Direct Numerical Simulation of Coupled Heat and Mass Transfer in Dense Gas-Solid Flows with Surface Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Direct Numerical Simulation of Coupled Heat and Mass Transfer in Dense Gas-Solid Flows with Surface Reactions Direct numerical simulation of coupled heat and mass transfer in dense gas-solid flows with surface reactions Citation for published version (APA): Lu, J. (2018). Direct numerical simulation of coupled heat and mass transfer in dense gas-solid flows with surface reactions. Technische Universiteit Eindhoven. Document status and date: Published: 19/11/2018 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 10. Oct. 2021 Direct Numerical Simulation of Coupled Heat and Mass Transfer in Dense Gas-Solid Flows with Surface Reactions Jiangtao Lu This dissertation was approved by the promotor: Prof.dr.ir. J.A.M. Kuipers and the co-promoter: dr.ir. E.A.J.F. Peters This work was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands. Part of this work was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. Copyright @ 2018, Jiangtao Lu, Eindhoven, the Netherlands All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author. A catalogue record is available from the Eindhoven University of Technology Library ISBN: 978-90-386-4612-1 Direct Numerical Simulation of Coupled Heat and Mass Transfer in Dense Gas-Solid Flows with Surface Reactions PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen door het College voor Promoties, in het openbaar te verdedigen op maandag 19 november 2018 om 13:30 uur door Jiangtao Lu geboren te Jiangsu, China Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotiecommissie is als volgt: voorzitter: prof.dr. C.W.M. van der Geld promotor: prof.dr.ir. J.A.M. Kuipers co-promotor: dr.ir. E.A.J.F. Peters leden: prof.dr.ir. M. van Sint Annaland prof.dr.ir. E.J.M. Hensen prof.dr. J.G.M. Kuerten prof.dr.ir. R.A.W.M. Henkes Technische Universiteit Delft & Royal Dutch Shell Prof. Dr. Rodney O. Fox Iowa State University, United States Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming met de TU/e gedragscode wetenschapsbeoefening. To my family Direct Numerical Simulation of Coupled Heat and Mass Transfer in Dense Gas-Solid Flows with Surface Reactions Summary Fluid-solid flows are frequently encountered in a wide range of processes. A typical example is fixed bed reactors, which are commonly used in chemical industry for catalytic reactions. In such processes, reactions take place at active sites deep inside porous catalyst particles. Therefore, it is important to know how reactants are transported to these particles and how products move out with the fluid flow. The performance of a catalytic process is determined not only by the efficiency of the catalytic reaction, but also by the efficiency of mass transport. In such highly heterogeneous systems, there are two important factors, specifically variable reaction rates and significant heat effects, which introduce additional complexities to the equipment design as well as the process performance. In chemical engineering, most researchers focus on either reaction kinetics or transport processes, but in this thesis the flow of reactants and products around catalytic particles is modelled as well as the reactions that occur there. Using detailed models the performance of a catalytic process can be predicted by computer simulations. The simulations give insights in the interplay among mass transfer, chemical transformations and heat effects. Using the detailed information the models provide, real chemical processes can be improved and in that way technological development is accelerated. In this thesis, an efficient ghost-cell based immersed boundary method (IBM) is developed to perform direct numerical simulation (DNS) of (coupled) mass and heat transfer problems in fluid-particle systems. The fluid-solid coupling is achieved by implicit incorporation of the boundary conditions into the discretized momentum, species and thermal energy conservation equations of the fluid phase. Taking advantage of a second order quadratic interpolation scheme in the reconstruction procedures, the DNS model is capable to handle the Robin boundary condition at the exact position of the particle surface. This is the unique feature of this DNS model. A fixed Eulerian grid is used to solve the conservation equations for the entire computational domain. Several fluid-particle systems, with increasing complexity, are studied in the subsequent chapters with the aim to push forward the frontier of the application of DNS towards more realistic chemical reaction processes. In Chapter 2, the governing equations, the numerical solution method and the IBM are introduced in detail. The newly developed quadratic interpolation scheme is verified by first comparing the numerical results for unsteady mass diffusion around a single sphere with the analytical solutions and, second, by comparing computed Sherwood numbers for convective mass transfer with the empirical values. In both cases, an infinitely fast surface reaction is assumed and excellent agreement is achieved. In Chapter 3, a catalytic surface reaction is introduced into the DNS model. The Damköhler number is used to describe the interplay between chemical reaction and mass transfer processes in fluid-particle systems. First, a detailed verification study of unsteady mass diffusion is performed, where the concentration profile and the instantaneous Sherwood number are compared with the analytical solutions. Next, both single particle and multi-particle dense systems with different reaction rates are considered. It is noted that, the mass transfer performance of the dense particle array is improved to some extent with higher reaction rates. In Chapter 4, mass transfer problems in particle clusters, specifically a nine-sphere cuboid cluster and a randomly-generated spherical cluster consisting of hundred spheres, are studied. The clusters are composed of active catalysts and inert particles, which are realized by the Dirichlet and Neumann boundary condition respectively. Mixed boundary conditions of individual spheres are handled consistently in the DNS model. In case of a cluster, the swarm effect decreases the mass transfer performance dramatically, however, dilution with inert particles can help to counteract this decrease quite a lot. In Chapter 5, the heat transfer problems in fluid flowing through tubular fixed beds are studied. For the classical Graetz-Nusselt problem with both isothermal and isoflux boundary conditions, the DNS results agree well with the analytical results in a wide range of the Péclet number. An advanced Graetz-Nusselt problem with hundreds particles randomly positioned inside a tube with adiabatic wall is then studied. The channeling effect at the wall region is noticed to significantly reduce the performance of the system, nevertheless large and passive particles will increase the heat transfer coefficient. The simulation results are compared with the results obtained by a team from the University of Twente using a different class of IBM, revealing good agreement. In Chapter 6, independently coupled heat and mass transfer is studied in fluid-particle systems. The reaction rate is specified to be first order with a rate coefficient which is independent of temperature. The coupling of heat and mass transfer arises as a consequence of an exothermic reaction where the liberated heat heats up the particle that, subsequently, transfers the thermal energy to the
Recommended publications
  • Influence of Nusselt Number on Weight Loss During Chilling Process
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Procedia Engineering 32 (2012) 90 – 96 I-SEEC2011 Influence of Nusselt number on weight loss during chilling process R. Mekprayoon and C. Tangduangdee Department of Food Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand Elsevier use only: Received 30 September 2011; Revised 10 November 2011; Accepted 25 November 2011. Abstract The coupling of the heat and mass transfer occurs on foods during chilling process. The temperature of foods is reduced while weight changes with time. Chilling time and weight loss involve the operating cost and are affected by the design of refrigeration system. The aim of this work was to determine the correlations of Nu-Re-Pr and Sh-Re-Sc used to predict chilling time and weight loss, respectively for infinite cylindrical shape of food products. The correlations were obtained by estimating coefficients of heat and mass transfer based on analytical solution method and regression analysis of related dimensionless numbers. The experiments were carried out at different air velocities (0.75 to 4.3 m/s) and air temperatures (-10 to 3 ÛC) on different sizes of infinite cylindrical plasters (3.8 and 5.5 cm in diameters). The correlations were validated through experiments by measuring chilling time and weight loss of Vietnamese sausages compared with predicted values. © 2010 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of I-SEEC2011 Open access under CC BY-NC-ND license.
    [Show full text]
  • Analysis of Mass Transfer by Jet Impingement and Heat Transfer by Convection
    Analysis of Mass Transfer by Jet Impingement and Study of Heat Transfer in a Trapezoidal Microchannel by Ejiro Stephen Ojada A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Department of Mechanical Engineering University of South Florida Major Professor: Muhammad M. Rahman, Ph.D. Frank Pyrtle, III, Ph.D. Rasim Guldiken, Ph.D. Date of Approval: November 5, 2009 Keywords: Fully-Confined Fluid, Sherwood number, Rotating Disk, Gadolinium, Heat Sink ©Copyright 2009, Ejiro Stephen Ojada i TABLE OF CONTENTS LIST OF FIGURES ii LIST OF SYMBOLS v ABSTRACT viii CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 1 1.1 Introduction (Mass Transfer by Jet Impingement ) 1 1.2 Literature Review (Mass Transfer by Jet Impingement) 2 1.3 Introduction (Heat Transfer in a Microchannel) 7 1.4 Literature Review (Heat Transfer in a Microchannel) 8 CHAPTER 2: ANALYSIS OF MASS TRANSFER BY JET IMPINGEMENT 15 2.1 Mathematical Model 15 2.2 Numerical Simulation 19 2.3 Results and Discussion 21 CHAPTER 3: ANALYSIS OF HEAT TRANSFER IN A TRAPEZOIDAL MICROCHANNEL 42 3.1 Modeling and Simulation 42 3.2 Results and Discussion 48 CHAPTER 4: CONCLUSION 65 REFERENCES 67 APPENDICES 79 Appendix A: FIDAP Code for Analysis of Mass Transfer by Jet Impingement 80 Appendix B: FIDAP Code for Fluid Flow and Heat Transfer in a Composite Trapezoidal Microchannel 86 i LIST OF FIGURES Figure 2.1a Confined liquid jet impingement between a rotating disk and an impingement plate, two-dimensional schematic. 18 Figure 2.1b Confined liquid jet impingement between a rotating disk and an impingement plate, three-dimensional schematic.
    [Show full text]
  • A Review of Models for Bubble Clusters in Cavitating Flows Daniel Fuster
    A review of models for bubble clusters in cavitating flows Daniel Fuster To cite this version: Daniel Fuster. A review of models for bubble clusters in cavitating flows. Flow, Turbulence and Combustion, Springer Verlag (Germany), 2018, 10.1007/s10494-018-9993-4. hal-01913039 HAL Id: hal-01913039 https://hal.sorbonne-universite.fr/hal-01913039 Submitted on 5 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Flow Turbulence and Combustion manuscript No. (will be inserted by the editor) D. Fuster A review of models for bubble clusters in cavitating flows Received: date / Accepted: date Abstract This paper reviews the various modeling strategies adopted in the literature to capture the response of bubble clusters to pressure changes. The first part is focused on the strategies adopted to model and simulate the response of individual bubbles to external pressure variations discussing the relevance of the various mechanisms triggered by the appearance and later collapse of bubbles. In the second part we review available models proposed for large scale bubbly flows used in different contexts including hydrodynamic cavitation, sound propagation, ultrasonic devices and shockwave induced cav- itation processes.
    [Show full text]
  • Who Was Who in Transport Phenomena
    l!j9$i---1111-1111-.- __microbiographies.....::..._____:__ __ _ ) WHO WAS WHO IN TRANSPORT PHENOMENA R. B YRON BIRD University of Wisconsin-Madison• Madison, WI 53706-1691 hen lecturing on the subject of transport phenom­ provide the "glue" that binds the various topics together into ena, I have often enlivened the presentation by a coherent subject. It is also the subject to which we ulti­ W giving some biographical information about the mately have to tum when controversies arise that cannot be people after whom the famous equations, dimensionless settled by continuum arguments alone. groups, and theories were named. When I started doing this, It would be very easy to enlarge the list by including the I found that it was relatively easy to get information about authors of exceptional treatises (such as H. Lamb, H.S. the well-known physicists who established the fundamentals Carslaw, M. Jakob, H. Schlichting, and W. Jost). Attention of the subject, but that it was relatively difficult to find could also be paid to those many people who have, through accurate biographical data about the engineers and applied painstaking experiments, provided the basic data on trans­ scientists who have developed much of the subject. The port properties and transfer coefficients. documentation on fluid dynamicists seems to be rather plen­ tiful, that on workers in the field of heat transfer somewhat Doing accurate and responsible investigations into the history of science is demanding and time-consuming work, less so, and that on persons involved in diffusion quite and it requires individuals with excellent knowledge of his­ sparse.
    [Show full text]
  • Heat and Mass Correlations
    Heat and Mass Correlations Alexander Rattner, Jonathan Bohren November 13, 2008 Contents 1 Dimensionless Parameters 2 2 Boundary Layer Analogies - Require Geometric Similarity 2 3 External Flow 3 3.1 External Flow for a Flat Plate . 3 3.2 Mixed Flow Over a plate . 4 3.3 Unheated Starting Length . 4 3.4 Plates with Constant Heat Flux . 4 3.5 Cylinder in Cross Flow . 4 3.6 Flow over Spheres . 5 3.7 Flow Through Banks of Tubes . 6 3.7.1 Geometric Properties . 6 3.7.2 Flow Correlations . 7 3.8 Impinging Jets . 8 3.9 Packed Beds . 9 4 Internal Flow 9 4.1 Circular Tube . 9 4.1.1 Properties . 9 4.1.2 Flow Correlations . 10 4.2 Non-Circular Tubes . 12 4.2.1 Properties . 12 4.2.2 Flow Correlations . 12 4.3 Concentric Tube Annulus . 13 4.3.1 Properties . 13 4.3.2 Flow Correlations . 13 4.4 Heat Transfer Enhancement - Tube Coiling . 13 4.5 Internal Convection Mass Transfer . 14 5 Natural Convection 14 5.1 Natural Convection, Vertical Plate . 15 5.2 Natural Convection, Inclined Plate . 15 5.3 Natural Convection, Horizontal Plate . 15 5.4 Long Horizontal Cylinder . 15 5.5 Spheres . 15 5.6 Vertical Channels . 16 5.7 Inclined Channels . 16 5.8 Rectangular Cavities . 16 5.9 Concentric Cylinders . 17 5.10 Concentric Spheres . 17 1 JRB, ASR MEAM333 - Convection Correlations 1 Dimensionless Parameters Table 1: Dimensionless Parameters k α Thermal diffusivity ρcp τs Cf 2 Skin Friction Coefficient ρu1=2 α Le Lewis Number - heat transfer vs.
    [Show full text]
  • Flow, Heat Transfer, and Pressure Drop Interactions in Louvered-Fin Arrays
    Flow, Heat Transfer, and Pressure Drop Interactions in Louvered-Fin Arrays N. C. Dejong and A. M. Jacobi ACRC TR-I46 January 1999 For additional information: Air Conditioning and Refrigeration Center University of Illinois Mechanical & Industrial Engineering Dept. 1206 West Green Street Prepared as part ofACRC Project 73 Urbana. IL 61801 An Integrated Approach to Experimental Studies ofAir-Side Heat Transfer (217) 333-3115 A. M. Jacobi, Principal Investigator The Air Conditioning and Refrigeration Center was founded in 1988 with a grant from the estate of Richard W Kritzer, the founder of Peerless of America Inc. A State of Illinois Technology Challenge Grant helped build the laboratory facilities. The ACRC receives continuing support from the Richard W. Kritzer Endowment and the National Science Foundation. The following organizations have also become sponsors of the Center. Amana Refrigeration, Inc. Brazeway, Inc. Carrier Corporation Caterpillar, Inc. Chrysler Corporation Copeland Corporation Delphi Harrison Thermal Systems Eaton Corporation Frigidaire Company General Electric Company Hill PHOENIX Hussmann Corporation Hydro Aluminum Adrian, Inc. Indiana Tube Corporation Lennox International, Inc. rvfodine Manufacturing Co. Peerless of America, Inc. The Trane Company Thermo King Corporation Visteon Automotive Systems Whirlpool Corporation York International, Inc. For additional information: .Air.Conditioning & Refriger-ationCenter Mechanical & Industrial Engineering Dept. University ofIllinois 1206 West Green Street Urbana IL 61801 2173333115 ABSTRACT In many compact heat exchanger applications, interrupted-fin surfaces are used to enhance air-side heat transfer performance. One of the most common interrupted surfaces is the louvered fin. The goal of this work is to develop a better understanding of the flow and its influence on heat transfer and pressure drop behavior for both louvered and convex-louvered fins.
    [Show full text]
  • Dimensionless Numbers
    Dimensionless Numbers 3.185 November 24, 2003 Note: you are not responsible for knowing the different names of the mass transfer dimensionless numbers, just call them, e.g., “mass transfer Prandtl number”, as many people do. Those names are given here because some people use them, and you’ll probably hear them at some point in your career. Heat Transfer Mass Transfer Biot Number M.T. Biot Number Ratio of conductive to convective H.T. resistance Ratio of diffusive to reactive or conv MT resistance Determines uniformity of temperature in solid Determines uniformity of concentration in solid Bi = hL/ksolid Bi = kL/Dsolid or hD L/Dsolid Fourier Number Ratio of current time to time to reach steady­state Dimensionless time in temperature curves, used in explicit finite difference stability criterion 2 2 Fo = αt/L Fo = Dt/L Knudsen Number: Ratio of gas molecule mean free path to process lengthscale Indicates validity of line­of­sight (> 1) or continuum (< 0.01) gas models λ kT Kn = = √ L 2πσ2 P L Reynolds Number: Ratio of convective to viscous momentum transport Determines transition to turbulence, dynamic pressure vs. viscous drag Re = ρU L/µ = U L/ν Prandtl Number M.T. Prandtl (Schmidt) Number Ratio of momentum to thermal diffusivity Ratio of momentum to species diffusivity Determines ratio of fluid/HT BL thickness Determines ratio of fluid/MT BL thickness Pr = ν/α = µcp/k Pr = ν/D = µ/ρD Nusselt Number M.T. Nusselt (Sherwood) Number Ratio of lengthscale to thermal BL thickness Ratio of lengthscale to diffusion BL thickness Used to calculate heat transfer
    [Show full text]
  • Mass Or Heat Transfer Inside a Spherical Gas Bubble at Low to Moderate Reynolds Number Damien Colombet, Dominique Legendre, Arnaud Cockx, Pascal Guiraud
    Mass or heat transfer inside a spherical gas bubble at low to moderate Reynolds number Damien Colombet, Dominique Legendre, Arnaud Cockx, Pascal Guiraud To cite this version: Damien Colombet, Dominique Legendre, Arnaud Cockx, Pascal Guiraud. Mass or heat transfer inside a spherical gas bubble at low to moderate Reynolds number. International Journal of Heat and Mass Transfer, Elsevier, 2013, vol. 67, pp.1096-1105. 10.1016/j.ijheatmasstransfer.2013.08.069. hal-00919752 HAL Id: hal-00919752 https://hal.archives-ouvertes.fr/hal-00919752 Submitted on 17 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 10540 To link to this article : DOI:10.1016/j.ijheatmasstransfer.2013.08.069 URL : http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.069 To cite this version : Colombet, Damien and Legendre, Dominique and Cockx, Arnaud and Guiraud, Pascal Mass or heat transfer inside a spherical gas bubble at low to moderate Reynolds number.
    [Show full text]
  • Dimensional Analysis and Modeling
    cen72367_ch07.qxd 10/29/04 2:27 PM Page 269 CHAPTER DIMENSIONAL ANALYSIS 7 AND MODELING n this chapter, we first review the concepts of dimensions and units. We then review the fundamental principle of dimensional homogeneity, and OBJECTIVES Ishow how it is applied to equations in order to nondimensionalize them When you finish reading this chapter, you and to identify dimensionless groups. We discuss the concept of similarity should be able to between a model and a prototype. We also describe a powerful tool for engi- ■ Develop a better understanding neers and scientists called dimensional analysis, in which the combination of dimensions, units, and of dimensional variables, nondimensional variables, and dimensional con- dimensional homogeneity of equations stants into nondimensional parameters reduces the number of necessary ■ Understand the numerous independent parameters in a problem. We present a step-by-step method for benefits of dimensional analysis obtaining these nondimensional parameters, called the method of repeating ■ Know how to use the method of variables, which is based solely on the dimensions of the variables and con- repeating variables to identify stants. Finally, we apply this technique to several practical problems to illus- nondimensional parameters trate both its utility and its limitations. ■ Understand the concept of dynamic similarity and how to apply it to experimental modeling 269 cen72367_ch07.qxd 10/29/04 2:27 PM Page 270 270 FLUID MECHANICS Length 7–1 ■ DIMENSIONS AND UNITS 3.2 cm A dimension is a measure of a physical quantity (without numerical val- ues), while a unit is a way to assign a number to that dimension.
    [Show full text]
  • Characterising the Heat and Mass Transfer Coefficients for a Crossflow
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AUT Scholarly Commons Characterising the heat and mass transfer coefficients for a crossflow interaction of air and water Reza Enayatollahi*, Roy Jonathan Nates, Timothy Anderson Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand. Corresponding Author: Reza Enayatollahi Email Address: [email protected] Postal Address: WD308, 19 St Paul Street, Auckland CBD, Auckland, New Zealand Phone Number: +64 9 921 9999 x8109 Abstract An experimental study was performed in order to characterise the heat and mass transfer processes, where an air stream passes through a sheet of falling water in a crossflow configuration. To achieve this, the hydrodynamics of a vertical liquid sheet in a ducted gaseous crossflow were studied. Four distinct flow regimes were identified (a stable sheet, a broken sheet, a flapping sheet and a lifted sheet) and mapped using Reynolds and Weber numbers. Subsequently, the Buckingham π theorem and a least squares analyses were employed leading to the proposal of two new dimensionless numbers referred to as the Prandtl Number of Evaporation and the Schmidt Number of Evaporation. These describe the heat and mass transfer in low temperature evaporation processes with crossflow interaction. Using these dimensionless numbers, empirical correlations for Sherwood and Nusselt numbers for the identified flow regimes were experimentally determined. These correlations were in a good agreement with their corresponding experimental values. It was found that flapping sheets have the strongest heat and mass transfer intensities whereas the weakest intensities were seen for the “stable” sheets.
    [Show full text]
  • Numerical Solutions of an Unsteady 2-D Incompressible Flow with Heat
    Numerical solutions of an unsteady 2-d incompressible flow with heat and mass transfer at low, moderate, and high Reynolds numbers V. Ambethkara,∗, Durgesh Kushawahaa aDepartment of Mathematics, Faculty of Mathematical Sciences, University of Delhi Delhi, 110007, India Abstract In this paper, we have proposed a modified Marker-And-Cell (MAC) method to investigate the problem of an unsteady 2-D incompressible flow with heat and mass transfer at low, moderate, and high Reynolds numbers with no-slip and slip boundary conditions. We have used this method to solve the governing equations along with the boundary conditions and thereby to compute the flow variables, viz. u-velocity, v-velocity, P, T, and C. We have used the staggered grid approach of this method to discretize the governing equations of the problem. A modified MAC algorithm was proposed and used to compute the numerical solutions of the flow variables for Reynolds numbers Re = 10, 500, and 50, 000 in consonance with low, moderate, and high Reynolds numbers. We have also used appropriate Prandtl (Pr) and Schmidt (Sc) numbers in consistence with relevancy of the physical problem considered. We have executed this modified MAC algorithm with the aid of a computer program developed and run in C compiler. We have also computed numerical solutions of local Nusselt (Nu) and Sherwood (Sh) numbers along the horizontal line through the geometric center at low, moderate, and high Reynolds numbers for fixed Pr = 6.62 and Sc = 340 for two grid systems at time t = 0.0001s. Our numerical solutions for u and v velocities along the vertical and horizontal line through the geometric center of the square cavity for Re = 100 has been compared with benchmark solutions available in the literature and it has been found that they are in good agreement.
    [Show full text]
  • Experiments on the Mass Transfer of Gas Bubbles in Mineral Oil T ⁎ M
    Colloids and Surfaces A 540 (2018) 81–89 Contents lists available at ScienceDirect Colloids and Surfaces A journal homepage: www.elsevier.com/locate/colsurfa Experiments on the mass transfer of gas bubbles in mineral oil T ⁎ M. Nüllig, F. Peters Ruhr-Universität Bochum, Fakultät für Maschinenbau, Geb.IC / 02, Postf.71, 44801 Bochum, Germany GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Keywords: The present experimental work uses the rotary chamber technique to observe bubbles rising in oil in a levitated Bubbles position. Sizes from 0.3 mm to 8 mm are covered. Main bubble gases are oxygen, nitrogen and argon. The oil is White oil white oil. The focus of the investigation is on the mass transfer rate of the bubble gas into the undersaturated oil. Mass transfer Constituent quantities are the rise velocity and the bubble shape. While velocity and shape show a low-key Rise velocity behavior the transfer rates are unusual. The normalized mass transfer in terms of the Sherwood number exhibits Cavitation three zones. Both, the large bubble and the small bubble zone obey ShAr∝ 1/3. However, they are substantially shifted with respect to each other and connected by a transition zone. From arguments concerning the bubble drag we conclude that large bubbles have a mobile interface which develops into an immobile one for the smaller bubbles. Thus the state of the interface affects the mass transfer rate heavily. 1. Introduction water) which appears in terms of bubbles caused by pressure changes. The associated processes can be severe and damaging which locates The main issues studied in context with rising bubbles are the rise them, among others, in cavitation studies.
    [Show full text]