeset al. 2005b), and this broad diet enables it to cope with any seasonal and spatial differencesinpreyavailability(Mayesetal.2005b);however V.mertensi isunique inthatitshabitatisrelativelylinear.Thus,althoughthereappearstobefoodpresent continuously,theymusttraveltoforage.Formanyindividualsthisrequirementleads toalarge,linearhomerange.Itisunclearifthehighlyvariablehomerangesizesof

V. mertensi asfoundinthisstudyareaconsequenceofresource variation around

MantonDam.

Incontrastto V.mertensi , V.indicus donotneedtoforageoverlargeareas,probably because(inabroadsense)foodisbroughttothemviatheincomingtides,leadingto verysmallhomeranges,albeitwithastrongandunreportedverticalcomponentup trees and very high densities.Itisprobablethat northern Australian estuarine and mangrovemacrofaunasalsovaryseasonally(RobertsonandDuke1990,Rookerand

Dennis1991,Emmerson1994,Lefebvreetal.1994),butthebroaddietof V.indicus

(Losos and Greene 1988) also allows them to stay in the same small area continuously.

8.Synopsis 162

Measuringvaranidpopulationdynamics

Thisstudydemonstratedthat V.mertensi and V.indicus arelonglivedspeciesaswas indicated by longevity in captive specimens (Slavens and Slavens 2003). My research has also evaluated the efficacy of different methods for longer term monitoring.Althoughthepipetrapmethodcancapturemany V.indicus quickly,it maynotbeasrobustatechniqueasradiotrackingforthelongtermmonitoringof varanidpopulations,althoughremovingalltrapsbetweentrappingperiodsmayhelp alleviate trap shyness. The high densities recorded herein for both species contrast sharplytootherstudiesofsimilarsizedmonitors(Auffenberg1988,1989,Piankaet al.2004),againsuggestinghighresourceavailability.

Conclusions

ThethesisilluminatesmanyaspectsofAustraliansemiaquaticvaranidecology,and demonstrates the broad ecological similarities between semiaquatic and terrestrial varanidsandthereducedeffectseasonalityhasonbothsemiaquaticspecies.Their relativelyhigherdensitiesandsmallhomerangesaremorethanlikelyaresultofthis lessenedseasonaleffect.

Manyconclusionsabouttheecologyof V.mertensi and V.indicus arepredicatedon theassumptionthatseasonisausefulsurrogateforfoodavailability.Althoughthere isstrongphysiologicalandsomeotherempiricalevidencetosuggestthisisso,direct investigationintotheseasonalavailabilityofthesevaranids’preyinthese,andother northernAustralianestuarineandfreshwatersystems,wouldcompletethispicture.

8.Synopsis 163

Many new logistical and analytical techniques have been developed or applied for thefirsttimeinthisthesis.Ihavedevelopedanew method for capturing elusive varanidsindifficulthabitatsandhaveappliedthenullmodelapproachofChristianet al. (2006) to modelling the thermoregulation of V. indicus. I have used the

InformationTheoretic approach to predict varanid gender and model space use in varanids, and incorporated CormackJolly Seber and known fate modelling with modelrankingprocedurestoestimatethesurvivalofvaranids.Allofthesemethods andfindingsaddsubstantiallytoourcurrentknowledgeofAustralianvaranidsand provide useful techniques for future studies.

164

9.References 165

9. References Altman, J. C. 1987. Huntergatherers today: an Aboriginal economy in north

Australia.AustralianInstituteofAboriginalStudies,Canberra.

Anderson, D. R., and K. P. Burnham. 2002. Avoiding pitfalls when using

InformationTheoreticmethods.JournalofWildlifeManagement 63 :912928.

Anderson, R. A., and W. H. Karasov. 1981. Contrasts in energy intake and

expenditureinsitandwaitandwidelyforaginglizards.Oecologia49:6772.

Andrews, R. M. 1991. Population stability of a tropical lizard. Ecology 72 :1204

1217.

Andrews, R. M., T. Mathies, and D. A. Warner. 2000. Effect of incubation

temperature on morphology, growth and survival of juvenile Sceloporus

undulatus .HerpetologicalMonographs 14 :420431.

Ast, J. C. 2001. Mitochondrial DNA evidence and evolution in

().Cladistics 17 :211226.

Auffenberg,W.1981.ThebehaviouralecologyoftheKomodoMonitor.University

ofFloridaPress.

Auffenberg,W.1988.Gray'smonitorlizard.UniversityofFloridaPress,Gainsville.

Auffenberg, W. 1989. Utilization of monitor lizards in Pakistan. Traffic Bulletin,

WWF, 11 :812.

Auffenberg,W.1994.TheBengalmonitor.UniversityofFloridaPress,Gainsville.

Auffenberg,W.,Q.Nazar,andN.Khurshid.1991.Preferredhabitat,homerangeand

movementpatternsof Varanusbengalensis insouthernPakistan.Mertensiella

2:728.

9.References 166

Auliya, M. A., and W. Erdelen. 1999. A field study of the water monitor lizard

(Varanus salvator ) in west Kalimantan, Indonesia. New Methods and Old

Problems.Mertensiella 11 :247266.

Bakken, G. S. 1981. How many equivalent blackbody temperatures are there?

JournalofThermalBiology 6:5960.

Bakken, G. S. 1992. Measurement and application of operative and standard

operativetemperaturesinecology.AmericanZoologist 32 :194216.

Bakken, G. S., W. R. Santee, and D. J. Erskine. 1985. Operative and standard

operative temperatures: tools for thermal energetics studies. American

Zoologist 25 :933943.

Ballinger,R.E.1983.Lifehistoryvariations.Pages241260,465473 in R.B.Huey,

E. R. Pianka, and T. W. Schoener, editors. Lizard Ecology, Studies of a

modelorganism.HarvardUniversityPress,Cambridge.

Bauwens,D.1981.SurvivorshipduringhibernationintheEuropeancommonlizard,

Lacertavivipara .Copeia 1981 :741744.

Bedford, S., and K. A. Christian. 1996. Tail morphology related to habitat of

varanidslizardsandsomeotherreptiles.AmphibiaReptilia 17 :131140.

Benabib, M., and J. D. Congdon. 1992. Metabolic and waterflux rates of free

rangingtropicallizards Sceloporusvariabilis .PhysiologicalZoology 65 :788

802.

Bennett,A.F.,andG.C.Gorman.1979.Populationdensityandenergeticsoflizards

onatropicalisland.Oecologia 42 :14321939.

Bennett,D.1998.Monitorlizards:Naturalhistory,biologyandhusbandry.Frankfurt

amMain,Frankfurt.

9.References 167

Bennett,D.2000.Thedensityandabundanceofjuvenile Varanus exanthematicus

(Sauria:Varanidae)inthecoastalplainofGhana.AmphibiaReptilia 21 :301

306.

Berry,O.,andD.M.Gleeson.2005.Distinguishinghistoricalfragmentationfroma

recentpopulationdeclineShrinkingorpreshrunkskinkfromNewZealand?

BiologicalConservation 123 :197210.

Blamires,S.J.,andM.Nobbs.2000.Observationsof mangrove habitation by the

monitorlizard Varanuspanoptes .NorthernTerritoryNaturalist 16 :2123.

BlouinDemers, G., and P. J. Weatherhead. 2001. Thermal ecology of black rat

snakes ( Elaphe obsoleta ) in a thermally challenging environment. Ecology

82 :30253043.

Blum,A.,A.Kalai,andJ.Langford.1999.Beatingtheholdout:BoundsforKfold

and progressive crossvalidation. Pages 203208 in Proceedingsofthe10th

annualconferenceoncomputationaltheory.

Böhme,W.1991.Hemiclitorisdiscovered:afullydifferentiatederectilestructurein

female monitor lizards ( Varanus spp .) (Reptilia: Varanidae). Journal of

SystematicsandEvolutionResearch 33 :129132.

Bomford, M., and J. Caughley, editors. 1996. Sustainable use of wildlife by

AboriginalpeoplesandTorresStraitIslanders.BureauofResourceSciences,

Canberra.

Bowman, D. J. S. 2002. The Australian summer monsoon: a biogeographic

perspective.AustralianGeographicStudies 40 :261277.

Breeden,K.1963.Canetoad( Bufomarinus ).WildlifeinAustralia 1:31.

9.References 168

Brocklehurst, P., and B. Edmeades. 1996. Mangrove survey of Darwin harbour,

Northern Territory. Northern Territory. Dept. of Lands, Planning and

Environment.Darwin.

Brodie,E.D.III,andE.D.Brodie,Jr.1999.Predatorpreyarmsraces:asymmetrical

selection on predators and prey may be reduced when prey are dangerous.

BioScience 49 :557568.

Brodie,E.D.III,andN.H.Russell.1999.Theconsistencyofindividualdifferences

inbehaviour:temperatureeffectsonantipredatorbehaviouringartersnakes.

AnimalBehaviour 57 :445451.

Brodie,E.D.,Jr.,B.J.Ridenhour,andE.D.Brodie, III. 2002. The evolutionary

response of predators to dangerous prey: Hotspots and coldspots in the

geographic mosaic of coevolution between garter snakes and newts.

Evolution 56 :20672082.

Brown,G.P.,R.Shine,andT.Madsen.2002.Responsesofthreesympatricsnake

species to tropical seasonality in northern Australia. Journal of Tropical

Ecology 18 :549568.

Bull, C. M. 1995. Population ecology of the sleepy lizard, Tiliqua rugosa , at Mt

Mary,SouthAustralia.AustralianJournalofEcology 20 :393402.

Burnett, S. 1997. Colonizing cane toads cause population declines in native

predators: reliable anecdotal information and management implications.

PacificConservationBiology 3:6572.

Burnham,K.P.,andD.R.Anderson.2001.KullbackLeiblerinformationasabasis

forstronginferenceinecologicalstudies.WildlifeResearch 28 :111119.

9.References 169

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel

inference:ApracticalInformationTheoreticapproach,2ndedition.Springer,

NewYork.

White,G.C.andK.P.Burnham.1999.ProgramMARK:survivalestimationfrom

populationsofmarkedanimals.BirdStudy 46 :120139.

Calder, W. A. 1984. Size, function and life history. Harvard University Press,

Cambridge.

Cameron, E. E., and H.G.Cogger.1992.Theherpetofauna of the Weipa region,

CapeYorkPeninsula.TechnicalreportsoftheAustralianMuseum 7:1200.

Cann,J.1998.Australianfreshwaterturtles.BeaumontPublishing,Singapore.

Carter, D. B. 1990. Courtship and mating in wild Varanus varius (Varanidae:

Australia).MemoirsoftheQueenslandMuseum 29 :333338.

Catling,P.C.,A.Hertog,R.J.Burt,J.C.Wombey,andR.I.Forrester.1999.The

shortterm effect of cane toads ( Bufo marinus )onnativefaunaintheGulf

CountryoftheNorthernTerritory.WildlifeResearch 26 :161185.

Caughley,G.1980.Analysisofvertebratepopulations.Wiley,NewYork.

Caughley, G., and A. Gunn. 1996. Conservation biology in theory and practice.

BlackwellScience,Cambridge.

Chen,K.K.,andA.Kovarikova.1967.Pharmacologyandtoxicologyoftoadvenom.

JournalofPharmaceuticalSciences 56 :15351541.

Choquet, R., A. M. Reboulet, R. Pradel, O. Giminez, and J. D. Lebreton. 2003.

User's manual for UCare. Mimeographed document, CEFE/CNRS,

Montpellier.

9.References 170

Christian, A., G. S. Bedford, B. Green, A. D. Griffiths, K. Newgrain, and T. J.

Schultz. 1999a. Physiological ecology of a tropical dragon, Lophognathus

temporalis .AustralianJournalofEcology 24 :171181.

Christian, A., I. E. Clavijo, N. CorderoLopez, E. E. ElliasMaldonado, M. A.

Franco,M.V.LugoRamirez,andM.Marengo.1986.Thermoregulationand

energetics of a population of Cuban iguanas ( Cyclura nubila ) on Isla

Magueyes,PuertoRico.Copeia 1986 :6569.

Christian, K. A. 2004. Varanus mertensi . Pages 410415 in E. R. Pianka, D. R.

King, and R. A. King, editors. Varanoid lizards of the world. Indiana

UniversityPress,BloomingtonIndianapolis.

Christian,K.A.,andG.S.Bedford.1995.Seasonalchangesinthermoregulationby

thefrillneckedlizard, Chlamydosauruskingii ,intropicalAustralia.Ecology

76 :124132.

Christian, K. A., and G. S. Bedford. 1996. Thermoregulation by the spotted tree

monitor, Varanus scalaris , in the seasonal tropics of Australia. Journal of

ThermalBiology 21 :6773.

Christian,K.A.,G.S.Bedford,andT.J.Schultz.1999b.Energeticconsequencesof

metabolic depression in tropical and temperatezone lizards. Australian

JournalofZoology 47 :133141.

Christian,K.A.,G.S.Bedford,andS.T.Shannahan. 1996a. Solar absorbance of

someAustralianlizardsanditsrelationshiptotemperature.AustralianJournal

ofZoology 44 :5967.

Christian,K.A.,andK.E.Conley.1994.Activityandrestingmetabolismofvaranid

lizardscomparedwith'typical'lizards.AustralianJournalofZoology 42 :185

193.

9.References 171

Christian, K. A., L. K. Corbett, B. Green, and B. W. Weavers. 1995. Seasonal

activityandenergeticsoftwospeciesofvaranidlizardsintropicalAustralia.

Oecologia 103 :349357.

Christian,K.A.,andB.Green.1994.Seasonalenergeticsandwaterturnoverofthe

frillneck lizard Chlamydosaurus kingii , in the wetdry tropics of Australia.

Herpetologica 50 :274281.

Christian, K. A., B. Green, G. S. Bedford, and K. Newgrain. 1996b. Seasonal

metabolismofasmall,arborealmonitorlizard, Varanusscalaris ,intropical

Australia.JournalofZoology 240 :383396.

Christian,K.A.,A.D.Griffiths,andG.S.Bedford.1996c.Physiologicalecologyof

frillnecklizardsinaseasonaltropicalenvironment.Oecologia 106 :4956.

Christian,K.A.,andC.R.Tracy.1981.Theeffectofthethermalenvironmentonthe

ability of hatchling Galapagos land iguanas to avoid during

dispersal.Oecologia 49 :218223.

Christian, K. A., C. R. Tracy, and W. P. Porter. 1983. Seasonal shifts in body

temperatureanduseofmicrohabitatsbyGalapagoslandiguanas(C onolophus

pallidus ).Ecology 64 :463468.

Christian,K.A.,R.Tracy,andC.R.Tracy.2006. Evaluating thermoregulation in

reptiles:anappropriatenullmodel.TheAmericanNaturalist 198 :421430.

Christian,K.A.,andS.Waldschmidt.1984.Therelationshipbetweenlizardhome

rangeandbodysize:Areanalysisofthedata.Herpetologica 40 :68.

Christian,K.A.,andB.W.Weavers.1996.Thermoregulationofmonitorlizardsin

Australia: An evaluation of methods in thermal biology. Ecological

Monographs 66 :139157.

9.References 172

Christian,K.A.,B.W.Weavers,B.Green,andG.S.Bedford.1996d.Energeticsand

waterfluxinasemiaquaticlizard, Varanusmertensi .Copeia 1996 :354362.

Christian, K. A., J. K. Webb, and T. J. Schultz. 2003. Energetics of bluetongue

lizards ( Tiliqua scincoides ) in a seasonal tropical environment. Oecologia

136 :515523.

Civantos, E., and A. Forsman. 2000. Determinants of survival in juvenile

Psammodromusalgirus lizards.Oecologia 124 :6472.

Clough,B.F.,andP.M.Attiwill.1982.Primaryproductivityofmangroves.Pages

213222 in B. F. Clough, editor. Mangrove ecosystems in Australia —

structure,functionandmanagement.AustralianInstituteofMarineScience,

Townsville.

Cogger, H. G. 2000. Reptiles and Amphibians of Australia. Reed New Holland,

Sydney,Australia.

Cogger,H.G.,E.E.Cameron,R.A.Sadlier,andP.Eggler.1993.Theactionplan

for Australian reptiles. Endangered Species Unit, Australian Nature

Conservancy.

Cohen, M. P., and R. A. Alford. 1993. Growth, survival and activity patterns of

recentlymetamorphosed Bufomarinus .WildlifeResearch 20 :113.

CommonwealthofAustralia(1999). EnvironmentalProtectionandBiodiversity

ConservationAct1999. CommonwealthofAustraliaAct91.Canberra.

Congdon, J. D., and D. W. Tinkle. 1982. Energy expenditure in freeranging

sagebrush lizards ( Sceloporus graciosus ). Canadian Journal of Zoology

60 :14121416.

9.References 173

Conroy,S.D.C.,andB.W.Brook.2003.Demographicsensitivityandpersistence

of the threatened white and orangebellied frogs of Western Australia.

PopulationEcology 45 :105114.

Cooch,E.,andG.White.2006.ProgramMARK:Agentleintroduction,4thedition.

ColoradoStateUniversity.

Cooper, W. E. 1997. Independent evolution of squamate olfaction and

vomerolfaction and correlated evolution of vomerolfaction and lingual

structure.AmphibiaReptilia 18 :85105.

Corbett,L.1994.ThedingoinAustraliaandAsia.UniversityofNewSouthWales

Press,Sydney.

Corbett,L.K.,1988.Fluctuationsintheyearlynumbersofmagpiegoose( Anseranas

semipalmata )nestsatKapalgainKakaduNationalParkwithemphasisonthe

effects of feral buffaloandrainfall:FinalReporttotheAustralianNational

Parks and Wildlife Service from the CSIRO Division of Wildlife and

Ecology. 47p.Winnellie,N.T.CSIROTropicalEcosystemsResearchCentre.

Reprintno.1683.

Covacevich, J., and M. Archer. 1975. The distribution of the cane toad, Bufo

marinus ,inAustraliaanditseffectsonindigenousvertebrates. Memoirs of

theQueenslandMuseum 17 :305310.

Cowie,I.D.,P.S.Short,andM.OsterkampMadsen.2000.Floodplainflora;aflora

of the coastal floodplains of the Northern Territory, Australia. Parks and

WildlifeCommissionoftheNorthernTerritory,Darwin.

Crawley,M.J.2003.StatisticalComputing:AnintroductiontoRusingSPlus.John

Wiley&Sons,WestSussex.

9.References 174

Crossland, M. R. 1998. Ontogenetic variation in toxicity of tadpoles of the

introduced toad Bufo marinus to native Australian aquatic invertebrate

predators.Herpetologica 54 :364369.

Crossland, M. R. 2000. Direct and indirect effects of the introduced toad Bufo

marinus (Anura: Bufonidae) on populations of native anuran larvae in

Australia.Ecography 23 :283290.

Crossland,M.R.2001.AbilityofpredatorynativeAustralianfishestolearntoavoid

toxic larvae of the introduced toad Bufo marinus . Journal of Fish Biology

59 :319329.

Crossland, M. R., and R. A. Alford. 1998. Evaluation of the toxicity of eggs,

hatchlings and tadpoles of the introduced toad Bufo marinus (Anura,

Bufonidae) to native Australian aquatic predators. Australian Journal of

Ecology 23 :129137.

Daley,J.W.,C.W.Myers,andN.Whittaker.1987. Further classification of skin

alkaloids from neotropical poison frogs (Dendrobatidae) with a general

surveyoftoxic/noxioussubstancesintheamphibia.Toxicon 25 :10231095.

Daly, J. W., and B. Witkop. 1971. Chemistry and pharmacology of frog venoms.

Pages497519 in W.BucherlandE.E.Buckley,editors.Venomousanimals

andtheirvenoms.AcademicPress,NewYork.

Daudin, F. M. 1802. The Indian Tupinambis. Histoire Naturelle, Generale et

ParticulardesReptiles. VolumeIII .

Davis,R.B.,andL.G.Phillips.1991.AmethodofsexingtheDumeril'smonitor

Varanusdumerilii .HerpetologicalReview 22 :1819.

9.References 175 de Buffrénil, V., and G. Hémery. 2002. Variation in longevity, growth, and

morphology in exploited Nile monitors ( Varanus niloticus ) from Sahelian

Africa.JournalofHerpetology 36 :419426. deBuffrénil,V.,andF.RimblotBaly.1999.Femalereproductiveoutputinexploited

Nile monitor lizard ( Varanus niloticus L.) populations in Sahelian Africa.

CanadianJournalofZoology 77 :15301539.

Diamond,J.M.1989.Overviewofrecentextinctions. Pages 3741 in D. Western

and M. C. Pearl, editors. Conservation for the 21st century. Oxford

UniversityPress,Oxford.

Diaz,J.A.1993.Breedingcoloration,matingopportunities,activity,andsurvivalin

the lacertid lizard Psammodromus algirus . Canadian Journal of Zoology

71 :11041110.

Doody,J.S.,B.Green,R.Sims,D.Rhind,P.West, and D. Steer. 2006. Indirect

impactsofinvasivecanetoads( Bufomarinus )onnestpredationinpignosed

turtles(C arettochelysinsculpta ).WildlifeResearch 33 :349354.

Downey, F. J., and C. R. Dickman. 1993. Macroand microhabitat relationships

amonglizardsofsandridgedesertsincentralAustralia.Pages133138 in D.

LunneyandD.Ayers,editors.HerpetologyinAustralia:Adiversediscipline.

RoyalZoologicalSocietyofN.S.W.,Mosman.

Dryden, G. L. 1965. The food and feeding habits of Varanus indicus on Guam.

Micronesica 2:7376.

Dryden,G.L.,B.Green,D.King,andJ.Losos.1990.Waterandenergyturnoverin

a small monitor lizard, Varanus acanthurus . Australian Wildlife Research

17 :641646.

9.References 176

Dryden,G.L.,B.Green,E.D.Wikramanayake,andK.G.Dryden.1992.Energy

andwaterturnoverintwotropicalvaranidlizards, Varanusbengalensis and

V.salvator .Copeia 1992 :102107.

Dunham,A.E.,andD.B.Miles.1985.Patternsofcovariationinlifehistorytraitsof

Squamatereptiles:Theeffectsofsizeandphylogenyreconsidered.American

Naturalist 126 :231257.

Dunham, A. E., D. B. Miles, and D. N. Reznick. 1988. Life history patterns of

squamate reptiles. Pages 441522 in C. Gans and R. B. Huey, editors.

BiologyoftheReptilia.JohnWileyandSons,NewYork.

Dunson,W.A.1974.Saltglandsecretioninamangrovemonitorlizard.Comparative

BiochemistryandPhysiology 47 :12451255.

Dzialowski,E.M.,andM.P.O'Connor.2001.Thermaltimeconstantestimationin

warmingandcoolingectotherms.JournalofThermalBiology 26 :231245.

Elmouden,E.,F.H.,J.Castanet,andM.Znari.1997.Askeletochronologicalstudy

ofage,maturity,growthandlongevityinthenorthAfricanagamid, Agama

impalearis Boettger, 1874. Annales des Sciences NaturellesZoologie et

BiologieAnimale 18 :6370.

Emmerson,W.D.1994.Seasonalbreedingcyclesandsexratiosofeightspeciesof

crabs from Mgazana, a mangrove estuary in Transkei, southern Africa.

JournalofCrustaceanbiology 14 :568578.

Erdelen,W.1991.Conservationandpopulationecologyofmonitorlizards:thewater

monitor Varanus salvator (Laurenti, 1768) in south Sumatra. Mertensiella

2:120135.

Estes,R.1984.Fish,amphibiansandreptilesfromtheEtadunnaFormation,Miocene

ofSouthAustralia.AustralianZoologist 21 :335343.

9.References 177

Ferguson, G. W., G. H. Bohler, and H. P. Wooley. 1980. Sceloporus undulatus :

Comparative life history and regulation of a Kansas population. Ecology

61 :313322.

Finlayson,C.M.,B.J.Bailey,W.J.Freeland,andM.R.Fleming.1988.Wetlandsof

the Northern Territory. in A. J. McComb and P. S. Lake, editors. The

conservationofAustralianwetlands.SurreyBeatty&Sons,Sydney.

Fitch,A.J.,A.E.Goodman,andS.C.Donnellan.2006.Amolecularphylogenyof

the Australian monitor lizards (Squamata: Varanidae) inferred from

mitochondrialDNAsequences.AustralianJournalofZoology 54 :253269.

Flier, J., M. W. Edwards, J. W. Daley, and C. W. Myers. 1980. Widespread

occurrenceinfrogsandtoadsofskincompoundsinteractingwiththeouabain

siteofNa+,K+ATPase.Science 208 :503505.

Flower,S.S.1933.NotesonsomerecentreptilesandamphibiansofEgypt,witha

listofthespeciesrecordedfromthatKingdom.ProceedingsoftheZoological

Society(London) 1933 :735851.

Flower, S. S. 1937. The duration of life in animals, further notes. IIIReptiles.

ProceedingsoftheZoologicalSociety(London) 1937 :3174.

Foufopoulos, J., and A. R. Ives. 1999. Reptile extinctions on landbridge islands:

Lifehistory attributes and vulnerability to extinction. The American

Naturalist 153 :125.

Fox,J.2003.EffectdisplaysinRforgeneralisedlinearmodels.JournalofStatistical

Software 8:118.

Fox, S. F., and J. K. McCoy. 2000. The effects of tail loss on survival, growth,

reproduction,andsexratioofoffspringinthelizard Utastansburiana inthe

field.Oecologia 122 :327334.

9.References 178

Freeland,W.J.1986.Populationsofcanetoad Bufomarinus inrelationtotimesince

colonization.AustralianWildlifeResearch 13 :321330.

Freeland, W. J., and S. H. Kerin. 1990. Within habitat relationships between

invading Bufomarinus andAustralianspeciesoffrogduringthetropicaldry

season.AustralianWildlifeResearch 15 :293305.

Freeland,W.J.,andS.H.Kerin.1991.Ontogeneticalterationofactivityandhabitat

by Bufomarinus .WildlifeResearch 18 :431443.

Galán,P.2004.Structureofapopulationofthelizard Podarcisbocagei innorthwest

Spain:Variationsinagedistribution,sizedistributionandsexratio.Animal

Biology 54 :5775.

GarlandJr,T.2002.Lizardhomerangesrevisited: Effectsofsex,bodysize,diet,

habitat,andphylogeny.Ecology 83 :18701885.

Gaulke, M. 1991. On the diet of the water monitor, Varanus salvator , in the

Philippines.Mertensiella 2:143153.

Gaulke, M. 1992. Distribution, population density, and exploitation of the water

monitor( Varanussalvator )inthePhilippines.Hamadryad 17:2127.

Gaulke, M. 1997. Sex determination of monitor lizards in the field A review of

methods.Hamadryad 22 :2831.

Gaulke,M.,W.Erdelen,andF.Abel.1999.Aradiotelemetric study of the water

monitorlizard( Varanussalvator )innorthSumatra,Indonesia.Mertensiella

11 :6378.

Glauert, L. 1951. A new Varanus from East Kimberley, Varanus mertensi sp. n.

WestAustralianNaturalist 3:1416.

9.References 179

Green,B.,andD.King.1978.Homerangeandactivitypatternsofthesandgoanna,

Varanus gouldii (Reptilia: Varanidae). Australian Journal of Wildlife

Research 5:417424.

Greenberg,C.H.2001.Responseofreptileandamphibiancommunitiestocanopy

gaps created by wind disturbance in the Southern Appalachians. Forest

EcologyandManagement 148 :135144.

Greer,A.E.1989.ThebiologyandevolutionofAustralian lizards. Surrey Beatty

andSons,ChippingNortonNSW.

Griffiths, A. D. 1999. Demography and home range of the frillneck lizard,

Chlamydosaurus kingii (Agamidae), in northern Australia. Copeia

1999 :10891096.

Guarino, F. 2002. Spatial ecology of a large carnivorous lizard, Varanus varius

(Squamata:Varanidae).JournalofZoology 258 :449457.

Guarino,F.,A.Georges,andB.Green.2002.Variationinenergymetabolismand

water flux of freeranging male lace monitors, Varanus varius (Squamata:

Varanidae).PhysiologicalandBiochemicalZoology 75 :294304.

Hamilton, L., and S. Snedaker. 1984. Handbook for mangrove area management,

Commission of ecology. International Union for Conservation of Nature,

Gland,Switzerland.

Hamley, T., and A. Georges. 1985. The Australian snapping tortoise Elseya

latisternum : a successful predator on the introduced cane toad? Australian

Zoologist 21 :607610.

Hare,K.M.,C.G.Longson,S.Pledger,andC.H.Daugherty.2004.Size,growth,

and survival are reduced at cool incubation temperatures in the temperate

lizard Oligosomasuteri (Lacertilia:Scincidae).Copeia 2004 :383390.

9.References 180

Harvey,M.B.,andD.G.Barker.1998.Anewspeciesofbluetailedmonitorlizard

(genus Varanus )fromIsland,Indonesia.Herpetologica 54 :3444.

Hecht, M. K. 1975. The morphology and relationships of the largest known

terrestrial lizards prisca from the Pleistocene of Australia.

ProceedingsoftheRoyalSocietyofVictoria 87 :239250.

Hertz,P.E.,R.Huey,andR.D.Stevenson.1993.Evaluatingtemperatureregulation

by field active endotherms: the fallacy of the inappropriate question.

AmericanNaturalist 142 :796818.

Hooge, P. N., and B. Eichenlaub. 2001.Animalmovement extension to Arcview.

ver.2.04.AlaskaBiologicalScienceCenter,USGS,Anchorage.

Huey,R.,E.R.Pianka,andL.J.Vitt.2001.Howoftendolizards"Runonempty"?

Ecology 82 :17.

Huey,R.,andR.D.Stevenson.1979.Integratingthermalphysiologyandecologyof

ectotherms:Adiscussionofapproaches.AmericanZoologist 19 :357366.

Hutchinson,M.F.,R.Swain,andDriessen.2001.SnakesandlizardsofTasmania.

Nature conservation branch, Department of Primary Industries, Water and

Environment,Hobart.

Hutchinson,M.N.,andS.C.Donnellan.1993.Biogeographyandphylogenyofthe

Squamata.Pages210220 in G.J.B.Ross,editor.FaunaofAustralia,Vol.

2A: Amphibia, Reptilia, Aves. Canberra: Australian Biological and

EnvironmentalSurvey.

Ibrahim,A.A.2002.Activityarea,movementpatterns,andhabitatuseofthedesert

monitor, Varanusgriseus ,intheZaranikProtectedArea,NorthSinai,Egypt.

AfricanJournalofHerpetology 51 :3545.

9.References 181

IUCN.2001.100oftheworld'sworstinvasivespecies:aselectionfromtheglobal

invasivespeciesdatabase.

Jackson, R. 2005. The poorly known rusty monitor, Varanus semiremex : history,

naturalhistory,captivebreedingandhusbandry.Herpetofauna 35 :1524.

James,C.D.1996.Ecologyofthepygmygoanna( Varanusbrevicauda )inspinifex

grasslandsofcentralAustralia.AustralianJournalofZoology 44 :177192.

James,C.D.,J.B.Losos,andD.R.King.1992.Reproductivebiologyanddietsof

goannas(Reptilia:Varanidae)fromAustralia.JournalofHerpetology 26 :128

136.

Jenssen, T. A., and S. C. Nunez. 1998. Spatial and breeding relationships of the

lizard, Anolis carolinensis : evidence of intrasexual selection. Behaviour

135 :9811003.

Johnson,D.H.1999.Theinsignificanceofsignificancetesting.JournalofWildlife

Management 63 :763772.

Kathiresan, K., and B. L. Bingham. 2001. Biology of mangroves and mangrove

ecosystems.Advancesinmarinebiology 40 :81251.

Kay,R.W.2004.Movementsandhomerangesofradiotracked Crocodylusporosus

in the Cambridge Gulf region of Western Australia. Wildlife Research

31: 495508.

Kernohan,B.J.,R.A.Gitzen,andJ.J.Millspaugh.2001.Analysisofanimalspace

useandmovements.Pages125166 in J.J.MillspaughandJ.M.Marzluff,

editors.Radiotrackingandanimalpopulations.AcademicPress,SanDiego,

CA.

King,D.1980.Thethermalbiologyoffreelivingsandgoannas( Varanusgouldii )in

SouthernAustralia.Copeia 1980 :755767.

9.References 182

King, D. 1991. The effect of body size on the ecology of varanid lizards.

Mertensiella 2:204210.

King,D.1993.Dietandreproductiveconditionoffreeranging Varanustimorensis .

TheWesternAustralianNaturalist 19 :189194.

King,D.,andB.Green.1979.Notesondietandreproductionofthesandgoanna,

Varanusgouldiirosenbergi .Copeia 1979 :6470.

King,D.,andB.Green.1999.Goannas:Thebiologyofvaranidlizards,2ndEdition.

UNSWPress,Sydney.

King,D.,B.Green,andH.Butler.1989.Theactivitypattern,temperatureregulation

and diet of Varanus giganteus on Barrow Island, Western Australia.

AustralianWildlifeResearch 16 :4147.

King,D.,M.King,andP.R.Baverstock.1991.AnewphylogenyoftheVaranidae.

Mertensiella 2:211219.

King, D., and L. Rhodes. 1982. Sex ratio and breeding season of Varanus

acanthurus .Copeia 1982 :784787.

King, R. B., T. D. Bittner, A. QueralRegil, and J. H. Cline. 1999. Sexual

dimorphisminneonateandadultsnakes.JournaloftheZoologicalSocietyof

London 247 :1928.

Kratochvíl,L.,M.Fokt,I.Rehák,andD.Frynta.2003.Misinterpretationofcharacter

scaling: a tale of sexual dimorphism in body shape of common lizards.

CanadianJournalofZoology 81 :11121117.

Laurie, W. A., and D. Brown. 1990a. Population biology of marine Iguanas

(Amblyrhynchus cristatus ). II. Changes in annual survival rates and the

effects of size, sex, age and fecundity in a population crash. Journal of

AnimalEcology 59 :529544.

9.References 183

Laurie, W. A., and D. Brown. 1990b. Population biology of marine Iguanas

(Amblyrhynchuscristatus ).III.Factorsaffectingsurvival.JournalofAnimal

Ecology 59 :545568.

Lawler, K. L., and J. M. Hero. 1997. Palatability of Bufo marinus tadpoles to a

predatoryfishdecreaseswithdevelopment.WildlifeResearch 24 :327334.

LeGalliard,J.F.,R.Ferrière,andJ.Clobert.2005. Juvenile growth and survival

underdietaryrestriction:aremalesandfemalesequal?Oikos 111 :368376.

Lebreton, J. D., K. P. Burnham,J.Clobert,andD. E. Anderson. 1992. Modeling

survivalandtestingbiologicalhypothesesusingmarkedanimals:Aunified

approachwithcasestudies.EcologicalMonographs 62 :67118.

Lefebvre,G.,B.Poulin,andR.McNeil.1994.Temporaldynamicsofmangrovebird

communities in Venezuela with special reference to migrant warblers. Auk

111 :405415.

Lever,C.2001.Thecanetoad.Thehistoryandecology of a successful colonist.

WestburyAcademicandScientificPublishing,Yorkshire.

Lifson,N.,andR.McClintock.1966.Theoryofthe use of turnover rates of body

water for measuring energy and material balance. Journal of Theoretical

Biology 12 :4674.

Losos,J.B.,andH.W.Greene.1988.Ecologicalandevolutionaryimplicationsof

dietinmonitorlizards.BiologicalJournaloftheLinneanSociety 35 :379487.

Lovern, M. B. 2000. Social and Hormonal Effects on the Ontogeny of Sex

Differences in Behavior in the Lizard, Anolis carolinensis . PhD Thesis.

VirginiaStateUniversity,Blacksburg,Virginia.

Lugo,A.E.,andS.Snedaker.1974.Theecologyofmangroves.AnnualReviewof

EcologyandSystematics 5:3964.

9.References 184

Lutz,B.1971.Venomoustoadsandfrogs.Pages423473 in W.BucherlandE.E.

Buckley,editors.Venomousanimalsandtheirvenoms.AcademicPress,New

York.

Macintosh, D. J., and E. C. Asthton. 2002. A review of mangrove biodiversity

conservation and management. Centre for Tropical Ecosystems Research,

UniversityofAarhus,Denmark.

Mack,R.N.,D.Simberloff,W.M.Lonsdale,H.Evans,M.Clout,andF.Bazzaz.

2000. Biotic invasions: Causes, epidemiology, global consequences and

control.IssuesinEcology 5:120.

Madsen,T.,andR.Shine.1998.Spatialsubdivisionwithinapopulationoftropical

pythons ( Liasis fuscus ) in a superficially homogeneous habitat. Australian

JournalofEcology 23 :340348.

Madsen, T., and R. Shine. 2000. Silver spoons and snake sizes: prey availability

early in life influences longterm growth rates of freeranging pythons.

JournalofAnimalEcology 69 :952958.

Marchant,S.,andP.J.Higgins,editors.1990.HandbookofAustralian,NewZealand

andAntarcticBirds.OxfordUniversityPress,Melbourne.

Martin, J. 2005. The distribution, abundance and trophic ecology of the fishes of

DarwinHarbourmangrovehabitats.PhDthesis,Darwin.

Matlock,R.B.J.,J.B.Welch,andF.D.Parker.1996.Estimatingpopulationdensity

per unit area from mark, release, recapture data. Ecological Applications

6:12411253.

Mayes,P.J.,S.D.Bradshaw,andF.J.Bradshaw.2005a.Successfullydetermining

thesexofadult Varanusmertensi (Reptilia:Varanidae)usingacombination

9.References 185

ofbothhemipenileeversionandtheratioofandrogensestradiolinplasma.

AnnalsNewYorkAcademyofScience 1040 :402405.

Mayes, P. J., G. G. Thompson, and P. C. Withers. 2005b. Diet and foraging

behaviour of the semiaquatic Varanus mertensi (Reptilia: Varanidae).

WildlifeResearch 32 :6774.

McCoid,M.,J.,andR.A.Hensley.1991.Matingandcombatin Varanusindicus .

HerpetologicalReview 22 :1617.

McCoid,M.,J.,andG.J.Witteman.1993. Varanus indicus (Mangrove Monitor).

Diet.HerpetologicalReview 24 :105.

McDonald, N. S., and J. McAlpine. 1991. Floods and droughts: The northern

climate. in C. D. Haynes, M. G. Ridpath, and M.A.J.Williams, editors.

MonsoonalAustralia,landscape,ecologyandmaninthenorthernlowlands.

AABalkema,Rotterdam,TheNetherlands.

Meehan, B. 1982. Shell bed to shell midden. Australian Institute of Aboriginal

Studies,Canberra.

Melquist,W.E.,andM.G.Hornocker.1983.Ecologyofriverottersinwestcentral

Idaho.WildlifeMonographs 83 :160.

Meyer,K.,andH.Linde.1971.Collectionoftoadvenoms and chemistry of toad

venom steroids. Pages 521556 in W. Bucherl and E. E. Buckley, editors.

Venomousanimalsandtheirvenoms.AcademicPress,NewYork.

Murphy,J.B.,C.Ciofi,C.deLaPanouse,andT.Walsh, editors. 2002. Komodo

dragons:Biologyandconservation.SmithsonianInstitutionPress.

Nagy,K.A.1982.Fieldstudiesofwaterrelations.Pages483501 in C.GansandF.

H.Pough,editors.BiologyoftheReptilia.AcademicPress,NewYork.

9.References 186

Nagy, K. A., I. A. Girard, and T. K. Brown. 1999. Energetics of freeranging

mammals,reptilesandbirds.AnnualReviewofNutrition 19 :247277.

Nagy, K. A., and C. C. Peterson. 1988. Scaling of water flux rate in animals.

UniversityofCaliforniaPublicationsinZoology 120 :1172.

Nagy,K.A.,andV.H.Shoemaker.1984.Fieldenergeticsandfoodconsumptionof

the Galapagos marine iguana, Amblyrhynchus cristatus . Physiological

Zoology 57 :281290.

Nester,M.1996.Anappliedstatistician'screed.AppliedStatistics 45 :401410.

Noske,R.A.1996.Abundance,zonationandforagingecologyofbirdsinmangroves

ofDarwinHarbour,NorthernTerritory.WildlifeResearch 23 :443474.

Noske,R.A.2003.Theroleofbirdsinmangrovespollinationandinsectpredation.

in:Proceedings:DarwinHarbourregion:Currentknowledgeandfuture

needs.Ed.WorkingGroupfortheDarwinHarbourAdvisoryCommittee,

DepartmentofInfrastructure,PlanningandEnvironment,Darwin.pp7486.

NRETA.2006.ClassificationstatusofanimalsoftheNorthernTerritory.ScheduleI;

Reptiles.NorthernTerritoryGovernment,DepartmentofNaturalResources,

EnvironmentandtheArts.

Oakwood,M.2004.Theeffectofcanetoadsonamarsupialcarnivore,thenorthern

quoll, Dasyurus hallucatus . Report to Department of Environment and

Heritage,Darwin.

Olsson, M., and T. Madsen. 2001. Betweenyear variation in determinants of

offspring survival in the sand lizard, Lacerta agilis . Functional Ecology

15 :443450.

9.References 187

Olsson, M., R. Shine, E. Wapstra, B. Ujvari, and T. Madsen. 2002. Sexual

dimorphisminlizardbodyshape:therolesofsexualselectionandfecundity

selection.Evolution 56 :15381542.

Pace,M.L.,J.J.Cole,S.R.Carpenter,andJ.F.Kitchell.1999.Trophiccascades

revealedindiverseecosystems.TrendsinEcologyandEvolution 14 :483488.

Packard,G.C.,andT.J.Boardman.1999.Theuseofpercentagesandsizespecific

indices to normalize physiological data for variation in body size: wasted

time,wastedeffort?ComparativeBiochemistryandPhysiology A122 :3744.

Pavey,C.R.,N.Goodship,andF.Geiser.2003.Homerangeandspatialorganisation

of rockdwelling carnivorous marsupial, Pseudantechinus macdonnellensis .

WildlifeResearch 30 :135142.

Perry,G.,andT.Garland.2002.Lizardhomerangesrevisited:effectsofsex,body

size,diet,habitat,andphylogeny.Ecology 83 :18701885.

Peters,U.1973.Acontributionontheecologyof Varanusstorri .Koolewong 2:12

13.

Peterson, C. C., K. A. Nagy, and J. Diamond. 1990. Sustained metabolic scope.

ProceedingsoftheNationalAcademyofScience.USA 87 :23242328.

Philipps,J.A.1995.Movementpatternsanddensityof Varanusalbigularis .Journal

ofHerpetology 29 :407416.

Phillips,B.L.,G.P.Brown,andR.Shine.2003.Asessingthepotentialimpactof

canetoadsonAustraliansnakes.ConservationBiology 17 :17381747.

Phillips, B. L., G. P. Brown, and R. Shine. 2004. Assessing the potential for an

evolutionaryresponsetorapidenvironmentalchange:invasivetoadsandan

Australiansnake.EvolutionaryEcologyResearch 6:799811.

9.References 188

Phillips,B.L.,andR.Shine.2006.Allometryandselectioninanovelpredator/prey

system:Australiansnakesandtheinvadingcanetoad.Oikos 112 :122130.

Pianka, E. R. 1969. Habit specificity, speciation and species density in Australian

desertlizards.Ecology 50 :498502.

Pianka, E. R. 1971. Notes on the biology of Varanus tristis . West Australian

Naturalist 11 :180183.

Pianka,E.R.1995.Evolutionofbodysize:Varanidsasamodelsystem.American

Naturalist 146 :398414.

Pianka,E.R.,D.King,andR.A.King,editors.2004.Varanoidlizardsoftheworld.

IndianaUniversityPress,BloomingtonIndianapolis.

Pianka,E.R.,andL.J.Vitt.2003.Lizards:windowstotheevolutionofdiversity.

UniversityofCaliforniaPress,London.

Pockley,D.1965.Thefreeandthecaged.BlackwoodsMagazine 298 :439446.

Porter, W. P., and D. M. Gates.1969.Thermodynamic equilibria of animals with

theirenvironment.EcologicalMonographs 39 :245270.

Porter, W. P., and F. C. James. 1979. Behavioural implications of mechanistic

ecologyII.TheAfricanrainbowlizard Agamaagama .Copeia 1979 :594619.

Porter,W.P.,J.W.Mitchell,W.A.Beckman,andC.B.DeWitt.1973.Behavioural

implicationsofmechanisticecology.Oecologia 13 :154.

Porter,W.P.,andC.R.Tracy.1982.Biophysicalanalysisofenergetics,timespace

utilization,anddistributionallimitsoflizards.in R.Huey,E.R.Pianka,and

T. Schoener, editors. Ecology of lizards. Harvard University Press,

Cambridge.

Pough,F.H.1973.Lizardenergeticsanddiet.Ecology 54 :837844.

9.References 189

R Development Core Team. 2004. R: A language and environment for statistical

computing. in .RFoundationforstatisticalcomputing,Vienna,Austria.

Rayward,A.1974.GianttoadsathreattoAustralianwildlife.Wildlife 17 :506507.

Ribble,D.O.,A.E.Wurtz,E.K.McConnell,J.J.Buegge,andK.C.WelchJnr.

2002. A comparison of home ranges of two species of Peromyscus using

trappingandradiotelemetrydata.JournalofMammalogy 83 :260266.

Richards, M. P., and H. O. Hultin. 2001. Rancidity development in a fish model

systemasaffectedbyphospholipids.JournalofFoodLipids 8:149238.

Robertson,A.I.,andP.A.Daniel.1989.Theinfluenceofcrabsonlitterprocessing

inhighintertidalmangroveforestsintropicalAustralia. Oecologia 78 :191

198.

Robertson,A.L.,andN.C.Duke.1990.Recruitment,growthandresidencetimeof

fishesinatropicalAustralianmangrovesystem.Estuarine,CoastalandShelf

Science 31 :723743.

Rooker, J. R., and G. D. Dennis. 1991. Diel, lunar and seasonal changes in a

mangrovefishassemblageoffsouthwesternPuertoRico.BulletinofMarine

Science 49 :684698.

Rose, B. 1982. Lizard home ranges: methodology and functions. Journal of

Herpetology 16 :253269.

Rummery, C., R. Shine, D. L. Houston, and M. B. Thompson. 1995. Thermal

biology of the Australian forest dragon Hypsilurus spinipes (Agamidae).

Copeia 1995 :818827.

Sabath,M.D.,W.C.Boughton,andS.Easteal.1981.Expansionoftherangeofthe

introducedtoad Bufomarinus inAustralia19351974.Copeia 1981 :676680.

9.References 190

Saenger, P., E. J. Hegerl, and J. D. S. Davie. 1983. Global status of mangrove

ecosystems.Number3,InternationalUnionforConservationofNature.

Saenger,P.,andS.Snedaker.1993.Pantropicaltrends in mangrove aboveground

biomassandannuallitterfall.Oecologia 96 :293299.

Sandlund, O. T., P. J. Schei, and A. Viken, editors. 1999. Invasive species and

biodiversitymanagement.KluwerAcademic,Boston.

Schildger,B.,H.Tenhu,M.Kramer,M.Gerwing,G.Kuchling,G.Thompson,and

R.Wicker.1999.Comparativediagnosticimagingofthereproductivetractin

monitors. Radiology Ultrasonography Coelioscopy. Mertensiella 11 :193

211.

Schoener,T.W.1968.Sizesoffeedingterritoriesamongbirds.Ecology 49 :123141.

Schoener, T. W., J. B. Losos, and D. A. Spiller. 2005. Island biogeography of

populations: An introduced species transforms survival patterns. Science

310 :18071809.

Schoener,T.W.,andA.Schoener.1982.Intraspecificvariationinhomerangesize

insome Anolis lizards.Ecology 63 :809823.

Schoener,T.W.,D.A.Spiller,andJ.B.Losos.2004.Variableecologicaleffectsof

hurricanes: The importance of seasonal timing for survival of lizards on

Bahamianislands.ProceedingsoftheNationalAcademyofSciencesofthe

UnitedStatesofAmerica 101 :177181.

Schultz,T.J.2002.Oxygentransportinvaranidlizardsduringexercise.PhDthesis.

CharlesDarwinUniversity,Darwin.

Serle,G.,J.Ritchie,B.Nairn,andD.Pike.2002.Australiandictionaryofbiography.

CambridgeUniversityPress.

9.References 191

Shea,G.,andG.L.Reddacliff.1986.OssificationsinthehemipenesofVaranids.

JournalofHerpetology 20 :566568.

Shine,R.1985.ThereproductivebiologyofAustralianreptiles:asearchforgeneral

patterns. in G. C. Grigg, R. Shine, and H. Ehmann, editors. Biology of

Australasianfrogsandreptiles.SurreyBeattyandSons,ChippingNorton.

Shine, R. 1986. Food habits, habitats and reproductive biology of four sympatric

speciesofvaranidlizardsintropicalAustralia.Herpetologica 42 :346360.

Shine,R.1991a.Australiansnakes:anaturalhistory.ReedBooks,Sydney.

Shine,R.1991b.Whydolargersnakeseatlargerprey items? Functional Ecology

5:493502.

Shine, R., Ambariyanto, P. S. Harlow, and Mumpuni. 1998a. Ecological traits of

commercially harvested water monitors, Varanus salvator , in northern

Sumatra.WildlifeResearch 25 :437447.

Shine,R.,andE.L.Charnov.1992.Patternsofsurvival,growth,andmaturationin

snakesandlizards.TheAmericanNaturalist 139 :12571269.

Shine,R.,P.S.Harlow,J.S.Keogh,andBoeadi.1996.Commercialharvestingof

giant lizards: the biology of water monitors, Varanus salvator , in southern

Sumatra.BiologicalConservation 77 .

Shine,R.,P.S.Harlow,J.S.Keogh,andBoeadi.1998b.Theinfluenceofsexand

body size on food habits of a giant tropical snake, Python reticulatus .

FunctionalEcology 12 :248258.

Shine,R.,andT.Madsen.1997.Preyabundanceandpredatorreproduction:ratsand

pythonsonatropicalAustralianfloodplain.Ecology 78 :10781086.

9.References 192

Shine,R.,D.O'Connor,M.P.Lemaster,andR.T.Mason.2001.Pickonsomeone

yourownsize:ontogeneticshiftsinmatechoicebymalegartersnakesresult

insizeassortativemating.AnimalBehaviour 61 :11331141.

Slavens,F.,andK.Slavens.2003.ReptilesandamphibiansincaptivityLongevity

Homepage. http://www.pondturtle.com/longev.html (October2003).

Smirina, E. M., and A. Y. Tsellarius. 1996. Aging, longevity, and growth of the

desert monitor ( Varanus griseus Daud.). Russian Journal of Herpetology

3:(abstractonly).

Smith,J.2004.Fishandcompanysmellafterthreedays:Increasingcaptureratesof

carrioneatingvaranids.HerpetologicalReview 35 :4143.

Smith,J.G.andPhillips,B.J.(2006)Toxictucker:thepotentialimpactofcanetoads

onAustralianreptiles.PacificConservationBiology 12 :4049.

Snider,A.T.,andJ.K.Bowler.1992.Longevityofreptilesandamphibiansinnorth

AmericanCollections.HerpetologicalCircularNo.21, 2ndedition.Society

forthestudyofreptilesandamphibians.

Sprackland,R.G.1997.Mangrovemonitorlizards.Reptiles 5:4863.

Stanner, M., and M. Mendelssohn. 1987. Sex ratio, population density and home

rangeofthedesertmonitor( Varanusgriseus )inthesoutherncoastalplainof

Israel.AmphibiaReptilia 8:153164.

Stebbins,R.C.,andR.E.Barwick.1968.Radiotelemetricstudyofthermoregulation

inaLaceMonitor.Copeia 1968 :541547.

Stephens, P. A., S.W.Buskirk,G.D.Hayward,and C. Martínez Del Rio. 2005.

Information theory and hypothesis testing: a call for pluralism. Journal of

AppliedEcology 42 :412.

9.References 193

Sutherst,R.W.,R.B.Floyd,andG.F.Maywald.1995.Thepotentialgeographical

distribution of the cane toad, Bufo marinus L. in Australia. Conservation

Biology 10 :294299.

Sweet,S.1999.Spatialecologyof Varanusgauerti and V.glebopalma innorthern

Australia.Mertensiella 11 :317366.

Terborgh,J.,J.A.Estes,P.Paquet,K.Ralls,D.BoydHeger,B.J.Miller,andR.F.

Noss.1999.Theroleoftopcarnivoresinregulatingterrestrialecosystems. in

M. E. Soule and J. Terborgh, editors. Continental conservation: scientific

foundationsofregionalreservenetworks.IslandPress,WashingtonDC.

Terborgh,J.,L.Lopez,P.Nunez,M.Rao,G.Shahabuddin,G.Orihuela,M.Riveros,

R. Ascanio, G. H. Adler, T. D. Lambert, and L. Balbas. 2001. Ecological

meltdowninpredatorfreeforestfragments.Science 294 :19231926.

Thompson,G.1994.Activityareaduringthebreedingseasonof Varanusgouldii in

anurbanenvironment.WildlifeResearch 21 :227231.

Thompson,G.2002.ThefeasibilityofusingbodyproportionsinWesternAustralian

varanids( Varanus )asamethodfordeterminingaspecimen'ssex.Recordsof

theWesternAustralianMuseum 20 :437439.

Thompson, G., M. De Boer, and E. R. Pianka. 1998. Activity areas, daily

movements, ecology and thermoregulation of an arboreal monitor Varanus

tristis (Squamata:Varanidae)duringthebreedingseason.AustralianJournal

ofEcology 24 :117122.

Thompson, G. G. 1992a. Daily distance travelled and foraging areas of Varanus

gouldii (Reptillia: Varanidae) in an urban environment. Wildlife Research

19 :743753.

9.References 194

Thompson, G. G. 1992b. Effects of body mass and temperature on standard

metabolic rates for two Australian varanid lizards ( Varanus gouldii and V.

panoptes ).Copeia 1992 :343350.

Thompson,G.G.1993.Dailymovementpatternsandhabitatpreferencesof Varanus

caudolineatus (Reptilia:Varanidae).WildlifeResearch 20 :227231.

Thompson, G. G., M. De Boer, and E. R. Pianka. 1999. Activity and daily

movements of an arboreal monitor lizard, Varanus tristis (Squamata:

Varanidae) during the breeding season. Australian Journal of Ecology

24 :117122.

Thompson,G.G.,andP.C.Withers.1994.Standardmetabolicratesoftwosmall

Australian varanid lizards ( Varanus caudolineatus and V. acanthurus ).

Herpetologica 50 :494502.

Thompson, G.G.,andP.C.Withers.1997.Comparative morphology of Western

Australian varanid lizards (Squamata: Varanidae). Journal of Morphology

233 :127152.

Thompson, G. G., and P. C. Withers. 1998. Standard evaporative water loss and

metabolism of juvenile Varanus mertensi (Squamata: Varanidae). Copeia

1998 :10541059.

Thompson,M.B.,C.H.Daugherty,A.Cree,D.C.French,J.C.Gillingham,andR.

E.Barwick.1992.StatusandlongevityoftheTuatara, Sphenodonguntheri ,

andDuvaucel, Hoplodactylusduvauceli ,onNorthBrotherIsland,New

Zealand.JournaloftheRoyalSocietyofNewZealand 22 :132130.

Tinkle, D. W. 1967. The life and demography of the side blotched lizard, Uta

stansburiana .MiscellaneousPublications,MuseumofZoology.Universityof

Michigan 132 :1182.

9.References 195

Tinkle,D.W.,A.E.Dunham,andJ.D.Cogdon.1993.Lifehistoryanddemographic

variation in the lizard, Sceloporus graciosus : a longterm study. Ecology

74 :24132429.

Tomlinson, P. B. 1986. The botany of mangroves. Cambridge University Press,

London.

Tracy,C.R.1982.Biophysicalmodellinginreptilianphysiologyandecology.Pages

275321 in C. Gans and F. H. Pough, editors. Biology of the Reptilia.

AcademicPress,NewYork.

Traeholt, C. 1995. A radiotelemetric study of the thermoregulation of free living

water monitor lizards, Varanus S. salvator . Journal of Comparative

Physiology 165 :125131.

Tucker, A. D., C. J. Limpus, H. I. McCallum, and K. R. McDonald. 1997.

Movements and home ranges of Crocodylus johnstoni in the Lynd River,

Queensland.WildlifeResearch 24 :379396.

Turner, F. B., G. A. Hoddenback, P. A. Medica, and J. R. Lannon. 1970. The

demography of the lizard, Uta stansburiana Baird and Girard, in southern

Nevada.JournalofAnimalEcology 39 :505519.

Turner,F.B.,R.I.Jennrich,andJ.D.Weintraub.1969.Homerangesandbodysize

oflizards.Ecology 50 :10761081. van der Toorn, J. D. 1999. A survival guide to survival rates. Marine mammals:

Publicdisplayandresearch 3:2738. vanMarkenLichtenbelt,W.D.,R.A.Weddelingh,J.T.Vogel,andK.B.M.Albers.

1993.Energybudgetsinfreelivinggreeniguanasinaseasonalenvironment.

Ecology 65 :575581.

9.References 196

Vardon,M.,S.Gaston,J.Niddrie,andG.Webb.1998. Wildlife use at Momega,

northcentralArnhemLand.AustralianBiologist 12 :1522.

Vitt, L. J., E. R. Pianka, W. E. Cooper, and K. Schwenk. 2003. History and the

globalecologyofsquamatereptiles.AmericanNaturalist 162 :4461.

Waldschmidt,S.,andC.R.Tracy.1983.Interactionsbetweenalizardanditsthermal

environment:Implicationsforsprintperformanceandspaceutilizationinthe

lizard Utastansburiana .Ecology 64 :476484.

Weavers,B.W.1993.Homerangeofmalelacemonitors Varanusvarius (Reptilia:

Varanidae),insoutheasternAustralia.WildlifeResearch 20 :303313.

Webb, G., and C. Manolis. 1993. Australian crocodiles: A natural history. Reed

Books.

Webb, J. K., G. P. Brown, and R. Shine. 2001. Body size, locomotor speed and

antipredator behaviour in a tropical snake ( Tropidonophis mairii ,

Colubridae): the influence of incubation environments and genetic factors.

FunctionalEcology 15 :561568.

Whitehead,P.J.,B.A.Wilson,andK.Saalfeld.1992.ManagingtheMagpieGoose

in the Northern Territory: approaches to conservationofmobilefaunaina

patchy environment. Pages 90104 in I. Moffatt and A. Webb, editors.

Conservation and Development Issues in Northern Australia. North

AustralianResearchUnit,AustralianNationalUniversity,Darwin.

Wikelski,M.,V.Carrillo,andF.Trillmich.1997. Energylimitstobodysizeina

grazingreptile,theGalapagosMarineIguana.Ecology 78 :22042217.

Wikramanayake, E. D., and G. L. Dryden. 1988. The reproductive ecology of

Varanusindicus onGuam.Herpetologica 44 :338344.

9.References 197

Wikramanayake,E.D.,andG.L.Dryden.1999.Implicationsofheatingandcooling

ratesof Varanusbengalensis and V.salvator .Mertensiella 11 :149156.

Wikramanayake, E. D., and B. Green. 1989. Thermoregulatory influences on the

ecologyoftwosympatricvaranidsinSriLanka.Biotropica 21 :7479.

Wikramanayake, E. D., and B. Green. 1993. Thermal ecology of habitat and

microhabitat use by sympatric Varanus bengalensis and V. salvator in Sri

Lanka.Copeia 1993 :709714.

Williams,B.K.,J.D.Nichols,andM.J.Conroy.2002.Analysisandmanagementof

animalpopulations.AcademicPress,SanDiego.

Williamson, I. 1999. Competition between the larvae of the introduced cane toad

Bufo marinus (Anura: Bufonidae) and native anurans from the Darling

DownsareaofsouthernQueensland.AustralianJournalofEcology 24 :636

643.

Williamson,M.1996.Biologicalinvasions.ChapmanandHall,London.

Woinarski,J.C.Z.1992.Biogeographyandconservationofreptiles,mammalsand

birdsacrossnorthwesternAustralia:aninventoryandbaseforplanningan

ecologicalreservesystem.WildlifeResearch 19 :665705.

Woinarski, J. C. Z., and N. Gambold. 1992. Gradient analysis of a tropical

herpetofauna: Distribution patterns of terrestrial reptiles and amphibians in

StageIIIofKakaduNationalPark.WildlifeResearch 19 :105127.

Yoccoz,N.G.1991.Use,overuse,andmisuseofsignificancetestsinevolutionary

biologyandecology.BulletinoftheEcologicalSocietyofAmerica 72 :106

111.

9.References 198

Ziegler, T., and W. Böhme. 1999. Genital morphology and systematics of two

recently described monitor lizards of the Varanus (Euprepiosaurus) indicus

group.Mertensiella 11 :121128.

Zug,G.R.,andP.B.Zug.1979.Themarinetoad, Bufomarinus :Anaturalhistory

resuméofnativepopulations.SmithsonianContributionstoZoology284:58.

9.References 199