Excess Li-Ion Storage on Reconstructed Surfaces Of
Letter pubs.acs.org/NanoLett Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance † † † † ‡ ‡ Yandong Duan, Bingkai Zhang, Jiaxin Zheng, Jiangtao Hu, Jianguo Wen, Dean J. Miller, § † † † † † ∥ † Pengfei Yan, Tongchao Liu, Hua Guo, Wen Li, Xiaohe Song, Zengqing Zhuo, , Chaokun Liu, † † ‡ ∥ † ⊥ § Hanting Tang, Rui Tan, Zonghai Chen, Yang Ren, Yuan Lin, Wanli Yang, Chong-Min Wang, # ‡ ‡ † Lin-Wang Wang, Jun Lu, Khalil Amine, and Feng Pan*, † School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China ‡ ∥ Center for Nanoscale Materials, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States § Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States ⊥ # Advanced Light Source, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States *S Supporting Information ABSTRACT: Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nano- crystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. In this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g−1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO4 (LFP)
[Show full text]