Ten Lectures on the Electroweak Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Ten Lectures on the Electroweak Interactions Ten Lectures on the ElectroWeak Interactions Riccardo Barbieri Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, I-56126 Pisa, Italy Abstract Elementary particle physics is the quadrant of nature whose laws can be written in a few lines with absolute precision and the greatest empirical adequacy. If this is the case, as I believe it is, it must be possible and is probably useful to introduce the students and the interested readers to the entire subject in a compact way. This is the main aim of these Lectures. Preface Elementary particle physics is the quadrant of nature whose laws can be written in a few lines with absolute precision and the greatest empirical adequacy. If this is the case, as I believe it is, it must be possible and is probably useful to introduce the students and the interested readers to the entire subject in a compact way. This is the main aim of these Lectures. The Standard Model is the reference theory for particle physics, including the fact that one often explicitly refers to Beyond the Standard Model physics. Although maybe practical, I have never liked the distinction between Standard Model and Beyond the Standard Model physics. These lectures are certainly mostly about the Standard Model, minimally extended to include neutrino masses. As such, I avoid discussing explicitly any proposal that goes beyond the Standard Model, none of which has received yet any clear experimental confirmation. Nevertheless most of the Lectures are given with an open eye to a possible evolution of the theory of the ElectroWeak Interactions. At least I try. It will probably be most useful to read and use the Lectures with the same spirit. Not unrelated to this is the fact that, while these Lectures are being written, the commissioning of the Large Hadron Collider in Geneva is close to completion. Is it not risky, then, to write lectures about the ElectroWeak Interactions precisely when the incoming experiments at the LHC may demand a strong revision of the underlying theory? Maybe yes, but I think it is nevertheless useful to take such a risk now, at least as a way to focus on the open questions that the LHC experiments might allow to answer. There are two main difficulties in trying to give a concise course on theoretical particle physics. The first one is the number of different specialized chapters that compose nowadays particle physics. Since I think that one should resist to excessive specialization, the only (not negligible) sacrifice that I try to make in compiling the list of subjects is to leave out a discussion of strong interactions. Partially this is because I consider the Lagrangian of QuantumCromoDynamics more likely to be established then the ElectroWeak sector of the Standard Model, although not to be confused with the statement that there are no important open problems in the physics of the strong interactions. The second difficulty is of technical nature, as experienced by anybody lecturing on the subject. There is a good deal of field theory that the students should know to appreciate at best a course on theoretical particle physics. Probably as a consequence of this, several excellent books on field theory exist that include a description of the Standard Model only towards the end or at least in their second part. To be able to focus as concisely as possible on physics issues, I prefer to avoid any introduction on field theory. For this reason I include a number of short Appendices that summarize the field theory knowledge that is needed for a full understanding of the content of the various Lectures. Needless to say these Appendices cannot replace a course in field theory. Again for reasons of conciseness I skip several technical details, perhaps more than usual in a pedagogical booklet. As a partial remedy, I set problems in the course of the Lectures, without solving them explicitly. A student interested in becoming able to actively work in the field of particle physics should try to solve as many of them as possible. I thank all my collaborators, in particular Guido Altarelli, George Dvali, Gian Giudice, Lawrence Hall, Antonio Masiero, Yasunori Nomura, Riccardo Rattazzi, Andrea Romanino, Slava Rychkov and Alessandro Strumia for the many interactions, discussions, corrections of errors, etc. 1 that have influenced my view of the theory of the electroweak interactions. Finally I apologize for not providing any bibliography of the literature, which would have to be very large to be complete. 2 Contents 1 From the Fermi Theory of β-decay to the minimal Gauge Lagrangian 5 1.1 TheFermitheoryofneutrondecay . ...... 5 1.2 From the Fermi Theory to the minimal gauge Lagrangian . ........... 6 2 The Lagrangian of the Standard Model, including neutrino masses 9 2.1 The global symmetries of the minimal gauge Lagrangian . ............ 9 2.2 TowardsarealisticLagrangian. ........ 10 2.3 The accidental symmetries of the Standard Model . ........... 10 3 The main predictions of the Standard Model 12 3.1 Gauge symmetry breaking and particle masses . .......... 12 3.2 Couplingstofermionsofthegaugebosons . ......... 13 3.3 TheHiggsboson ................................... 14 4 Precision tests 15 4.1 Parity violation in atomic physics . ......... 15 4.2 Leading corrections to the ρ parameter ........................ 16 4.3 SensitivitytotheHiggsmass. ....... 17 4.4 Vacuum polarization amplitudes in a general universal theory ........... 19 4.5 Current experimental constraints . ......... 21 4.6 An interlude: making it without a Higgs boson . .......... 22 5 Flavour Physics 25 5.1 The theorems of flavour physics . ...... 25 5.2 Individual lepton number conservation . .......... 25 5.3 About the unitarity of the Cabibbo-Kobaiashi-Maskawa matrix .......... 27 5.4 Calculable Flavour Changing Neutral Current processes ............... 28 5.5 Summary of calculable FCNC processes . ........ 31 6 CP violation 32 6.1 The source(s) of CP violation in the Lagrangian of the StandardModel . 32 6.2 Electricdipolemoments . ..... 33 6.3 CP violation in effective 4-fermion interactions . .............. 35 7 Basics of neutrino physics 38 7.1 The three options for neutrino masses in the Standard Model............ 38 7.2 Thephysicalparameters . ..... 39 7.3 Neutrino mass measurements from the β-decayspectrum . 40 7.4 Neutrino-less double-β decay.............................. 40 3 8 Neutrino oscillations 42 8.1 Neutrino oscillations in vacuum . ........ 42 8.2 Neutrinopropagationinmatter . ....... 43 8.3 Current determination of neutrino masses and mixings . ............. 45 9 The naturalness problem of the Fermi scale 48 9.1 The Standard Model as a prototype effective theory . ........... 48 9.2 Expanding in operators of higher dimension . .......... 48 9.3 MinimalFlavourViolation . ...... 50 9.4 The naturalness scale of the Standard Model . .......... 50 9.5 The little hierarchy problem .............................. 52 10 The main drawback of the Standard Model 53 10.1 Gauge anomalies and charge quantization. ........... 53 10.2 Theunificationway............................... .... 54 A General structure of a gauge theory 56 B Real and chiral representations of the gauge group 57 G C Spontaneous breaking of a gauge or a global symmetry 58 D Renormalizable theories and effective theories 60 E CP invariance 61 F Weyl, Dirac and Majorana neutrinos 62 G Anomalies 63 4 1 From the Fermi Theory of β-decay to the minimal Gauge Lagrangian 1.1 The Fermi theory of neutron decay In 1934 Fermi wrote the first effective Lagrangian to describe a weak interaction phenomena: nuclear β-decay. Considering neutron decay, the Fermi Lagrangian can be written, with current knowledge, as GF F = cos θC (¯pγµ(1 + αγ5)n)(¯eγµ(1 γ5)ν) (1.1) L √2 − where p, n, e, ν are the fields of the proton, neutron, electron and neutrino respectively. In units 2 where h/ = c = 1, GF is a constant of dimension of mass− , since every fermion field, as readily 3/2 seen from the free Lagrangian, has dimension of mass . The presence of the factor cos θC , close to unity, will be commented later on. Finally α is another dimensionless constant. This interaction allows to calculate both the neutron width and its angular dependence. For the total width one finds G2 ∆5 Γ= F cos2 θ (1+3α2)Φ (1.2) 60π3 C where ∆ = 1.29 MeV is the neutron-proton mass difference and Φ = 0.47 is a numerical factor that would be unity if the electron mass were neglected relative to ∆. The angular dependence of the width in the neutron rest frame is given by dΓ 1 α2 (1 + − 2 ve n) (1.3) dΩe ∝ 1+3α · where ve and n are the 3-velocities of the electron and of the neutrino respectively. [Problem 1.1.1: Prove eq.s (1.2) and (1.3) starting from eq. (1.1).] The measurements of the lifetime and of the angular distribution give 1 τ = = 885.7 0.8 sec, α = 1.2695 0.0029, (1.4) Γ ± − ± 1/2 from which one infers, using eq. (1.2), G− 250 GeV . As we shall see, this ”Fermi scale” plays F ≈ a fundamental role in the theory of the electroweak interactions. It is believed to be one of the two fundamental scales in particle physics, the other being the scale of the strong interactions or the scale of Quantum CromoDynamics. Based on the analogy with Quantum ElectroDynamics, Fermi himself, among others, conjec- tured that the interaction in eq. (1.1) could result from the exchange of a heavy charged vector boson, Wµ±, of mass mW , interacting with the current 1+ αγ5 1 γ5 + + J − =pγ ¯ n +¯νγ − e, J =(J −) (1.5) µ µ 2 µ 2 µ µ via g + int = W J − + h.c., (1.6) L √2 µ µ 5 where g is a dimensionless coupling. Since ∆ is negligible with respect to mW , the exchange of the W -boson gives indeed rise to the Fermi interaction in eq.
Recommended publications
  • SUSY After LHC8: a Brief Overview
    EPJ Web of Conferences 60, 18001 (2013) DOI: 10.1051/epjconf/20136018001 © Owned by the authors, published by EDP Sciences, 2013 SUSY after LHC8: a brief overview Enrico Bertuzzo1;a 1Institut de Physique Théorique, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France. Abstract. With the 8 TeV LHC run now concluded, the first consequences of the experimental results on the supersymmetric parameter space can be drawn. On one hand, the negative direct searches place more and more stringent bounds on the mass of supersymmetric particles; on the other hand, the discovery of a 125 GeV Higgs boson points toward a quite heavy spectrum for the squarks of the third generation, at least in the minimal supersymmetric model. In this note I will briefly recap how this constitutes a problem for the naturalness of supersymmetric models, as well as the current experimental situation. Moreover, I will point out possible non minimal models in which the naturalness issue can be at least soften. 1 Introduction: the Hierarchy problem, much larger, as expected from the previous considerations. once more This is the well known Hierarchy Problem. Inspection of Eqs. (1-2) shows possible ways to evade After the discovery of a scalar particle with mass around the problem: we can either assume a very low cut-off ΛNP, 125 GeV and properties closely resembling those of the or we can try to cancel all the large contributions adding Standard Model (SM) Higgs boson [1, 2], the long stand- new particles with suitably chosen couplings. The first ing problem of the stability of fundamental scalar masses way has been pursued in the last years in models of Com- has become more acute than ever.
    [Show full text]
  • Hunting for Supersymmetry and Dark Matter at the Electroweak Scale
    HUNTING FOR SUPERSYMMETRY AND DARK MATTER AT THE ELECTROWEAK SCALE By SEBASTIAN MACALUSO A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Physics and Astronomy Written under the direction of David Shih And approved by New Brunswick, New Jersey October, 2018 ABSTRACT OF THE DISSERTATION Hunting for Supersymmetry and Dark Matter at the Electroweak Scale By SEBASTIAN MACALUSO Dissertation Director: Professor David Shih In this thesis, we study models of physics beyond the Standard Model (SM) at the electroweak scale and their phenomenology, motivated by naturalness and the nature of dark matter. Moreover, we introduce analyses and techniques relevant in searches at the Large Hadron Collider (LHC). We start by applying computer vision with deep learning to build a boosted top jets tagger at the LHC that outperforms previous state-of-the-art classifiers by a factor of ∼ 2{3 or more in background rejection, over a wide range of tagging efficiencies. Next, we define a cut and count based analysis for supersymmetric top quarks at LHC Run II capable of probing the line in the mass plane where there is just enough phase space to produce an on-shell top quark from the stop decay. We also implement a comprehensive reinterpretation of the 13 TeV ATLAS and CMS searches with the first ∼ 15 fb−1 of data and derive constraints on various simplified models of natural supersymmetry. We discuss how these constraints affect the fine-tuning of the electroweak scale.
    [Show full text]
  • Two Notions of Naturalness
    For almost 40 years, the requirement that models of BSM physics be natural has heavily inuenced model-building in high-energy physics. Porter Williams (University of Pittsburgh) Two notions of naturalness February 28, 2018 1 / 60 The expectation of a natural solution to the hierarchy problem was probably the most popular argument for expecting new particles at the LHC. Porter Williams (University of Pittsburgh) Two notions of naturalness February 28, 2018 2 / 60 The Standard Model reigns supreme. As of today, the LHC has discovered no evidence for SUSY or any other mechanism for naturally stabilizing the weak scale. Porter Williams (University of Pittsburgh) Two notions of naturalness February 28, 2018 4 / 60 As of today, the LHC has discovered no evidence for SUSY or any other mechanism for naturally stabilizing the weak scale. The Standard Model reigns supreme. Porter Williams (University of Pittsburgh) Two notions of naturalness February 28, 2018 4 / 60 This has left many people in the HEP community unsure about how to proceed. Porter Williams (University of Pittsburgh) Two notions of naturalness February 28, 2018 5 / 60 Now What? Aspen 2013 - Higgs Quo Vadis Nathan Seiberg IAS TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAA AA If neither supersymmetry nor any other sort of natural solution...appears in the data...[t]his would...give theorists a strong incentive to take the ideas of the multiverse more seriously. – Nima Arkani-Hamed (2012) Porter Williams (University of Pittsburgh) Two notions of naturalness February 28, 2018 8 / 60 If the electroweak symmetry breaking scale is anthropically xed, then we can give up the decades long search for a natural solution to the hierarchy problem.
    [Show full text]
  • The Pragmatic Approach to the Gauge Hierarchy Problem
    Beyond the Standard Model: The Pragmatic Approach to the Gauge Hierarchy Problem A dissertation presented by Rakhi Mahbubani to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts May 2006 c 2006 - Rakhi Mahbubani All rights reserved. Thesis advisor Author Nima Arkani-Hamed Rakhi Mahbubani Beyond the Standard Model: The Pragmatic Approach to the Gauge Hierarchy Problem Abstract The current favorite solution to the gauge hierarchy problem, the Minimal Su- persymmetric Standard Model (MSSM), is looking increasingly fine tuned as recent results from LEP-II have pushed it to regions of its parameter space where a light higgs seems unnatural. Given this fact it seems sensible to explore other approaches to this problem; we study three alternatives here. The first is a Little Higgs theory, in which the Higgs particle is realized as the pseudo-Goldstone boson of an approximate global chiral symmetry and so is naturally light. We analyze precision electroweak observables in the Minimal Moose model, one example of such a theory, and look for regions in its parameter space that are consistent with current limits on these. It is also possible to find a solution within a supersymmetric framework by adding to the MSSM superpotential a λSHuHd term and UV completing with new strong dynamics under which S is a composite before λ becomes non-perturbative. This allows us to increase the MSSM tree level higgs mass bound to a value that alleviates the supersymmetric fine- tuning problem with elementary higgs fields, maintaining gauge coupling unification in a natural way Finally we try an entirely different tack, in which we do not attempt to solve the hierarchy problem, but rather assume that the tuning of the higgs can be explained in some unnatural way, from environmental considerations for instance.
    [Show full text]
  • Naturalness, Wilsonian Renormalization, and “Fundamental Parameters” in Quantum Field Theory
    TTK-19-04, ELHC 2018-005 January 2019 Naturalness, Wilsonian Renormalization, and \Fundamental Parameters" in Quantum Field Theory Joshua Rosaler and Robert Harlander Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, D-52056 Aachen, Germany Abstract The Higgs naturalness principle served as the basis for the so far failed prediction that signatures of physics beyond the Standard Model (SM) would be discovered at the LHC. One influential formulation of the princi- ple, which prohibits fine tuning of bare Standard Model (SM) parameters, rests on the assumption that a particular set of values for these parame- ters constitute the \fundamental parameters" of the theory, and serve to mathematically define the theory. On the other hand, an old argument by Wetterich suggests that fine tuning of bare parameters merely reflects an arbitrary, inconvenient choice of expansion parameters and that the choice of parameters in an EFT is therefore arbitrary. We argue that these two interpretations of Higgs fine tuning reflect distinct ways of formulat- ing and interpreting effective field theories (EFTs) within the Wilsonian framework: the first takes an EFT to be defined by a single set of physical, fundamental bare parameters, while the second takes a Wilsonian EFT to be defined instead by a whole Wilsonian renormalization group (RG) trajectory, associated with a one-parameter class of physically equivalent parametrizations. From this latter perspective, no single parametrization constitutes the physically correct, fundamental parametrization of the the- ory, and the delicate cancellation between bare Higgs mass and quantum corrections appears as an eliminable artifact of the arbitrary, unphysical reference scale with respect to which the physical amplitudes of the the- ory are parametrized.
    [Show full text]
  • Ci 1:;.C = 2= -2-T,I Oi I
    PHENOMENOLOGY OF A U(2)3 FLAVOUR SYMMETRY FILIPPO SALA Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa, Italy Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 The approximate U(2)3 symmetry exhibited by the quark sector of the Standard Model, broken in specific directions dictated by minimality) can explain the current success of the CKM picture of flavour and CP violation while allowing for large deviations fromit at foreseen experiments. The embedding of this symmetry in specific models also leaves space to satisfy collider and precision bounds without spoiling the naturalness of the theory. 1 Introduction The Standard Model SM) description of flavour and CP violation CPV) in the quark sector, ( ( encoded in the Cabibbo Kobayashi Maskawa CKM) matrix, is in very good agreement with ( any experimental data, leaving in several cases little room fornew physics NP contributions. ( ) In other words if NP effects in flavour and CP violation are parameterized via the effective Lagrangian (1) where Oi are generic dimension 6 gauge invariant operators obtained by integrating out the new degrees of freedom appearing above the scale Ai, one finds that lower limits on the scales Ai are in many cases of the order of Te V 1. If one believes some new physics has to appear 103 -;- 104 at a scale ANP in the TeV range, for example to provide a natural solution to the hierarchy problem, then the flavour and CP structure of the NP theory has to be highly non trivial. A possibility is the requirement for thisnew theory to respect some flavour symmetry,so that the effective Lagrangian Ci 1:;.c 2=-2 -t,ioi h.c.
    [Show full text]
  • Scuola Normale Superiore Di Pisa a MOTIVATED NON STANDARD SUPERSYMMETRIC SPECTRUM Arxiv:1112.2178V1 [Hep-Ph] 9 Dec 2011
    Scuola Normale Superiore di Pisa Classe di Scienze Corso di Perfezionamento in Fisica December 9, 2011 PhD Thesis A MOTIVATED NON STANDARD SUPERSYMMETRIC SPECTRUM Candidato Relatore arXiv:1112.2178v1 [hep-ph] 9 Dec 2011 Prof. Paolo Lodone Riccardo Barbieri Dedicated to my grandfather Guido Lodone 1920-2011 i Contents Abstract 1 1 Introduction 3 1.1 The Standard Model . .3 1.2 The hierarchy problem . .7 1.2.1 Interpretation of the quadratic divergences . .8 1.2.2 Possible solutions of the hierarchy problem . 11 1.2.3 A remark . 14 1.3 Supersymmetry . 14 1.3.1 The Minimal Supersymetric Standard Model . 16 1.3.2 Why to go beyond the MSSM . 19 1.4 Detailed outline of the project . 21 2 SSM without a light Higgs boson 25 2.1 Motivations . 25 2.2 Gauge extension U(1) . 26 2.2.1 Naturalness bounds . 30 2.2.2 Running of gauge couplings and kinetic mixing . 32 2.2.3 Experimental bounds . 34 2.3 Gauge extension SU(2) . 36 2.3.1 Naturalness bounds . 39 2.3.2 Experimental bounds . 41 2.4 λSUSY . 42 2.5 Concluding remarks . 44 3 A Non Standard Supersymmetric Spectrum 46 3.1 Motivations . 46 3.2 Hierarchical sfermion masses and flavour physics: a summary . 48 3.3 SUSY without a light Higgs boson . 50 ii CONTENTS CONTENTS 3.3.1 Cases of interest . 50 3.3.2 Naturalness bounds on the first and second generation . 51 3.3.3 Constraint from colour conservation . 54 3.4 Phenomenological consequences . 56 3.4.1 Gluino pair production and decays .
    [Show full text]
  • Cornell High Energy Theory
    Cornell Cornell High Energy Theory Group University Department of Physics, Institute for High Energy Phenomenology Cornell Laboratory for Accelerator-based Sciences and Education Faculty and Postdocs Research topics (plotted by energy scale) Grad Culture and Alumni Csaba Csáki (Professor; PhD MIT 1997, Adviser: Lisa Randall) Collider & Cosmological Flavor Physics • Heavy quark flavor physics Home of arXiv.org, the e-print archive Beyond the Standard Model. Recent work includes Randall-Sundrum Phenomenology • Discrete flavor groups • Neutrino mass and mixing The Cornell Library is currently the home of Training to become an independent researcher. Our group models, buried Higgs, EWSB and SUSY breaking through monopole • BSM collider signatures • Composite leptogenesis • Flavor signatures of new physics arXiv.org and is a leader in information science. focuses on developing its students to be prepared for an academic condensation. Current students: David Curtin (2011), Flip Tanedo. including SUSY, extra career in high energy physics. dimensions, little Higgs models Yuval Grossman (Professor; PhD Weizmann 1997, Adviser: Yosef Nir) flavor & qcd • LHC model discrimination String Theory & Cosmology • Community. Students play an active role in the theory group, participating in Flavor physics beyond the Standard Model. Recent work includes lepton • Dark matter (in)direct detection and helping to organize group events. flavor symmetries, leptogenesis, CP violation, composite neutrinos, and dark matter 10% GeV • Stringy models of inflation and
    [Show full text]
  • Physics Beyond the Standard Model CERN, Switzerland E-Mail: Pos(HEP2005)399 (2.1) Rigin of Eletroweak LEP Paradox, Approximation ’
    PoS(HEP2005)399 Physics Beyond the Standard Model † Riccardo Rattazzi∗ CERN, Switzerland E-mail: [email protected] I review recent theoretical work on electroweak symmetry breaking International Europhysics Conference on High Energy Physics July 21st - 27th 2005 Lisboa, Portugal ∗Speaker. †On leave from INFN, Sezione di Pisa, Italy. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Physics Beyond the Standard Model Riccardo Rattazzi 1. Introduction I have been assigned this broad title but my talk will be mostly concerned with the origin of the electroweak scale. I will attempt to give an overview of the theoretical ‘laborings’ that came up after the end of the LEP era and in preparation to the commissioning of the LHC. An appropriate subtitle for my talk could thus be ‘Electroweak Symmetry Breaking after LEP/SLC’. There are two different sides from which to regard the legacy of LEP/SLC, and forming what is also known as the LEP paradox [1]. From one side it is an impressive triumph of human endeavour: the Standard Model (SM) is a complete theory of fundamental processes successfully tested at PoS(HEP2005)399 the per-mille precision. That means that small quantum corrections to the Born approximation are essential in the comparison between theory and experiment. However, when regarded from the other side, this great success becomes a huge conceptual bafflement, because the hierarchy problem, which inspired theoretical speculations for the last three decades, suggested that the SM should be overthrown right at the weak scale.
    [Show full text]
  • Pos(CORFU2011)107 Y Y
    Foreword to the Proceedings of the Corfu Summer Institute “School and Workshops on Elementary Particle Physics and Gravity” (CORFU2011) PoS(CORFU2011)107 1. Foreword These are the Proceedings of the scientific activities of the Corfu Summer Institute “School and Workshops on Elementary Particle Physics and Gravity” (CORFU2011) that took place from 4 to 18 September 2011. We refer to the website: http://www.physics.ntua.gr/corfu2011/ for all organizational and practical details. The Corfu Summer Institute has a very long, interesting and successful history. The Corfu Meeting started in 1982 as a Summer School on EPP mostly for Greek graduate students and since then it has developed into a leading international Summer Institute in the field of elementary particle physics (covering both experimental and theoretical advances) and more recently of gravity. In addition, it launched a very rich outreach program to teachers and school students that has been widely appreciated by the local society and scientific community over the years. The structure of the “Summer Institute on EPP and Gravity 2011” was based on the general format developed and established and tested in all previous Corfu Meetings. This year was hosted again by the newly established European Institute for Science and their Applications. The new Institute aims to serve as permanent extension of the Corfu Summer Institutes with the additional target to attract first class scientists that can stay for a long period and produce locally a significant research output. The scientific activities of CORFU2011 were held in the conference hall of the garden of Mon Repos in the town of Corfu, which is expected to become the permanent basis of EISA.
    [Show full text]
  • A View of Flavour Physics in 2021
    A view of flavour physics in 2021 Riccardo Barbieri Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy Based on a view of current flavour physics and motivated by the hierarchy problem and by the pattern of quark masses and mixings, I describe a picture of flavour physics that should give rise in a not too distant future to observable deviations from the SM in Higgs compositeness and/or in B-decays with violations of Lepton Flavour Universality, as hinted by current data, or perhaps even in supersymmetry, depending on the specific realisation. A contribution to: The special volume of Acta Physica Polonica B to commemorate Martinus Veltman arXiv:2103.15635v1 [hep-ph] 29 Mar 2021 1 1 A master I met Martinus Veltman for the first time in 1970 when, together with Ettore Remiddi, we went to visit him in Utrecht. We were looking for help to solve some problems we had in the use of Schoonschip to perform analytic calculations of higher order QED processes. Two years later Veltman came to the SNS in Pisa to give lectures on field theory, which I attended, that became the basis for the CERN yellow report in 1973 under the title of Diagrammar with Gerard ’t Hooft as coauthor. All this is recalled by Ettore in an article also to appear on this volume, with particular reference to the various tools - Schoonschip, dimensional regularisation, the largest time equation - introduced by Veltman and crucial to our work throughout the seventies in QED and QCD. Since then I have met Veltman many other times, especially, but not only, at CERN.
    [Show full text]
  • Ten Lectures on the Electroweak Interactions
    Ten Lectures on the ElectroWeak Interactions Riccardo Barbieri Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, I-56126 Pisa, Italy Abstract Elementary particle physics is the quadrant of nature whose laws can be written in a few lines with absolute precision and the greatest empirical adequacy. If this is the case, as I believe it is, it must be possible and is probably useful to introduce the students and the interested readers to the entire subject in a compact way. This is the main aim of these Lectures. Preface Elementary particle physics is the quadrant of nature whose laws can be written in a few lines with absolute precision and the greatest empirical adequacy. If this is the case, as I believe it is, it must be possible and is probably useful to introduce the students and the interested readers to the entire subject in a compact way. This is the main aim of these Lectures. The Standard Model is the reference theory for particle physics, including the fact that one often explicitly refers to Beyond the Standard Model physics. Although maybe practical, I have never liked the distinction between Standard Model and Beyond the Standard Model physics. These lectures are certainly mostly about the Standard Model, minimally extended to include neutrino masses. As such, I avoid discussing explicitly any proposal that goes beyond the Standard Model, none of which has received yet any clear experimental confirmation. Nevertheless most of the Lectures are given with an open eye to a possible evolution of the theory of the ElectroWeak Interactions.
    [Show full text]