Mortality of Varroa Destructor in Honey Bee (Apis Mellifera) Colonies During Winter

Total Page:16

File Type:pdf, Size:1020Kb

Mortality of Varroa Destructor in Honey Bee (Apis Mellifera) Colonies During Winter Apidologie 32 (2001) 223–229 223 © INRA/DIB-AGIB/EDP Sciences, 2001 Original article Mortality of Varroa destructor in honey bee (Apis mellifera) colonies during winter Ingemar FRIES*, Silvia PEREZ-ESCALA Department of Entomology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden (Received 29 August 2000; revised 30 January 2001; accepted 23 February 2001) Abstract – The change in infestation levels of the mite Varroa destructor Anderson and Trueman on adult bees during periods with little or no brood rearing (late October/early November to early Febru- ary) was investigated in 10 colonies for two consecutive years in a Swedish climate (N57°06’E18°16’). The results do not support the hypothesis that mites become concentrated on the remaining bees as bees die off from the winter cluster. When the number of all mites recovered from dead bees or from debris was used to calculate mites per dead bee, the level of infestation per bee was not signif- icantly different between samples of live bee and dead bees. For modelling purposes, we presently find no reason to differentiate the mortality rates of bees and mites during periods when there is no or limited amounts of brood in the colonies, although the connection between bee mortality and mite mortality may not be as direct as previously assumed. Varroa destructor / population dynamics / winter mortality 1. INTRODUCTION growing information on mite biology, there also is good data on the intrinsic growth rate The biology of the mite Varroa destruc- of the mite population during periods of tor Anderson and Trueman, 2000 (formerly brood rearing (Calatayud and Verdu, 1995; V. jacobsoni Oudemans) in colonies of the Kraus and Page, 1995; Marcangeli et al., western honey bee (Apis mellifera) has been 1995). However, mite mortality is poorly described in some detail (Boot et al., 1994; understood during periods of mite popula- Donzé and Guerin, 1994; Martin, 1994; tion growth, and even more so during periods Martin, 1995; Donzé et al., 1996). Parallel to with no brood rearing and mite population * Correspondence and reprints E-mail: [email protected] 224 I. Fries, S. Perez-Escala decline. For purposes of modelling, mite We studied winter mite mortality in a population dynamics, data on mite mortality cold climate. In particular, we investigated is critical. whether mites become concentrated on the remaining bees as bees die off during winter. Based on assumptions and available data, there have been three attempts to develop mathematical models of the population dynamics of V. destructor mites (Calis et al., 2. MATERIALS AND METHODS 1999; Fries et al., 1994; Martin, 1998). It has been assumed in two of these models To investigate the changes in infestation that mites and bees have a similar death rate level of mites on adult bees during periods during winter (Calis et al., 1999; Fries et al., with little or no brood rearing, we equipped 1994), yielding a daily mite death rate of 10 colonies with net screen bottoms for col- 0.004 per day during periods of no brood lection of mites below the screen (30 mm rearing. The third model used a winter mite between net and collection tray), and for mortality of only 50% of other models collection of bees dying inside the colony (0.002) (Martin, 1998). The latter death rate above the screen (20 mm between net and was based on the average of two citations lower frame bars), for two consecutive years. in the literature in which the number of mites The colonies were also equipped with an that died with bees outside the colonies was not considered (Korpela et al., 1993; external cage that allowed collection of bees Moosbeckhofer, 1991). The death rate of leaving the hives to die outside the colonies. 0.004 was based on the assumption that If mites dislodged from bees collected out- approximately half of the population of bees side the hive, such mites were not collected. may die in a climate similar to Scandinavia Before the experiment started each year, all (Avitabile, 1978) and that mites are ran- colonies were examined and found free from domly distributed in the winter cluster sealed brood. At the onset of the experi- (Ritter et al., 1989) and do not change host ment, a sample of approximately 1 dl of as the bees die (Müller, 1987). Recent data, bees (~ 250) were taken from each colony however, indicate that mites may change and examined for mites. Dead bees to be their host during winter and that they actu- examined for mites and mites in the debris ally may leave dying hosts before the bees were collected approximately every two drop from the cluster (Bowen-Walker et al., weeks until the end of the experiment, when 1997). Bowen-Walker et al. (1997) studied a sample of 1 dl of live bees again was taken the distribution of mites in one colony dur- from each colony and examined for mites. ing a period when they assumed there was no brood rearing under British climate con- The experimental site was located on ditions and found an increase in infestation Gotland (N57°06’; E18°16’). The first year, level of the adult bees from 12.9% in Octo- the experiment started on October 20 and ber–December to 36.8% in January and was terminated on February 2 (mean daily February. Bowen-Walker et al. (1997) inter- temperature ± standard deviation; 1.94 ± preted this result as a differential mortality 3.31 °C). The second year the experiment rate of mites and bees. Later, Bowen-Walker started on November 16 and was terminated and Gunn (1998) used the data from the on February 5 (mean daily temperature ± same colony and concluded: “As overwin- standard deviation; 2.04 ± 2.45 °C). The tering bees start to die of old age and dis- experiments were terminated in early Febru- ease, more and more mites, potentially ary because honey bees may initiate some carrying disease agents, will become con- brood rearing at this time under similar cli- centrated on the remaining bees”. mate conditions (Avitabile, 1978). Varroa mite mortality during winter 225 3. RESULTS mortality, any change in infestation rate of live bees due to mites leaving dying hosts The numbers of mites recovered per live will be difficult to detect. Nevertheless, if bee, in the debris, on dead bees, and on dead mites do become concentrated on remain- bees and debris combined are tabulated in ing bees as bees die off, we would expect Table I. a linear relationship between the variables in There was no significant change in the Figure 1. However, the correlation coeffi- infestation levels in the colonies between cient is low (r = –0.12) and not significant the initiation and termination of the experi- (P = 0.62) indicating that no linear rela- ments in either of the two years (for each tionship between the variables exists. In year; P > 0.05, paired t-test, 9df). The same other words, an increase in bee mortality was true when the data from both years were does not seem to be linked to an increase in combined (P > 0.05, paired t-test, 19df). The live bee infestation levels. infestation level of the dead bees was sig- From the presented data (Tab. I, Fig. 1), nificantly lower than the level on the live we find no support for the conclusion pre- bee samples during both years (P < 0.001, sented by Bowen-Walker and Gunn (1998) paired t-test, 9df). However when the num- that mites become concentrated on the ber of mites recovered in the debris was remaining bees as bees die from the winter combined with the mites found on dead bees cluster. What is obvious, however, is the to give the recovered number of mites per large degree of variation between colonies dead bee, the difference was not significant with an apparent increase in infestation rate for either of the years (P > 0.05, paired in some colonies and an apparent decrease of t-test, 9df), or for the two years combined similar magnitude in others (Tab. I). Sam- (P > 0.05, paired t-test, 19df). To avoid dam- pling errors may explain some of the aging the colonies, they were not checked observed variation, in particular during the for brood at the end of the experiment in first year with a low infestation level. In early February. We assume that brood rear- the second year the variation between ing was very limited in early February under colonies prevailed in spite of a higher infes- the prevailing weather conditions. Thus, it is tation level, indicating that much variation plausible that minimal, if any, mite repro- may be due to individual differences duction occurred during the experiment con- between colonies. This variation remains sidering the climatic conditions and the fact unexplained. that all colonies did not have sealed brood at the onset of the experiment each year. In the present experiment, we can not In Figure 1 a scatter diagram of the determine if the mites found on dead bees change in infestation level in live bees at fell from the cluster and remounted dead the start and at the end of the experiment bees. Nor can we determine if mites in the (end level minus start level) vs. the number debris fell from the cluster or from already of dead bees is plotted. The correlation coef- dead bees. When all mites recovered were ficient is low (r = –0.12) and non-signifi- considered together, the number of mites cant (P = 0.62) indicating that there is no per dead bee was not significantly different linear relationship between the two vari- from number of mites per live bee over all ables.
Recommended publications
  • Accelerated Varroa Destructor Population Growth in Honey
    www.nature.com/scientificreports OPEN Accelerated Varroa destructor population growth in honey bee (Apis mellifera) colonies is associated with visitation from non‑natal bees Kelly Kulhanek1*, Andrew Garavito2 & Dennis vanEngelsdorp2 A leading cause of managed honey bee colony mortality in the US, Varroa destructor populations typically exceed damaging levels in the fall. One explanation for rapid population increases is migration of mite carrying bees between colonies. Here, the degree to which bees from high and low mite donor colonies move between apiaries, and the efect visitation has on Varroa populations was monitored. More bees from low mite colonies (n = 37) were detected in receiver apiaries than bees from high mite colonies (n = 10, p < 0.001). Receiver colony Varroa population growth was associated with visitation by non‑natal bees (p = 0.03), but not high mite bees alone (p = 0.19). Finally, colonies lacking robbing screens experienced faster Varroa population growth than screened neighbors (p = 0.01). Results indicate visiting non‑natal bees may vector mites to receiver colonies. These results do not support the current two leading theories regarding mite immigration – the “mite bomb” theory (bees from high mite colonies emigrating to collapsing colonies), or the “robbing” theory (natal robbing bees return home with mites from collapsing colonies). Potential host‑parasite efects to bee behavior, as well as important management implications both for Varroa treatment regimens and breeding Varroa resistant bees are discussed. Honey bee provided pollination services to US crops are valued at over $14 billion 1. Crop yields are infuenced by the density and quality of honey bee colonies placed in felds, groves, and orchards 2–6.
    [Show full text]
  • Evaluations of the Removal of Varroa Destructor in Russian Honey Bee Colonies That Display Different Levels of Varroa Sensitive Hygienic Activities
    J Insect Behav https://doi.org/10.1007/s10905-018-9672-2 Evaluations of the Removal of Varroa destructor in Russian Honey Bee Colonies that Display Different Levels of Varroa Sensitive Hygienic Activities Maria J. Kirrane1,2 & Lilia I. de Guzman3 & Pádraig M. Whelan1,2 & Amanda M. Frake3 & Thomas E. Rinderer3 Revised: 2 March 2018 /Accepted: 6 March 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The removal of Varroa destructor was assessed in Russian honey bee (RHB) colonies with known levels of Varroa Sensitive Hygienic (VSH) and brood removal activities. The expression of grooming behaviour using individual bees was also measured using three groups of RHB displaying different VSH levels: low hygiene (RHB-LH, < 35% VSH), medium hygiene (RHB-MH, 35–70%) and high hygiene (RHB-HH, > 70%). Italian colonies (5.43–71.62% VSH) served as control. Our results demonstrated, for the first time, significant relationships between two hygienic re- sponses (VSH activity measured as percent change in infestation and the actual brood removal of Varroa-infested donor comb) and two measurements of mite fall (trapped old mites/trapped mites or O/T and trapped young mites/trapped mites or Y/T). However, these relationships were only observed in RHB colonies. In addition, the RHB colonies that displayed the highest levels of hygiene (RHB-HH) also groomed longer in response to the presence of a V. destructor mite based on individual bee assays. The positive regressions between the two hygienic measurements and O/T and their negative regressions with Y/T suggest that the removal of infested brood prevented successful mite reproduction, ultimately suppressing V.
    [Show full text]
  • Varroa Destructor Mite in Africanized Honeybee Colonies Apis Mellifera L. Under Royal Jelly Or Honey Production
    Acta Scientiarum http://www.uem.br/acta ISSN printed: 1806-2636 ISSN on-line: 1807-8672 Doi: 10.4025/actascianimsci.v37i3.26585 Varroa destructor mite in Africanized honeybee colonies Apis mellifera L. under royal jelly or honey production Pedro da Rosa Santos1, Priscila Wielewski1, André Luiz Halak1, Patrícia Faquinello2 and Vagner de Alencar Arnaut de Toledo3* 1Universidade Estadual de Maringá, Maringá, Parana, Brazil. 2Instituto Federal de Educação, Ciência e Tecnologia Goiano, Ceres, Goiás, Brazil. 3Departamento de Zootecnia, Universidade Estadual de Maringá, Av. Colombo, 5790 87020-900, Maringá, Parana, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. This study evaluated the level of invasion of Varroa mite into worker brood cells, the infestation rate on adult worker honeybees, total and effective reproduction rates of the mite in Africanized honeybee colonies under royal jelly or honey production. Invasion and infestation rates were not statistically different between honeybee colonies producing honey or royal jelly and the averages for these parameters were 5.79 and 8.54%, respectively. Colonies producing honey presented a higher (p < 0.05) total and effective reproduction of Varroa than colonies producing royal jelly. There was a negative correlation between levels of invasion and infestation with minimum external temperature, relative humidity and rainfall. The variables month and season influenced the development of the mite, but rates were low and within the range normally found in Brazil for Africanized honeybee colonies, which confirm the greater resistance of these honeybees to Varroa destructor than European honeybees. Keywords: Varroa infestation, mite invasion rate in brood cells, mite total reproduction, mite effective reproduction, varroasis, honeybee queen selection.
    [Show full text]
  • Scent Or Movement of Varroa Destructor Mites Does Not Elicit Hygienic Behaviour by Africanized and Carniolan Honey Bees
    Apidologie 32 (2001) 253–263 253 © INRA/DIB-AGIB/EDP Sciences, 2001 Original article Scent or movement of Varroa destructor mites does not elicit hygienic behaviour by Africanized and Carniolan honey bees Pia AUMEIERa,b*, Peter ROSENKRANZb a Zoologisches Institut, Auf der Morgenstelle 28, 72076 Tübingen, Germany b Landesanstalt für Bienenkunde, Universität Hohenheim, August-von-Hartmannstr. 13, 70593 Stuttgart, Germany (Received 20 October 2000; revised 19 February 2001; accepted 1 March 2001) Abstract – Hygienic behaviour of mite-tolerant Africanized and susceptible Carniolan colonies was evaluated in Brazil by sham-manipulating or artificially inoculating 4175 capped worker brood cells with dead Varroa destructor mites or ants, or their odour extracts. Both bee types expressed the hygienic components ‘uncapping’, ‘removal of introduced mite/ant’ and ‘removal of brood’ to the same extent and pattern. The similar response to dead mites of different origins and solvent-extracted mites indicates a minor role of scent or of movement of mites within sealed brood cells as releasers of hygienic behaviour. However, application of dichlormethane-extract of mites increased the hygienic response compared to pure solvent alone. Hygienic reactions to mite infested brood cells must, therefore, be elicited by other signals, possibly by the detection of specific reactions or odours of the infested larvae or pupae. brood removal / scent cues / Varroa destructor / varroosis tolerance / Africanized honeybee / Apis mellifera carnica 1. INTRODUCTION foulbrood (Palacio et al., 2000). Current studies on hygienic behaviour focus on the The classical studies of hygienic importance of this trait for tolerance to Var- behaviour by Rothenbuhler (1964) demon- roa destructor Anderson and Trueman strated a genetic basis to the variation among (Vandame, 1996; Boecking and Drescher, colonies in their removal of American 1998; Spivak and Reuter, 1998; Rosenkranz, * Correspondence and reprints E-mail: [email protected] 254 P.
    [Show full text]
  • INTEGRATED PEST MANAGEMENT May 15Th, 2011
    INTEGRATED PEST MANAGEMENT May 15 th , 2011 Disease & Pest Identification CAPA Honey Bee Diseases and Pests Publication. OBA Beekeeping Manual Tech-Transfer Website - http://techtransfer.ontariobee.com American Foulbrood (AFB) A bacteria affecting brood ( Bacillus larvae ) Found on every continent Spores remain viable indefinitely on beekeeping equipment Larvae are susceptible up to 3 days after hatching Spores germinate in the midgut, then penetrate to body cavity Spread by robbing and drifting bees and through transfer of hive equipment AFB Combs of infected colonies have a mottled appearance Cell cappings containing diseased larvae appear moist and darkened Larval and pupal colour changes to creamy brown, then dark brown Unpleasant odour in advanced stages Death in the pupal stage results in the formation of the pupal tongue Diseased brood eventually dries out to form characteristic brittle scales adhering tightly to the cell wall Monitoring - visual exam every time hive is opened AFB AFB Diagnosis Ropiness test Use twig or matchstick to ‘stir’ larvae 2 cm ‘rope’ will be attached to stick Microscopic examination Spores resemble slender rods in chains European Foulbrood (EFB) A bacteria affecting brood Not as widespread as AFB Larvae are infected by nurse bees EFB Twisted larvae Slight ropiness Monitoring - visual exam Chalkbrood A fungus affecting brood Patchy brood White/black “mummies” in cells, at hive entrance, on bottom board Monitoring - visual exam Sacbrood A virus affecting brood Patchy brood, punctured cells Larvae are like
    [Show full text]
  • Guide to Varroa Mite Controls for Commercial Beekeeping Operations
    GUIDE TO VARROA MITE CONTROLS FOR COMMERCIAL BEEKEEPING OPERATIONS June 1, 2021 Photo Credit: George Hansen Copyright © 2021 The Keystone Policy Center on behalf of The Honey Bee Health Coalition This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. The Honey Bee Health Coalition offers this Guide free of charge, and permits others to duplicate and distribute it. You may not use the material for commercial purposes. If you distribute the Guide, please give appropriate credit to the Coalition as its author. We encourage readers to distribute it to beekeepers and anyone else who can benefit from it. TABLE OF CONTENTS INTRODUCTION 3 What’s In This Guide 4 How Varroa Mite Resistance Develops 5 Chemical Contamination 6 Integrated Pest Management 7 Precision Apiculture 7 CASE STUDIES Introduction 8 Chris Hiatt, Hiatt Honey Company, Madera, California 9 Russell Heitkam, Heitkam’s Honey Bees, Orland, California 11 George Hansen, Foothills Honey Company, Colton, Oregon 13 Andy Card, Merrimack Valley Apiaries/Evergreen Honey Company, Billerica, Massachusetts 15 Chris Baldwin, Golden Valley Apiaries, Belvidere, South Dakota 17 John Miller, Miller Honey Farms, Gackle, North Dakota 19 PRECISION APICULTURE, TAKING IPM INTO THE 21ST CENTURY Introduction 21 Monitoring (Sampling) 22 Chemical Control Methods Formic® Pro or Mite-Away Quick Strips™ (formic acid) 23 HopGuard® 3 (hops beta acids) 24 Apiguard® (thymol) 25 Api-Bioxal® (oxalic acid) 26 Apivar® (amitraz) 27 Cultural Control Methods Breeding 28 Brood Breaks 30 Indoor Storage 31 APPENDIX References 33 Resources 33 ACKNOWLEDGMENTS 34 CHEMICAL CULTURAL TREATMENTS TREATMENTS SAMPLING INTRODUCTION Commercial beekeepers are caught in a vicious cycle with regard to control of Varroa mites (Varroa destructor).
    [Show full text]
  • Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment
    insects Communication Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment Éva Kolics 1,2, Zsófi Sajtos 3,4 , Kinga Mátyás 1, Kinga Szepesi 1, Izabella Solti 1, Gyöngyi Németh 1 , János Taller 1, Edina Baranyai 4, András Specziár 5 and Balázs Kolics 1,2,* 1 Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary; [email protected] (É.K.); [email protected] (K.M.); [email protected] (K.S.); [email protected] (I.S.); [email protected] (G.N.); [email protected] (J.T.) 2 Kolics Apiaries, H-8710 Balatonszentgyörgy, Hungary 3 Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; sajtos.zsofi@science.unideb.hu 4 Atomic Spectrometry Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] 5 Balaton Limnological Research Institute, ELKH, H-8237 Tihany, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-302629236 Simple Summary: Varroosis caused by the ectoparasitic mite Varroa destructor has been the biggest threat to managed bee colonies over recent decades. Chemicals available to treat the disease imply problems of resistance, inconsistent efficacy, and residues in bee products. Recently, alongside novel compounds to defeat the pest, lithium chloride has been found to be effective. In this study, we found Citation: Kolics, É.; Sajtos, Z.; that lithium treatments leave beeswax residue-free. The possibility of decontamination in adult bees, Mátyás, K.; Szepesi, K.; Solti, I.; bee bread, and uncapped honey was revealed.
    [Show full text]
  • Varroa Destructor, Varroa Mite Mesostigmata
    Varroa destructor, Varroa mite (Mesostigmata: Varroidae) Christopher J. Fellows, Forest Huval, Chris Carlton and Gene Reagan internal fluids (haemolymph). The mites are visible to the naked eye. While they may sometimes be observed attached to adult honey bees within the colony, this is not an effective means of detection. Life Cycle Varroa mites reproduce on a 10-day cycle that is completely dependent on the life cycle of honey bees. A female mite, called the foundress, enters the honey bee brood cell just prior to capping and hides beneath the puddle of liquid food at the bottom of the brood cell. The foundress mite uses a pair of snorkel-like organs, called peritremes, to breathe while hiding Adult female Varroa destructor mites. Scott Bauer, beneath the brood food. Around five hours after the brood cell USDA Agricultural Research Service, Bugwood.org. is capped, the worker bee larvae will have eaten the remainder of this food, freeing the mite. The foundress mite may then begin feeding on the fat body and body fluid (hemolymph) of the developing bee. Around 70 hours after the brood cell is capped, the foundress lays her first egg, which is unfertilized and develops into a male mite. The foundress then lays three to four more eggs, all of which are fertilized and thus develop into females. After maturing, the virgin female mites will mate with their male brother within the cell of the still-developing worker bee. The male mite dies shortly after mating, and the foundress and newly mated female daughters exit the cell with the now- mature adult worker bee.
    [Show full text]
  • Geographical Distribution and Selection of European Honey Bees Resistant to Varroa Destructor
    insects Review Geographical Distribution and Selection of European Honey Bees Resistant to Varroa destructor Yves Le Conte 1,* , Marina D. Meixner 2, Annely Brandt 2, Norman L. Carreck 3,4 , Cecilia Costa 5, Fanny Mondet 1 and Ralph Büchler 2 1 INRAE, Abeilles et Environnement, 84914 Avignon, France; [email protected] 2 Landesbetrieb Landwirtschaft Hessen, Bee Institute, Erlenstrasse 9, 35274 Kirchhain, Germany; [email protected] (M.D.M.); [email protected] (A.B.); [email protected] (R.B.) 3 Carreck Consultancy Ltd., Woodside Cottage, Dragons Lane, Shipley RH13 8GD, West Sussex, UK; [email protected] 4 Laboratory of Apiculture and Social Insects, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK 5 CREA Research Centre for Agriculture and Environment, via di Saliceto 80, 40128 Bologna, Italy; [email protected] * Correspondence: [email protected] Received: 15 October 2020; Accepted: 3 December 2020; Published: 8 December 2020 Simple Summary: The parasitic mite Varroa destructor is a major challenge to honey bee populations worldwide. Some honey bee populations are resistant to the mite, but most of the commercially used stocks are not and rely on chemical treatment. In this article, we describe known varroa-resistant populations and the mechanisms which have been identified as responsible for survival of colonies without beekeeper intervention to control the mite. We review traits that have potential in breeding programs, discuss the role played by V. destructor as a vector for virus infections, and the changes in mite and virus virulence which could play a role in colony resistance.
    [Show full text]
  • Varroa Destructor) Infestation Level of Carniolan Honey Bee Colonies (Apis Mellifera Carnica
    Short communication DOI: /10.5513/JCEA01/19.4.2329 Journal of Central European Agriculture, 2018, 19(4), p.959-964 Grooming behavior in relation to varroa (Varroa destructor) infestation level of Carniolan honey bee colonies (Apis mellifera carnica) Marin KOVAČIĆ1, Zlatko PUŠKADIJA1* and Marica Maja DRAŽIĆ2 1Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Osijek, Croatia, *correspondence: [email protected] 2Croatian Agricultural Agency, Zagreb, Croatia Abstract Grooming behavior is one of the traits that enables Apis cerana resistance to ectoparasitic mite Varroa destructor. The study examines the proportion of damaged mites on 52 colonies (5 genotypes) of A. m. carnica in Croatia. The mites were collected on the sheets of the screen bottom boards, analyzed for the location of injury for each mite and correlated to infestation of colonies with V. destructor mites. In total, 2,425 V. destructor mites were analyzed, with an average of 46.6 per colony. The average (±SE) of 12.69±0.93% mites with injuries were recorded ranging from 0% to 32%. No significant difference (ANOVA, F (4, 47)=0.503, P=0.734) was found between different genotypes. The most common injuries of mites were located on the first pair of legs, while the lowest proportion of injuries were found on the idiosoma. No significant correlation was found between grooming behavior and colony infestation rate. Grooming behavior did not affect the colony infestation rate in tested colonies. Keywords: Apis mellifera carnica, colony infestation, grooming, Varroa destructor Introduction With grooming, bees disperse pheromones and remove foreign particles or bodies from the body itself (such as dust, pollen or pests) (Boecking and Spivak, 1999).
    [Show full text]
  • How to Quantify Varroa Destructor in Honey Bee (Apis Mellifera L.) Colonies1 Cameron Jack, Nathan Sperry, Ashley N
    ENY173 How to Quantify Varroa destructor in Honey Bee (Apis mellifera L.) Colonies1 Cameron Jack, Nathan Sperry, Ashley N. Mortensen, and Jamie Ellis2 Introduction Varroa have two stages in their lifecycle: the phoretic and reproductive stages. Phoretic Varroa are adult females who Varroa destructor (Figure 1) is considered the most are attached to and feed on adult bees. After a period of devastating pest of western honey bees (Apis mellifera L.) 1–10 days (Beetsma et al. 1999), the phoretic mites enter globally. Its natural host is A. cerana, the Asian honey bee. open honey bee brood cells (wax cells each containing a Apis mellifera (hereafter “honey bee”) became an additional single bee larva), hide under the developing bee larva, and host and is very susceptible to damage caused by the mite. wait for the cell to be capped. Once the cell is capped, the These mites are found wherever the honey bee occurs adult female (now called a “foundress mite”) begins to feed (Iwasaki et al. 2015). Varroa effectively vectors multiple on the developing prepupa/pupa and starts to lay eggs, thus viruses (Rosenkranz et al. 2010), which can severely weaken initiating the reproductive stage. Varroa prefer to feed on or cause the collapse of honey bee colonies if left untreated drone (male) brood because drones take longer to develop (Thompson et al. 2014; Frey and Rosenkranz 2014). than do worker bees, affordingVarroa the ability to produce more offspring on the former. That said, Varroa com- monly are found in capped cells containing worker brood because the amount of drone brood in a colony generally is restricted.
    [Show full text]
  • Bioassay for Grooming Effectiveness Towards Varroa Destructor Mites in Africanized and Carniolan Honey Bees
    Apidologie 32 (2001) 81–90 81 © INRA/DIB-AGIB/EDP Sciences, 2001 Original article Bioassay for grooming effectiveness towards Varroa destructor mites in Africanized and Carniolan honey bees Pia AUMEIER* Landesanstalt für Bienenkunde, University of Hohenheim, August-von-Hartmannstr. 13, 70599 Stuttgart, Germany (Received 28 July 2000; revised 12 October 2000; accepted 26 October 2000) Abstract – Grooming behavior is considered a varroosis tolerance factor of Africanized honey bees, but this behavior is difficult to evaluate directly within the honey bee colony. A laboratory bioassay was developed to measure the intensity and effectiveness of grooming responses by worker bees artificially infested with one Varroa mite. At a study site in tropical Brazil, the sequence of seven well- defined grooming reactions towards mites of different colonial origin was compared. In a total of 226 assays, Africanized bees responded significantly faster and more intensively than Carniolan workers. But there were no statistical differences in the removal of mites according to the bee types. Even extensive grooming behavior never resulted in damage or death of the mites. The possible use of the bioassay as a screening for the extent of the grooming behavior is discussed. Africanized honey bee / behavioral trait / bioassay / grooming / Varroa destructor / Carnolian bee 1. INTRODUCTION exhibit autogrooming in order to remove by themselves a parasite on their body surface. Grooming is a widespread strategy This behavior is regarded as an important amongst vertebrates and arthropods to trait in the defence against the parasitic mite remove ectoparasites. Honey bees may per- Varroa destructor (Anderson, 2000; Anderson form allogrooming on a nestmate, for which and Trueman, 2000)1, as demonstrated in a solicitating tremble-dance is shown, or the original host species, Apis cerana Fabr.
    [Show full text]