Polar Bear Population Status in the Northern Beaufort Sea, Canada, 1971–2006

Total Page:16

File Type:pdf, Size:1020Kb

Polar Bear Population Status in the Northern Beaufort Sea, Canada, 1971–2006 Ecological Applications, 21(3), 2011, pp. 859–876 Ó 2011 by the Ecological Society of America Polar bear population status in the northern Beaufort Sea, Canada, 1971–2006 1,2,5 3 1,2 4,6 4,7 IAN STIRLING, TRENT L. MCDONALD, E. S. RICHARDSON, ERIC V. REGEHR, AND STEVEN C. AMSTRUP 1Wildlife Research Division, Science and Technology Branch, Environment Canada, 5320-122nd Street, Edmonton, Alberta T6H 3S5 Canada 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6H 3S5 Canada 3Western EcoSystems Technology, Inc., 2003 Central Ave., Cheyenne, Wyoming 82070 USA 4USGS Alaska Science Center, Biological Science Office, 4210 University Drive, Anchorage, Alaska 99508 USA Abstract. Polar bears (Ursus maritimus) of the northern Beaufort Sea (NB) population occur on the perimeter of the polar basin adjacent to the northwestern islands of the Canadian Arctic Archipelago. Sea ice converges on the islands through most of the year. We used open- population capture–recapture models to estimate population size and vital rates of polar bears between 1971 and 2006 to: (1) assess relationships between survival, sex and age, and time period; (2) evaluate the long-term importance of sea ice quality and availability in relation to climate warming; and (3) note future management and conservation concerns. The highest- ranking models suggested that survival of polar bears varied by age class and with changes in the sea ice habitat. Model-averaged estimates of survival (which include harvest mortality) for senescent adults ranged from 0.37 to 0.62, from 0.22 to 0.68 for cubs of the year (COY) and yearlings, and from 0.77 to 0.92 for 2–4 year-olds and adults. Horvtiz-Thompson (HT) estimates of population size were not significantly different among the decades of our study. The population size estimated for the 2000s was 980 6 155 (mean and 95% CI). These estimates apply primarily to that segment of the NB population residing west and south of Banks Island. The NB polar bear population appears to have been stable or possibly increasing slightly during the period of our study. This suggests that ice conditions have remained suitable and similar for feeding in summer and fall during most years and that the traditional and legal Inuvialuit harvest has not exceeded sustainable levels. However, the amount of ice remaining in the study area at the end of summer, and the proportion that continues to lie over the biologically productive continental shelf (,300 m water depth) has declined over the 35-year period of this study. If the climate continues to warm as predicted, we predict that the polar bear population in the northern Beaufort Sea will eventually decline. Management and conservation practices for polar bears in relation to both aboriginal harvesting and offshore industrial activity will need to adapt. Key words: aboriginal hunting; Arctic; Beaufort Sea; climate warming; open-population capture– recapture models; polar bears; population estimation; sea ice; survival rates; Ursus maritimus. INTRODUCTION Although polar bears may occasionally capture a seal in open water (e.g., Furnell and Oolooyuk 1980), they are Polar bears are distributed throughout the ice-covered fundamentally dependent upon sea ice as a platform waters of the circumpolar Arctic in 19 relatively discrete from which to hunt seals in both winter and summer populations (Aars et al. 2006). Their preferred habitat is (Stirling 1974, Stirling and Latour 1978, Smith 1980). the annual ice over the relatively shallow waters (,300 Thus, changes in the distribution, total amount, and m) of the continental shelf and interisland channels of types of sea ice, and the patterns of freeze-up and various archipelagos. These areas are more biologically breakup, have the potential to significantly influence the productive and seals are more abundant than in the deep survival and reproductive success of polar bears (e.g., polar basin (Stirling et al. 1982, 1993, Kingsley et al. Regehr et al. 2006, 2010, Stirling and Parkinson 2006). 1985, Stirling and Øritsland 1995, Durner et al. 2009). In this study, we used capture–recapture data to estimate age class-specific annual survival rates and population trend for the northern Beaufort Sea (NB) Manuscript received 28 April 2010; revised 19 July 2010; accepted 9 August 2010. Corresponding Editor: P. K. Dayton. population (Fig. 1) from the mid-1970s to 2006, to assess 5 E-mail: [email protected] factors that might influence survival, particularly those 6 Present address: U.S. Fish and Wildlife Service, 1011 E. related to habitat (i.e., sea ice) loss. We were particularly Tudor Rd., MS341, Anchorage, Alaska 99503 USA. interested in how sea ice habitat might be correlated 7 Present address: Polar Bears International, 810 N. Wallace, Suite E, P.O. Box 3008, Bozeman, Montana 59772 with NB demographic parameters because NB is USA. adjacent to the southern Beaufort Sea (SB) population, 859 860 IAN STIRLING ET AL. Ecological Applications Vol. 21, No. 3 FIG. 1. Northern Beaufort Sea (NB) population boundary and study area in relation to the southern Beaufort Sea (SB) population boundary. which appears to be declining as a result of reduced and northwest to remain on largely multiyear ice along access to suitable sea ice habitat, especially that over the the southern edge of the polar pack, where they can continental shelf, during the open-water season in continue to hunt seals until the ice refreezes again in the summer and fall (Hunter et al. 2010, Regehr et al. 2010). fall (e.g., Amstrup et al. 2000). Around the edge of the polar basin, in areas such as Since 1979, when it first became possible to monitor that occupied by NB, much of the annual ice along the patterns of breakup and freeze-up of sea ice over the coast melts in early summer. The bears then move north entire Arctic Ocean using satellite images, the total April 2011 NORTHERN BEAUFORT SEA POLAR BEARS 861 amount of ice remaining at the annual minimum in late the sustainable annual harvest may be closer to 50 summer has declined at a rate of 9.8% per decade (Lunn et al. 2006). Regardless, the annual harvest has (Comiso 2006). In recent years, there have been several been less than 40 bears for over 15 years (Lunn et al. record sea ice minima in the Arctic (Comiso 2006, 1998, 2002, 2006), largely because of difficult travel Serreze et al. 2007, Stroeve et al. 2007). One conse- conditions for hunters and, to some degree, a reduced quence has been a shift in the position of the southern hunting effort in parts of the area. Even though the edge of the perennial (or multiyear pack) ice over the annual harvest has remained well below the allowable Chukchi and southern Beaufort seas. The southern edge limit, subsequent evaluations of change in the maximum of the pack ice, which used to persist over the sustainable yield, along with recognition that the polar continental shelf through the summer, now retreats far bears’ sea ice habitat is changing, emphasize the to the north over the deep polar basin, where biological importance of a new estimate of population size and productivity is much lower (Pomeroy 1997). In SB, demographic values for the NB population. correlated with the trend toward a longer open-water STUDY AREA season and sea ice being farther offshore (in particular beyond the edge of the continental shelf), there have The NB population is distributed over the sea ice of been several indications that the polar bear population is eastern and northern Amundsen Gulf, the south and west being nutritionally stressed (e.g., Amstrup et al. 2006, coast of Banks Island, and the western end of M’Clure Stirling et al. 2008, Rode et al. 2010). The southern Strait up to the southwestern coast of Prince Patrick Beaufort Sea (SB) population now appears to be in Island (Fig. 1). A defining feature of the marine decline due to decreased recruitment and survival ecosystem in NB is that it borders the Arctic Ocean, (Regehr et al. 2006, 2010, Hunter et al. 2010). from which it receives a steady inflow of cold and In contrast to SB, during the open-water period in relatively unproductive polar water (Pomeroy 1997) via a NB, at least some sea ice remains in most years over the continuous clockwise current, the Beaufort Gyre (Wilson continental shelf along the west coast of Banks Island 1974). This current flows south from the polar basin and Prince Patrick Island and M’Clure Strait. along the west coast of Banks Island through the Cape Occasionally, some ice remains in the western Bathurst Polynya, where it mixes with westerly currents Amundsen Gulf, south of Banks Island. Thus, in recent from Amundsen Gulf, passes westward along the Alaska years, the polar bears in NB have still had access to ice coast, and then flows back north toward the pole. In over the continental shelf during winter and, most almost all months, there is at least some open water in the importantly, through the critical feeding period in spring shore lead and polynya system that parallels the coast and early summer when seals are more abundant there from Prince Patrick Island south through the Cape than they are over the deep polar basin (Stirling et al. Bathurst Polynya and west along the mainland coast 1982). Later in summer, as the ice breaks up, most bears (Smith and Rigby 1981, Stirling 1997). The distributions move back north and northwest toward whatever ice of ringed (Phoca hispida) and bearded (Erignathus remains over the continental shelf to the west of Banks barbatus) seals, and consequently also those of the polar Island and farther offshore until freeze-up later in the bears that hunt them, are influenced strongly by the autumn.
Recommended publications
  • Management Consultations for the Western Hudson Bay (Wh) Polar Bear Population (01-02 December 2005)
    MANAGEMENT CONSULTATIONS FOR THE WESTERN HUDSON BAY (WH) POLAR BEAR POPULATION (01-02 DECEMBER 2005) Martha Dowsley1 Mitch Taylor2 1Department of Geography, 705 Burnside Hall, McGill University, 805 Sherbrooke St. West, Montreal, QC H3A 2K6 2Wildlife Research Section, Department of Environment, Government of Nunavut, P.O. Box 209, Igloolik, NU X0A 0L0 2006 Final Wildlife Report, No. 3 Dowsley, M. and M. K. Taylor. 2006. Management consultations for the Western Hudson Bay (WH) polar bear population (01-02 December 2005). Government of Nunavut, Department of Environment, Final Wildlife Report: 3, Iqaluit, 55 pp. Management Consultations for the Western Hudson Bay (WH) Polar Bear Population (01-02 December 2005) Participants included: Arviat, Whale Cove, Rankin Inlet, Chesterfield Inlet, and Baker Lake HTOs Kivalliq Wildlife Board Nunavut Tungavik Incorporated Department of Environment, Government of Nunavut Martha Dowsley, McGill University and Mitchell Taylor, Department of Environment, GN 4 May 2007 Background: A recent population analysis by the Canadian Wildlife Service (CWS) for the WH population has demonstrated that the population has declined from about 1100 in 1994 to about 950 in 2004. This decline occurred at removal rates that had previously allowed the population to increase. The scientific data are entirely consistent with the hypothesis that survival and birth rates have been reduced by climate change, which caused the historical removal rates to cause decline in numbers. However, in December 2004 Nunavut increased the TA for WH polar bears by 9/year (from 47 to 56) based on Inuit perceptions that the population had increased. The final Canadian Wildlife Service Analysis indicates that population numbers and productivity have declined to so that a maximum of 24 bears per year can be taken from the population at 2 males per female without exceeding risk management guidelines (i.e., less than a 10% chance of an unacceptable decline).
    [Show full text]
  • Polar Bears Have Not Been Harmed by Sea Ice Declines in Summer – the Evidence August 18, 2013 Dr
    Polar bears have not been harmed by sea ice declines in summer – the evidence August 18, 2013 Dr. S. J. Crockford Http://www.polarbearscience.com Polar bears have not been harmed by sea ice declines in summer – the evidence The polar bear biologists and professional activists of the IUCN Polar Bear Specialist Group (PBSG) continue to insist that since 1979 increasingly smaller amounts of Arctic sea ice left at the end of summer (the the September ice minimum) have already caused harm to polar bears. They contend that global warming due to CO2 from fossil fuels (“climate warming” in their lexicon) is the cause of this decline in summer ice. In a recent (2012) paper published in the journal Global Change Biology (“Effects of climate warming on polar bears: a review of the evidence”), long-time Canadian PBSG members Ian Stirling and Andrew Derocher (both of University of Alberta) summarized their position this way: “Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze-up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long-term survival” I’ve spent the last year examining their evidence of on-going harm, but in addition, I’ve looked at the evidence (much of it not mentioned in the Stirling and Derocher paper1) that polar bears have either not been harmed by less sea ice in summer or have thrived in spite of it. This is a summary of my findings. I have provided links to my original essays on individual topics, (available online at www.polarbearscience.com), which are fully referenced and illustrated.
    [Show full text]
  • Wendy Calvert and Ian Stirling Source: Bears: Their Biology and Management, Vol
    Interactions between Polar Bears and Overwintering Walruses in the Central Canadian High Arctic Author(s): Wendy Calvert and Ian Stirling Source: Bears: Their Biology and Management, Vol. 8, A Selection of Papers from the Eighth International Conference on Bear Research and Management, Victoria, British Columbia, Canada, February 1989 (1990), pp. 351-356 Published by: International Association of Bear Research and Management Stable URL: http://www.jstor.org/stable/3872939 Accessed: 03/01/2009 20:40 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=iba. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected].
    [Show full text]
  • The State of the Polar Bear Report 2020
    STATE OF THE POLAR BEAR REPORT 2020 Susan J. Crockford The Global Warming Policy Foundation Report 48 State of the Polar Bear Report 2020 Susan J. Crockford Report 48, The Global Warming Policy Foundation © Copyright 2021, The Global Warming Policy Foundation TheContents Climate Noose: Business, Net Zero and the IPCC's Anticapitalism AboutRupert Darwall the author iv Report 40, The Global Warming Policy Foundation Preface v ISBNExecutive 978-1-9160700-7-3 summary vi 1.© Copyright Introduction 2020, The Global Warming Policy Foundation 1 2. Conservation status 1 3. Population size 2 4. Population trends 10 5. Habitat status 11 6. Prey base 15 7. Health and survival 17 8. Evidence of flexibility 22 9. Human/bear interactions 23 10. Discussion 28 Bibliography 30 About the Global Warming Policy Foundation 58 About the author Dr Susan Crockford is an evolutionary biologist and has been work- ing for more than 40 years in archaeozoology, paleozoology and forensic zoology.1 She is a former adjunct professor at the University of Victoria, British Columbia and works full time for a private con- sulting company she co-owns (Pacific Identifications Inc). She is the author of Rhythms of Life: Thyroid Hormone and the Origin of Species, Eaten: A Novel (a polar bear attack thriller), Polar Bear Facts and Myths (for ages seven and up, also available in French, German, Dutch, and Norwegian), Polar Bears Have Big Feet (for preschoolers), and the fully referenced Polar Bears: Outstanding Survivors of Climate Change and The Polar Bear Catastrophe That Never Happened,2 as well as a scien- tific paper on polar bear conservation status.3 She has authored sev- eral earlier briefing papers, reports, and videos for GWPF on polar bear and walrus ecology and conservation.4 Susan Crockford blogs at www.polarbearscience.com.
    [Show full text]
  • Polar Bears Have Not Been Harmed by Sea Ice Declines in Summer – the Evidence August 18, 2013 Dr
    Polar bears have not been harmed by sea ice declines in summer – the evidence August 18, 2013 Dr. S. J. Crockford Http://www.polarbearscience.com Polar bears have not been harmed by sea ice declines in summer – the evidence The polar bear biologists and professional activists1 of the IUCN Polar Bear Specialist Group (PBSG) continue to insist2 that since 1979 increasingly smaller amounts of Arctic sea ice left at the end of summer (the September ice minimum) have already caused harm to polar bears.3 They contend that global warming due to CO2 from fossil fuels (“climate warming” in their lexicon) is the cause of this decline in summer ice. In a recent (2012) paper published in the journal Global Change Biology (Effects of climate warming on polar bears: a review of the evidence4), long-time Canadian PBSG members Ian Stirling and Andrew Derocher (both of University of Alberta) summarized their position this way: “Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze-up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long-term survival.” I’ve spent the last year examining their evidence of on-going harm, but in addition, I’ve looked at the evidence (much of it not mentioned in the Stirling and Derocher paper5) that polar bears have either not been harmed by less sea ice in summer or have thrived in spite of it. This is a summary of my findings. I have provided links to my original essays on individual topics, (available online at PolarBearScience6), which are fully referenced and illustrated.
    [Show full text]
  • Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus Maritimus) in the Canadian Arctic IAN STIRLING1 and CLAIRE L
    ARCTIC VOL. 59, NO. 3 (SEPTEMBER 2006) P. 261–275 Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic IAN STIRLING1 and CLAIRE L. PARKINSON2 (Received 10 November 2005; accepted in revised form 25 January 2006) ABSTRACT. Polar bears depend on sea ice for survival. Climate warming in the Arctic has caused significant declines in total cover and thickness of sea ice in the polar basin and progressively earlier breakup in some areas. Inuit hunters in the areas of four polar bear populations in the eastern Canadian Arctic (including Western Hudson Bay) have reported seeing more bears near settlements during the open-water period in recent years. In a fifth ecologically similar population, no changes have yet been reported by Inuit hunters. These observations, interpreted as evidence of increasing population size, have resulted in increases in hunting quotas. However, long-term data on the population size and body condition of polar bears in Western Hudson Bay, as well as population and harvest data from Baffin Bay, make it clear that those two populations at least are more likely to be declining, not increasing. While the ecological details vary in the regions occupied by the five different populations discussed in this paper, analysis of passive-microwave satellite imagery beginning in the late 1970s indicates that the sea ice is breaking up at progressively earlier dates, so that bears must fast for longer periods during the open-water season. Thus, at least part of the explanation for the appearance of more bears near coastal communities and hunting camps is likely that they are searching for alternative food sources in years when their stored body fat depots may be depleted before freeze-up, when they can return to the sea ice to hunt seals again.
    [Show full text]
  • View Preprint
    Testing the hypothesis that routine sea ice coverage of 3-5 mkm2 results in a greater than 30% decline in population size of polar bear (Ursus maritimus). Version 3 Susan J. Crockford University of Victoria 3800 Finnerty Rd Victoria, British Columbia, Canada V8P 5C5 Corresponding author: Susan J. Crockford, [email protected] 1 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2737v3 | CC BY 4.0 Open Access | rec: 2 Mar 2017, publ: 2 Mar 2017 1 Abstract 2 The polar bear (Ursus maritimus) was the first species to be classified as threatened with 3 extinction based on predictions of future conditions rather than current status. These predictions 4 were made using expert-opinion forecasts of population declines linked to modeled habitat loss – 5 first by the International Union for the Conservation of Nature (IUCN)’s Red List in 2006, and 6 then by the United States Fish and Wildlife Service (USFWS) in 2008 under the Endangered 7 Species Act (ESA), based on data collected to 2005 and 2006, respectively. Both assessments 8 predicted significant population declines of polar bears would result by mid-century as a 9 consequence of summer sea ice extent rapidly reaching 3-5 mkm2 on a regular basis: the IUCN 10 predicted a >30% decline in total population, while the USFWS predicted the global population 11 would decline by 67% (including total extirpation of ten subpopulations within two vulnerable 12 ecoregions). Biologists involved in these conservation assessments had to make several critical 13 assumptions about how polar bears might be affected by future habitat loss, since sea ice 14 conditions predicted to occur by 2050 had not occurred prior to 2006.
    [Show full text]
  • STATE of the POLAR BEAR REPORT 2019 Susan J
    asdf STATE OF THE POLAR BEAR REPORT 2019 Susan J. Crockford The Global Warming Policy Foundation Report 39 The State of the Polar Bear 2019 Susan J. Crockford Cite as: Crockford SJ (2020) The State of the Polar Bear 2019. Report 39, The Global Warming Policy Foundation. ISBN 978-1-9160700-6-6 © Copyright 2020, The Global Warming Policy Foundation ii Contents Foreword v About the author v Executive summary vii 1. Introduction 1 2. Conservation status 2 3. Population size 2 4. Population trends 12 5. Habitat status 15 6. Prey base 20 7. Health and survival 23 8. Evidence of flexibility 28 9. Human/bear interactions 30 10. Discussion 40 References 43 Notes 67 About the Global Warming Policy Foundation 80 iii iv Foreword From 1972 until 2010,1 The Polar Bear Specialist Group (PBSG) of the International Union for the Conservation of Nature (IUCN) published comprehensive status reports every four years or so, as proceedings of their official meet- ings, making them available in electronic format. Until 2018 – a full eight years after its last report – the PBSG had disseminated information only on its website, updated (without announcement) at its discretion. In April 2018, the PBSG finally produced a standalone proceedings docu- ment from its 2016 meeting,2 although most people would have been unaware that this document existed unless they visited the PBSG website. This State of the Polar Bear Report is intended to pro- vide a yearly update of the kind of content available in those occasional PBSG meeting reports, albeit with more critical commentary regarding some of the inconsistencies and sources of bias present in the corpus of reports and papers.
    [Show full text]
  • Response to Dyck Et Al. (2007) on Polar Bears and Climate Change in Western Hudson Bay
    ECOCOM-137; No of Pages 9 ecological complexity xxx (2008) xxx–xxx available at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/ecocom Viewpoint Response to Dyck et al. (2007) on polar bears and climate change in western Hudson Bay Ian Stirling a,b,*, Andrew E. Derocher b, William A. Gough c, Karyn Rode d a Canadian Wildlife Service, 5320 122 Street, Edmonton, AB, Canada T6G 3S5 b Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6H 2E9 c Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada M1C 1A4 d U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 E. Tudor Road, Anchorage 99503, AK, USA article info abstract Article history: The ‘‘viewpoint’’ article by Dyck et al. (2007) [Dyck. M.G., Soon, W., Baydack, R.K., Legates, Received 1 June 2007 D.R., Baliunas, S., Ball, T.F., Hancock, L.O., 2007. Polar bears of western Hudson Bay and Received in revised form climate change: are warming spring air temperatures the ‘‘ultimate’’ survival control factor? 22 November 2007 Ecol. Complexity 4, 73–84. doi:10.1016/j.ecocom.2007.03.002.] suggest that factors other than Accepted 8 January 2008 climate warming are responsible for a decline in the polar bear population of Western Hudson Bay. They propose: (1) that there is no evidence that the climate has warmed significantly in western Hudson Bay, (2) that any negative effects on the polar bear Keywords: population likely result from interactions with humans (such as research activities, man- Polar bear agement actions, or tourism), (3) that studies suggesting climate warming could influence Climate change polar bear populations are confounded by natural fluctuations and (4) that polar bears will Hudson Bay adapt to climate warming by eating vegetation, hunting other marine mammal species, and Ursus maritimus evolving new physiological mechanisms.
    [Show full text]
  • Marine Mammal Ecology and Conservation / 00-Boyd Prelims Page 3 7:41Pm OUP CORRECTED PROOF – Finals, 5/7/2010, Spi
    Marine Mammal Ecology and Conservation / 00-Boyd_Prelims page 3 7:41pm OUP CORRECTED PROOF – Finals, 5/7/2010, SPi Marine Mammal Ecology and Conservation A Handbook of Techniques Edited by Ian L. Boyd W. Don Bowen and Sara J. Iverson 1 Marine Mammal Ecology and Conservation / 00-Boyd_Prelims page 4 7:41pm OUP CORRECTED PROOF – Finals, 5/7/2010, SPi 3 Great Clarendon Street, Oxford ox2 6dp Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York q Oxford University Press 2010 The moral rights of the authors have been asserted Database right Oxford University Press (maker) First published 2010 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization.
    [Show full text]
  • Possible Effects of Climate Warming on Selected Populations of Polar
    https://ntrs.nasa.gov/search.jsp?R=20060020227 2019-08-31T00:32:53+00:00Z Source of Acquisition NASA Goddard Space Flight Center Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic Ian Stirling Canadian Wildlife Service 5320 122 St Edmonton, AB. T6H 3S5 Canada (ian. [email protected]) Claire L. Parkinson NASA Goddard Space Flight Center Cryospheric Sciences BrancWCode 6 14.1 Greenbelt, MD 20771 USA Key words: climate warming, polar bear, sea ice, Arctic 2 ABSTRACT. Polar bears are dependent on sea ice for survival. Climate warming in the Arctic has caused significant declines in coverage and thickness of sea ice in the polar basin and progressively earlier breakup in some areas. In four populations of polar bears in the eastern Canadian Arctic (including Western Hudson Bay), Inuit hunters report more bears near settlements during the open water period in recent years. These observations have been interpreted as evidence of increasing population size, resulting in increases in hunting quotas. However, long-term data on the population size and condition of polar bears in Western Hudson Bay, and population and harvest data from Baffin Bay, make it clear that those two populations at least are declining, not increasing. While the details vary in different arctic regions, analysis of passive-microwave satellite imagery, beginning in the late 1970s, indicates that the sea ice is breaking up at progressively earlier dates, so that bears must fast for longer periods during the open water season. Thus, at least part of the explanation for the appearance of more bears in coastal communities is likely that they are searching for alternative food sources because their stored body fat depots are being exhausted.
    [Show full text]
  • Polar Bears Have Not Been Harmed by Sea Ice Declines in Summer – the Evidence
    P OLAR BEARS HAVE NOT BEEN H ARMED BY SEA ICE DECLINES IN SUMMER – THE EVIDENCE by Dr. Susan J. Crockford SPPI REPRINT SERIES ♦ August 21, 2013 POLAR BEARS HAVE NOT BEEN HARMED BY SEA ICE DECLINES IN SUMMER – THE EVIDENCE by Dr. Susan J. Crockford I August 18, 2013 Source: http://polarbearscience.com/2013/08/18/polar-bears-have-not-been-harmed-by-sea-ice- declines-in-summer-the-evidence/ The polar bear biologists and professional activists of the IUCN Polar Bear Specialist Group (PBSG) continue to insist that since 1979 increasingly smaller amounts of Arctic sea ice left at the end of summer (the September ice minimum) have already caused harm to polar bears. They contend that global warming due to CO2 from fossil fuels (“climate warming” in their lexicon) is the cause of this decline in summer ice. In a recent (2012) paper published in the journal Global Change Biology (“Effects of climate warming on polar bears: a review of the evidence”), long-time Canadian PBSG members Ian Stirling and Andrew Derocher (both of University of Alberta) summarized their position this way: “Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze-up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long-term survival” I’ve spent the last year examining their evidence of on-going harm, but in addition, I’ve looked at the evidence (much of it not mentioned in the Stirling and Derocher paper1) that polar bears have either not been harmed by less sea ice in summer or have thrived in spite of it.
    [Show full text]