Atomic Force Microscopy Method Development for Surface Energy Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Atomic Force Microscopy Method Development for Surface Energy Analysis University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 ATOMIC FORCE MICROSCOPY METHOD DEVELOPMENT FOR SURFACE ENERGY ANALYSIS Clare Aubrey Medendorp University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Medendorp, Clare Aubrey, "ATOMIC FORCE MICROSCOPY METHOD DEVELOPMENT FOR SURFACE ENERGY ANALYSIS" (2011). University of Kentucky Doctoral Dissertations. 185. https://uknowledge.uky.edu/gradschool_diss/185 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Clare Aubrey Medendorp The Graduate School University of Kentucky 2011 ATOMIC FORCE MICROSCOPY METHOD DEVELOPMENT FOR SURFACE ENERGY ANALYSIS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Pharmacy at the University of Kentucky By Clare Aubrey Medendorp Lexington, Kentucky Director: Dr. Tonglei Li, Professor of Pharmaceutical Sciences Lexington, Kentucky 2011 Copyright © Clare Aubrey Medendorp 2011 ABSTRACT OF DISSERTATION ATOMIC FORCE MICROSCOPY METHOD DEVELOPMENT FOR SURFACE ENERGY ANALYSIS The vast majority of pharmaceutical drug products are developed, manufactured, and delivered in the solid-state where the active pharmaceutical ingredient (API) is crystalline. With the potential to exist as polymorphs, salts, hydrates, solvates, and co- crystals, each with their own unique associated physicochemical properties, crystals and their forms directly influence bioavailability and manufacturability of the final drug product. Understanding and controlling the crystalline form of the API throughout the drug development process is absolutely critical. Interfacial properties, such as surface energy, define the interactions between two materials in contact. For crystal growth, surface energy between crystal surfaces and liquid environments not only determines the growth kinetics and morphology, but also plays a substantial role in controlling the development of the internal structure. Surface energy also influences the macroscopic particle interactions and mechanical behaviors that govern particle flow, blending, compression, and compaction. While conventional methods for surface energy measurements, such as contact angle and inverse gas chromatography, are increasingly employed, their limitations have necessitated the exploration of alternative tools. For that reason, the first goal of this research was to serve as an analytical method development report for atomic force microscopy and determine its viability as an alternative approach to standard methods of analysis. The second goal of this research was to assess whether the physical and the mathematical models developed on the reference surfaces such as mica or graphite could be extended to organic crystal surfaces. This dissertation, while dependent upon the requisite number of mathematical assumptions, tightly controlled experiments, and environmental conditions, will nonetheless help to bridge the division between lab-bench theory and successful industrial implementation. In current practice, much of pharmaceutical formulation development relies on trial and error and/or duplication of historical methods. With a firm fundamental understanding of surface energetics, pharmaceutical scientists will be armed with the knowledge required to more effectively estimate, predict, and control the physical behaviors of their final drug products. KEYWORDS: contact angle, atomic force microscopy, polymorphs, crystal habit, surface energy Multimedia Elements Used: JPEG (.jpg); Bitmap (.bmp); TIF (.tif); GIF (.gif). Clare Aubrey Medendorp ____________________________________________ Student's Signature August 2011 ____________________________________________ Date ATOMIC FORCE MICROSCOPY METHOD DEVELOPMENT FOR SURFACE ENERGY ANALYSIS By Clare Aubrey Medendorp Tonglei Li ____________________________________________ Co-Director of Dissertation Paul Bummer ____________________________________________ Co-Director of Dissertation Jim Pauly ____________________________________________ Director of Graduate Studies August 2011 ____________________________________________ Date RULES FOR THE USE OF DISSERTATIONS Unpublished dissertations submitted for the Doctor's degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments. Extensive copying or publication of the dissertation in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky. A library that borrows this dissertation for use by its patrons is expected to secure the signature of each user. Name Date DISSERTATION Clare Aubrey Medendorp The Graduate School University of Kentucky 2011 ATOMIC FORCE MICROSCOPY METHOD DEVELOPMENT FOR SURFACE ENERGY ANALYSIS DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Pharmacy and Economics at the University of Kentucky By Clare Aubrey Medendorp Lexington, Kentucky Director: Dr. Tonglei Li, Professor of Pharmaceutical Sciences Lexington, Kentucky 2011 Copyright © Clare Aubrey Medendorp 2011 for Joseph, Jopatrice, and Frank ACKNOWLEDEGEMENTS This dissertation would not have been possible without the support of numerous individuals. First, I would like to thank my advisor Dr. Tonglei Li for the opportunity to study under his leadership. His guidance, support, and patience contributed towards my scientific education and professional development. I would also like to thank my co- advisor Dr. Paul Bummer for his support. His enthusiasm and passion for developing scientist creates a rewarding environment to work in. I would also like to thank my dissertation committee: Dr. Brad Anderson and Dr. Carolyn Brock for their time, support, and contributions to my development and the advancement of this project. I would like to thank Dr. Constance Wood for her training and guidance in statistics. Many thanks to the PhRMA Foundation and Computational and Computer Sciences program at the University of Kentucky for their financial support to complete my dissertation. On a personal note, I would like to thank all of the members of the Li lab, Matt Swadley, Sihui Long, Alessandra Mattei, Shaoxin Feng, and Hua Zhang. I would especially like to thank Christin Hollis for her support and friendship. I would like to thank several colleagues at Merck for their support. I would like to thank my family and friends for their love and support. They continued to believe in me and push me towards professional and personal development. I would like to thank my loving husband, Joseph, without him, this dissertation would not have been possible. Thank you for being extremely supportive and caring. Thank you! x TABLE OF CONTENTS ACKNOWLEDEGEMENTS ............................................................................................. x List of Tables ................................................................................................................... xiv List of Figures................................................................................................................ xviii List of Abbreviations ....................................................................................................... xxi Chapter 1 - Introduction...................................................................................................... 1 1.1 Dissertation Purpose ................................................................................................. 1 1.2 Review of Surface Energetics................................................................................... 1 1.3 Current State-of-the-Art............................................................................................ 2 1.4 Objectives ................................................................................................................. 9 1.4.1 Specific Aim 1 ................................................................................................... 9 1.4.2 Specific Aim 2 ................................................................................................. 11 Chapter 2 – Contact Angle................................................................................................ 13 2.1 Contact Angle and Young’s Equation .................................................................... 13 2.2 Review of the Geometric Mean and Indirect Models............................................. 16 2.2.1 Fowkes ............................................................................................................. 20 2.2.2 Van Oss, Chaudhury, Good ............................................................................. 20 2.2.3 Owens-Wendt-Rabel-Kaelble.......................................................................... 23 2.2.4 Neumann.........................................................................................................
Recommended publications
  • Silicene-Like Domains on Irsi3 Crystallites
    University of North Dakota UND Scholarly Commons Physics Faculty Publications Department of Physics & Astrophysics 3-7-2019 Silicene-Like Domains on IrSi3 Crystallites Dylan Nicholls Fnu Fatima Deniz Cakir University of North Dakota, [email protected] Nuri Oncel University of North Dakota, [email protected] Follow this and additional works at: https://commons.und.edu/pa-fac Part of the Physics Commons Recommended Citation Nicholls, Dylan; Fatima, Fnu; Cakir, Deniz; and Oncel, Nuri, "Silicene-Like Domains on IrSi3 Crystallites" (2019). Physics Faculty Publications. 3. https://commons.und.edu/pa-fac/3 This Article is brought to you for free and open access by the Department of Physics & Astrophysics at UND Scholarly Commons. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. Silicene Like Domains on IrSi3 Crystallites Dylan Nicholls, Fatima, Deniz Çakır, Nuri Oncel* Department of Physics and Astrophysics University of North Dakota Grand Forks, North Dakota, 58202, USA *Corresponding Author Email: [email protected] Abstract: Recently, silicene, the graphene equivalent of silicon, has attracted a lot of attention due to its compatibility with Si-based electronics. So far, silicene has been epitaxy grown on various crystalline surfaces such as Ag(110), Ag(111), Ir(111), ZrB2(0001) and Au(110) substrates. Here, we present a new method to grow silicene via high temperature surface reconstruction of hexagonal IrSi3 nanocrystals. The h-IrSi3 nanocrystals are formed by annealing thin Ir layers on Si(111) surface. A detailed analysis of the STM images shows the formation of silicene like domains on the surface of some of the IrSi3 crystallites.
    [Show full text]
  • Physical Model for Vaporization
    Physical model for vaporization Jozsef Garai Department of Mechanical and Materials Engineering, Florida International University, University Park, VH 183, Miami, FL 33199 Abstract Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result. 1. Introduction The enthalpy of vaporization is an extremely important physical process with many applications to physics, chemistry, and biology. Thermodynamic defines the enthalpy of vaporization ()∆ v H as the energy that has to be supplied to the system in order to complete the liquid-vapor phase transformation. The energy is absorbed at constant pressure and temperature. The absorbed energy not only increases the internal energy of the system (U) but also used for the external work of the expansion (w). The enthalpy of vaporization is then ∆ v H = ∆ v U + ∆ v w (1) The work of the expansion at vaporization is ∆ vw = P ()VV − VL (2) where p is the pressure, VV is the volume of the vapor, and VL is the volume of the liquid. Several empirical and semi-empirical relationships are known for calculating the enthalpy of vaporization [1-16]. Even though there is no consensus on the exact physics, there is a general agreement that the surface energy must be an important part of the enthalpy of vaporization. The vaporization diminishes the surface energy of the liquid; thus this energy must be supplied to the system.
    [Show full text]
  • Surface Structure, Chemisorption and Reactions
    Surface Structure, Chemisorption and Reactions Eckhard Pehlke, Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany. Topics: (i) interplay between the geometric and electronic structure of solid surfaces, (ii) physical properties of surfaces: surface energy, surface stress and their relevance for surface morphology (iii) adsorption and desorption energy barriers, chemical reactivity of surfaces, heterogeneous catalysis (iv) chemisorption dynamics and energy dissipation: electronically non-adiabatic processes Technological Importance of Surfaces Solid surfaces are intriguing objects for basic research, and they are also of high technological utility: substrates for homo- or hetero-epitaxial growth of semiconductor thin films used in device technology surfaces can act as heterogeneous catalysts, used to induce and steer the desired chemical reactions Sect. I: The Geometric and the Electronic Structure of Crystal Surfaces Surface Crystallography 2D 3D number of space groups: 17 230 number of point groups: 10 32 number of Bravais lattices: 5 14 2D- symbol lattice 2D Bravais space point crystal system parameters lattice group groups m mp 1 oblique (mono- γ b 2 a, b, γ 2 clin) a o op b (ortho- a, b a m rectangular rhom- o 7 γ = 90 2mm bic) oc b a t (tetra- a = b 4 o tp a 3 square gonal) γ = 90 a 4mm a h hp 3 o a hexagonal (hexa- a = b 120 6 o gonal) γ = 120 5 3m 6mm Bulk Terminated fcc Crystal Surfaces z z fcc a (010) x y c a=c/ √ 2 x square lattice (tp) z z fcc (110) a c _ [110] y x rectangular lattice (op) z _ (111) fcc [011] _ [110] a y hexagonal lattice (hp) x Surface Atomic Geometry Examples: a reduced inter-layer H/Si(111) separation normal relaxation 2a Si(111) (7x7) (2x1) reconstruction K.
    [Show full text]
  • Preserving the Q-Factors of Zno Nanoresonators Via Polar Surface Reconstruction
    Home Search Collections Journals About Contact us My IOPscience Preserving the Q-factors of ZnO nanoresonators via polar surface reconstruction This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2013 Nanotechnology 24 405705 (http://iopscience.iop.org/0957-4484/24/40/405705) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 128.197.57.225 The article was downloaded on 12/09/2013 at 20:41 Please note that terms and conditions apply. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 24 (2013) 405705 (8pp) doi:10.1088/0957-4484/24/40/405705 Preserving the Q-factors of ZnO nanoresonators via polar surface reconstruction Jin-Wu Jiang1, Harold S Park2,4 and Timon Rabczuk1,3,4 1 Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstraße 15, D-99423 Weimar, Germany 2 Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA 3 School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Korea E-mail: [email protected] and [email protected] Received 26 July 2013 Published 12 September 2013 Online at stacks.iop.org/Nano/24/405705 Abstract We perform molecular dynamics simulations to investigate the effect of polar surfaces on the quality (Q)-factors of zinc oxide (ZnO) nanowire-based nanoresonators. We find that the Q-factors in ZnO nanoresonators with free polar (0001) surfaces are about one order of magnitude higher than in nanoresonators that have been stabilized with reduced charges on the polar (0001) surfaces. From normal mode analysis, we show that the higher Q-factor is due to a shell-like reconstruction that occurs for the free polar surfaces.
    [Show full text]
  • A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution Over Large Extents
    Prepared in cooperation with the International Joint Commission A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution over Large Extents Scientific Investigations Report 2017–5087 U.S. Department of the Interior U.S. Geological Survey Cover. Aerial imagery of an irrigation district in southern California along the Colorado River with actual evapotranspiration modeled using Landsat data https://earthexplorer.usgs.gov; https://doi.org/10.5066/F7DF6PDR. A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution over Large Extents By Ryan R. McShane, Katelyn P. Driscoll, and Roy Sando Prepared in cooperation with the International Joint Commission Scientific Investigations Report 2017–5087 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
    [Show full text]
  • How Does the Surface Free Energy Influence the Tack of Acrylic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector J. Coat. Technol. Res., 10 (6) 879–885, 2013 DOI 10.1007/s11998-013-9522-2 How does the surface free energy influence the tack of acrylic pressure-sensitive adhesives (PSAs)? Arkadiusz Kowalski, Zbigniew Czech, Łukasz Byczyn´ ski Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract This article describes a comparative study Introduction of the tack properties of a model acrylic pressure- sensitive adhesive (PSA) crosslinked using aluminum Pressure-sensitive adhesives (PSAs) are unique in that acetylacetonate on several substrates, including stain- they form a strong bond under relatively light pressure less steel, glass, polyethylene, polypropylene, polytet- over short contact times. PSAs immediately grab onto rafluoroethylene, polycarbonate, and poly(methyl a substrate (the material to which the PSA is applied) methacrylate). The tack measurements were con- without the need for activation agents (e.g., heat, ducted using a technique commonly used to measure water, solvent, etc.). Among the various classes of the tack of an adhesive tape in the PSA industries. The adhesives, PSAs are possibly the most common adhe- surface free energy (SFE) values of the materials were sive found in consumer products. Self-adhesive tapes evaluated using the Owens–Wendt and van Oss– and labels of all kinds are ubiquitous in everyday life. Chaudhury–Good methods. The experiments showed Synthetic polymers based on acrylics, silicones, poly- a clear relationship between the SFE of the substrate urethanes, or rubbers are preferred adhesive materials and the tack of the model acrylic PSA.
    [Show full text]
  • Surface Energy Storage
    NASA SBIR 2017 Phase I Solicitation Z1.02 Surface Energy Storage Lead Center: GRC Participating Center(s): JPL, JSC Technology Area: TA3 Space Power and Energy Storage NASA is seeking innovative energy storage solutions for surface missions on the moon and Mars. The objective is to develop energy storage systems for landers, construction equipment, crew rovers, and science platforms. Energy requirements for mobile assets are expected to range up to 120 kW-hr with potential for clustering of smaller building blocks to meet the total need. Requirements for energy storage systems used in combination with surface solar arrays range from 500 kW-hr (Mars) to over 14 MW-hr (moon). Applicable technologies such as batteries and regenerative fuel cells should be lightweight, long-lived, and low cost. Of particular interest are technologies that are multi-use (e.g., moon and Mars) or cross-platform (e.g., lander use and rover use). Strong consideration should be given to environmental robustness for surface environments that include day/night thermal cycling, natural radiation, partial gravity, vacuum or very low ambient pressure, reduced solar insolation, dust, and wind. Creative ideas that utilize local materials to store energy would also be considered under this subtopic. Advanced secondary batteries that go beyond lithium-ion, can safely provide >300-400 watt-hours per kilogram, and have long calendar and shelf lives are highly desired for cross-cutting applications. Secondary batteries that can operate at -60°C with excellent capacity retention as compared to room temperature operation are also highly desired. Additionally, for the Mars Ascent vehicle, secondary batteries that can operate reliably after a 15 year shelf life are highly desired.
    [Show full text]
  • Surface Characterization
    chap01.qxd 6/1/01 5:52 PM Page 1 © 2001 ASM International. All Rights Reserved. www.asminternational.org Surface Wear: Analysis, Treatment, and Prevention (#06034G) CHAPTER 1 Surface Characterization THE SURFACES OF A SOLID are the free bounding faces forming interfaces with the surrounding environment. The bulk of the material constitutes the bulk phase, while the free bounding face is known as the surface phase. The formation of a solid surface from liquid is accompanied by heat extraction at the freezing temperature. The latent heat of fusion is the quantity of heat to be extracted for liquid to transform to solid. The sur- face of the solid, or the surface phase, retains sufficient free energy in order to remain in equilibrium with its surroundings. The microstructural features on the solidified surface depend on composition and rate of cool- ing. The subsequent forming and thermal processes alter the surface mor- phology. Finally, the roughness of the surface or surface texture is depend- ent on the forming and finishing processes. The tendency for surface free energy of solids to decrease leads to an adsorption of molecules from the interfacing environment at the surface. The adsorbed layer is probably not more than a single molecule in thick- ness due to the rapid fall in intermolecular forces with distance. The nature of bonding may be physical or chemical and, accordingly, is termed van der Waal adsorption or chemisorption. The adsorbed product on the surface may be quite stable (e.g., the self-replenishing layer of chromium oxide in stainless steels) or unstable (e.g., loose oxide scale on mild steel), thus affording protection to the surface or leading to loss in material from the surface.
    [Show full text]
  • What Can You Learn About Apparent Surface Free Energy from the Hysteresis Approach?
    colloids and interfaces Article What Can You Learn about Apparent Surface Free Energy from the Hysteresis Approach? Konrad Terpiłowski 1,* , Lucyna Hołysz 1, Michał Chodkowski 1 and David Clemente Guinarte 2 1 Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 3, 20-031 Lublin, Poland; [email protected] (L.H.); [email protected] (M.C.) 2 Participant of a Research Project under the Erasmus Program, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 3, 20-031 Lublin, Poland; [email protected] * Correspondence: [email protected] Abstract: The apparent surface free energy is one of the most important quantities in determining the surface properties of solids. So far, no method of measuring this energy has been found. The essence of contact angle measurements is problematic. Contact angles should be measured as proposed by Young, i.e., in equilibrium with the liquid vapors. This type of measurement is not possible because within a short time, the droplet in the closed chamber reaches equilibrium not only with vapors but also with the liquid film adsorbed on the tested surface. In this study, the surface free energy was determined for the plasma-activated polyoxymethylene (POM) polymer. Activation of the polymer with plasma leads to an increase in the value of the total apparent surface free energy. When using the energy calculations from the hysteresis based approach (CAH), it should be noted that the energy changes significantly when it is calculated from the contact angles of a polar liquid, whereas being calculated from the angles of a non-polar liquid, the surface activation with plasma changes its value slightly.
    [Show full text]
  • Lecture 8: Surface Tension, Internal Pressure and Energy of a Spherical Particle Or Droplet
    Lecture 8: Surface tension, internal pressure and energy of a spherical particle or droplet Today’s topics • Understand what is surface tension or surface energy, and how this balances with the internal pressure of a droplet to determine the droplet size. • Why smaller droplets are not stable and tend to fuse into larger ones? So far, we have considered only bulk quantities of any given substance when describing its thermodynamic properties. The role of surfaces/interfaces is ignored. However, when the substance shrink in size down to a small droplet, particle, or precipitate, the effects of surface/interface is no longer negligible, since the number atoms on Surface/Interface is comparable to number of atoms inside bulk. Surface effects (surface energy) play critical role many kinetics process of materials, such as the particle ripening and nucleation, as we will learn the lectures later. Typically, for many liquids and solid, surface energy (surface tension) is in the order of ~ 1 J/m2 (or N/m). For example, for water under ambient conditions, the surface energy is 0.072 J/m2 (or surface tension of 0.072 N/m). Think about a large oil droplet suspending in a cup of water: shake the cup, the oil droplet will disperse as many small ones, but these small droplets will eventually fuse together, forming back to a large one if let the cup stabilize for a while. This is because the increased surface energy due to the smaller droplets (particles), fusing back to one large particle decreases the total energy, favorable in thermodynamic. Essentially every phase transformation begins with the formation of a tiny spherical particle called nucleus.
    [Show full text]
  • Scanning Tunneling Microscopy
    Scanning Tunneling Microscopy Nanoscience and Nanotechnology Laboratory course "Nanosynthesis, Nanosafety and Nanoanalytics" LAB2 Universität Siegen updated by Jiaqi Cai, April 26, 2019 Cover picture: www.nanosurf.com Experiment in room ENC B-0132 AG Experimentelle Nanophysik Prof. Carsten Busse, ENC-B 009 Jiaqi Cai, ENC-B 026 1 Contents 1 Introduction3 2 Surface Science4 2.1 2D crystallography........................4 2.2 Graphite..............................5 3 STM Basics6 3.1 Quantum mechanical tunneling.................7 3.2 Tunneling current.........................9 4 Experimental Setup 12 5 Experimental Instructions 13 5.1 Preparing and installing the STM tip.............. 13 5.2 Prepare and mount the sample................. 15 5.3 Approach............................. 16 5.4 Constant-current mode scan................... 17 5.5 Arachidic acid on graphite.................... 18 5.6 Data analysis........................... 20 6 Report 21 6.1 Exercise.............................. 21 6.2 Requirements........................... 21 2 1 Introduction In this lab course, you will learn about scanning tunneling microscopy (STM). For the invention of the STM, Heinrich Rohrer and Gerd Binnig received the Nobel prize for physics 1986 [1]. The STM operates by scanning a con- ductive tip across a conductive surface in a small distance and can resolve the topography with atomic resolution. It can also measure the electronic properties, for example the local density of states, and manipulate individ- ual atoms or molecules, which are adsorbed on the sample surface. Some examples are shown in Figure1. Figure 1: a) Graphene on Ir(111), Voltage U=0.1V; Current I=30nA [2], b) NbSe2 (showing atoms and a charge density wave (CDW)) [3], c) manipu- lation of Xe atoms on Ni(110).
    [Show full text]
  • Evaluating the Surface Energy of Laboratory-Made Paper Sheets by Contact Angle Measurements
    PEER-REVIEWED HANDSHEETS Evaluating the surface energy of laboratory-made paper sheets by contact angle measurements ISABEL MOUTINHO, MARGARIDA FIGUEIREDO AND PAULO FERREIRA ABSTRACT: Contact angle is one of the most useful tools to easily assess the surface energy of paper sheets. However, the results obtained should be treated with some caution, since these meas- urements are significantly influenced by the properties of the liquids used and of the paper surface. Our study compares the values of the contact angle and of the surface energy of laboratory hand- sheets produced with demineralized water and with white water (collected from the paper mill). In addition, and to assess the influence of paper roughness on the contact angle measurements, some 3-D topographical parameters were computed by perfilometry. Complementary measurements were also performed with commercial paper samples. The results clearly demonstrate that the kind of water used in the sheet-making process has a more pronounced influence on the surface energy of the paper sheets than whether the paper sheets were made in a laboratory sheet former or in an industrial paper machine. Application: This study clarifies factors that have influence on the practical determination of the surface energy of paper sheets by contact angle measurements. The results show the influence of the water used in the sheet-making process on the surface energy of paper sheets and are specially use- ful for experiments carried out in the laboratory. or many paper grades, particularly equations
    [Show full text]