Copyrighted Material

Total Page:16

File Type:pdf, Size:1020Kb

Copyrighted Material Contents Introduction ....................................... xi María-Carla SALEH and Félix AUGUSTO REY Chapter 1. DNA Viruses ............................... 1 Lindsey M. COSTANTINI and Blossom DAMANIA 1.1. Introduction to DNA viruses .......................... 1 1.1.1. What are the most abundant DNA viruses? .............. 2 1.1.2. Human DNA viruses ............................ 4 1.2. Taxonomy and structure ............................ 6 1.2.1. Small DNA tumor virus, e.g. human papillomavirus ......... 7 1.2.2. Large DNA tumor virus, e.g. Kaposi’s sarcoma-associated herpesvirus ..................................... 7 1.3. Genomes ..................................... 8 1.3.1. HPV, a small DNA tumor virus genome ................ 9 1.3.2. KSHV, a large DNA tumor virus genome ............... 10 1.4. Gene expression and regulation ........................ 10 1.4.1. Small DNA tumor virus gene expression, the HPV example .... 12 1.4.2. LargeCOPYRIGHTED DNA tumor virus gene expression, MATERIAL the KSHV example ... 13 1.4.3. DNA virus inhibition of cellular gene expression ........... 14 1.5. Infectious cycle ................................. 15 1.5.1. Small DNA tumor virus life cycle, the HPV example ........ 16 1.5.2. Large DNA tumor virus life cycle, the KSHV example ....... 18 vi Virology 1.6. Viral-induced cellular survival ........................ 20 1.6.1. Small DNA tumor virus enhancement of cell survival, e.g. HPV ....................................... 21 1.6.2. Large DNA tumor virus enhancement of cell survival, e.g. KSHV ...................................... 21 1.7. Disease prevalence and prevention ...................... 22 1.7.1. HPV, a small tumor DNA virus and disease associations ...... 22 1.7.2. KSHV, a large DNA tumor virus and disease associations ..... 24 1.8. Conclusion .................................... 25 1.9. References .................................... 26 Chapter 2. Double-stranded RNA Viruses .................. 33 Michelle M. ARNOLD, Albie VAN DIJK and Susana LÓPEZ 2.1. Introduction .................................... 33 2.2. Rotaviruses .................................... 37 2.2.1. Virion structure ............................... 37 2.2.2. Genome .................................... 38 2.2.3. Virus entry .................................. 39 2.2.4. Transcription, replication and genome segment sorting ....... 40 2.2.5. Host cell interactions: protein synthesis ................. 41 2.2.6. Innate immune evasion .......................... 42 2.3. Reoviruses .................................... 43 2.3.1. The use of reovirus as an anti-cancer agent............... 43 2.3.2. Virion structure ............................... 43 2.3.3. Genome .................................... 44 2.3.4. Virus entry .................................. 44 2.3.5. Transcription and protein synthesis ................... 45 2.3.6. RNA packaging and virion assembly .................. 46 2.3.7. Innate immune evasion .......................... 48 2.4. Orbiviruses .................................... 49 2.4.1. Virion structure ............................... 51 2.4.2. Genome .................................... 51 2.4.3. Replication cycle .............................. 51 2.4.4. Virus entry .................................. 52 2.4.5. Transcription, (+)ssRNA selection and packaging, replication ...................................... 52 2.4.6. Innate immune evasion .......................... 54 2.5. Concluding remarks and future challenges to understand dsRNA virus biology ................................. 55 2.6. References .................................... 56 Contents vii Chapter 3. Negative-strand RNA Viruses ................... 69 Rachel FEARNS 3.1. Introduction .................................... 69 3.2. Replication cycles of negative-strand RNA viruses ............ 70 3.2.1. The order Mononegavirales ........................ 70 3.2.2. The order Bunyavirales .......................... 73 3.2.3. The order Articulavirales ......................... 77 3.2.4. The genus Deltavirus ............................ 78 3.2.5. Summary of viral replication cycles ................... 80 3.3. The transcription and replication machinery of the negative-strand RNA viruses ............................ 80 3.3.1. Overview of the different negative-strand RNA virus polymerases ................................. 80 3.3.2. Orthomyxovirus polymerases and their transcription and replication mechanisms ........................... 81 3.3.3. The bunyavirus polymerase ........................ 85 3.3.4. The mononegavirus polymerases and their transcription and replication mechanisms ........................... 86 3.3.5. Concluding remarks ............................ 90 3.4. References .................................... 91 Chapter 4. Viral Epitranscriptomics ...................... 105 Rachel NETZBAND and Cara T. PAGER 4.1. Introduction .................................... 105 4.1.1. What are epitranscriptomic marks? ................... 105 4.1.2. How are epitranscriptomic marks installed? .............. 106 4.2. The tools of RNA modification discovery .................. 106 4.2.1. Chromatography and mass spectrometry ................ 107 4.2.2. Sequencing methods for PTM detection ................ 109 4.3. RNA modifications deposited by viral enzymes .............. 113 4.3.1. Capping of 5’ end of viral RNA by viral methyltransferases .... 113 4.3.2. 2’O-methylation of viral RNA ...................... 114 4.4. Editing of viral RNA by cellular enzymes .................. 120 4.4.1. Editing of uridine-to-pseudouridine (Ψ) ................ 121 4.4.2. Editing of adenosine-to-inosine ..................... 123 4.5. Deposition of RNA modifications on viral RNA by cellular enzymes ........................................ 129 viii Virology 4.5.1. Role of N6-methyladenosine (m6A) on viral gene expression .... 129 4.5.2. Role of 5-methylcytosine (m5C) in viral gene expression ...... 136 4.5.3. The viral epitranscriptome ........................ 139 4.6. Conclusion .................................... 140 4.7. References .................................... 141 Chapter 5. Defective Viral Particles ....................... 159 Carolina B. LÓPEZ 5.1. Introduction .................................... 159 5.2. Discovery of defective viral genomes and early research ......... 160 5.3. Classes of defective viral genomes ...................... 166 5.3.1. Mutations and frame shifts ........................ 168 5.3.2. Deletion DVGs ............................... 168 5.3.3. Copy-back and snap-back DVGs ..................... 169 5.3.4. Others ..................................... 169 5.4. Impacts on the virus–host interaction .................... 170 5.4.1. Interference with virus replication .................... 170 5.4.2. Stimulation of the immune response ................... 171 5.4.3. Antivirals and vaccines .......................... 173 5.4.4. Establishment of virus persistence .................... 174 5.4.5. Impact on virus spread ........................... 175 5.5. Host factors affecting DVG accumulation and activity .......... 175 5.6. Conclusion .................................... 176 5.7. References .................................... 176 Chapter 6. Enteric Viruses and the Intestinal Microbiota ........ 197 Matthew PHILLIPS, Bria F. DUNLAP, Megan T. BALDRIDGE and Stephanie M. KARST 6.1. Introduction .................................... 197 6.2. Enteric picornaviruses ............................. 198 6.2.1. Intestinal microbiota enhance poliovirus stability ........... 200 6.2.2. Bacterial glycans facilitate virion attachment to target cells ..... 200 6.2.3. Intestinal microbiota promote poliovirus recombination ....... 200 6.3. Mouse mammary tumor virus ......................... 201 6.3.1. MMTV binds LPS, which in turn promotes a tolerogenic immune environment conducive to viral persistence ............. 202 6.3.2. MMTV incorporates host LPS-binding proteins into its envelope ..................................... 202 Contents ix 6.4. Reoviruses .................................... 204 6.4.1. Intestinal microbiota enhance reovirus stability ............ 204 6.4.2. Immunostimulatory properties of bacterial flagellin inhibit rotavirus infection ................................. 206 6.4.3. Segmented filamentous bacteria have direct and indirect antiviral activity against rotavirus ........................ 207 6.4.4. How to reconcile the seemingly contradictory observations of bacterial enhancement and bacterial suppression of rotavirus infection ....................................... 207 6.5. Noroviruses .................................... 208 6.5.1. Intestinal microbiota can promote norovirus infection ........ 209 6.5.2. Intestinal microbiota can trigger antiviral immune responses during norovirus infection ...................... 211 6.6. Astroviruses ................................... 213 6.6.1. Host interferon responses reduce astrovirus replication and infection .................................... 214 6.6.2. Dysbiosis can occur after AstV infection ................ 214 6.6.3. In vivo and in vitro culture systems for AstV pathogenesis studies ........................................ 215 6.7. Overall conclusion ................................ 216 6.8. References .................................... 217 Chapter 7. Plant–Virus–Vector Interactions ................. 227 Swapna Priya RAJARAPU, Diane E. ULLMAN, Marilyne UZEST, Dorith ROTENBERG, Norma A. ORDAZ and Anna E. WHITFIELD 7.1. Introduction .................................... 227 7.2. Non-circulative
Recommended publications
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses
    viruses Article Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses Thanuja Thekke-Veetil 1, Doris Lagos-Kutz 2 , Nancy K. McCoppin 2, Glen L. Hartman 2 , Hye-Kyoung Ju 3, Hyoun-Sub Lim 3 and Leslie. L. Domier 2,* 1 Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] 2 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; [email protected] (D.L.-K.); [email protected] (N.K.M.); [email protected] (G.L.H.) 3 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; [email protected] (H.-K.J.); [email protected] (H.-S.L.) * Correspondence: [email protected]; Tel.: +1-217-333-0510 Academic Editor: Eugene V. Ryabov and Robert L. Harrison Received: 5 November 2020; Accepted: 29 November 2020; Published: 1 December 2020 Abstract: Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified.
    [Show full text]
  • Characterization of Three Novel Viruses from the Families
    viruses Article Characterization of Three Novel Viruses from the Families Nyamiviridae, Orthomyxoviridae, and Peribunyaviridae, Isolated from Dead Birds Collected during West Nile Virus Surveillance in Harris County, Texas Peter J. Walker 1 , Robert B. Tesh 2,3,4,5,6, Hilda Guzman 2,5,6, Vsevolod L. Popov 2,4,5,6, 2,5,6, 7 8 Amelia P.A. Travassos da Rosa y, Martin Reyna , Marcio R.T. Nunes , William Marciel de Souza 8,9 , Maria A. Contreras-Gutierrez 10, Sandro Patroca 8, Jeremy Vela 7, Vence Salvato 7, Rudy Bueno 7, Steven G. Widen 11 , Thomas G. Wood 11 and Nikos Vasilakis 2,3,4,5,6,* 1 School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia; [email protected] 2 Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; [email protected] (R.B.T.); [email protected] (H.G.); [email protected] (V.L.P.) 3 Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA 4 Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA 5 Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA 6 World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA 7 Mosquito and Vector Control Division, Harris County Public Health and Environmental Services, 3330 Old Spanish Trail, Houston, TX 77021,
    [Show full text]
  • Structure Unveils Relationships Between RNA Virus Polymerases
    viruses Article Structure Unveils Relationships between RNA Virus Polymerases Heli A. M. Mönttinen † , Janne J. Ravantti * and Minna M. Poranen * Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56 (Viikinkaari 9), 00014 Helsinki, Finland; heli.monttinen@helsinki.fi * Correspondence: janne.ravantti@helsinki.fi (J.J.R.); minna.poranen@helsinki.fi (M.M.P.); Tel.: +358-2941-59110 (M.M.P.) † Present address: Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Viikki Biocenter 2, P.O. Box 56 (Viikinkaari 5), 00014 Helsinki, Finland. Abstract: RNA viruses are the fastest evolving known biological entities. Consequently, the sequence similarity between homologous viral proteins disappears quickly, limiting the usability of traditional sequence-based phylogenetic methods in the reconstruction of relationships and evolutionary history among RNA viruses. Protein structures, however, typically evolve more slowly than sequences, and structural similarity can still be evident, when no sequence similarity can be detected. Here, we used an automated structural comparison method, homologous structure finder, for comprehensive comparisons of viral RNA-dependent RNA polymerases (RdRps). We identified a common structural core of 231 residues for all the structurally characterized viral RdRps, covering segmented and non-segmented negative-sense, positive-sense, and double-stranded RNA viruses infecting both prokaryotic and eukaryotic hosts. The grouping and branching of the viral RdRps in the structure- based phylogenetic tree follow their functional differentiation. The RdRps using protein primer, RNA primer, or self-priming mechanisms have evolved independently of each other, and the RdRps cluster into two large branches based on the used transcription mechanism.
    [Show full text]
  • An Unconventional Flavivirus and Other RNA Viruses In
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 September 2020 doi:10.20944/preprints202009.0061.v1 1 Article 2 An Unconventional Flavivirus and other RNA 3 Viruses in the Sea Cucumber (Holothuroidea; 4 Echinodermata) Virome 5 Ian Hewson1*, Mitchell R. Johnson2, Ian R. Tibbetts3 6 1 Department of Microbiology, Cornell University; [email protected] 7 2 Department of Microbiology, Cornell University; [email protected] 8 3 School of Biological Sciences, University of Queensland; [email protected] 9 10 * Correspondence: [email protected]; Tel.: +1-607-255-0151 11 Abstract: Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents 12 of benthic marine habitats. We surveilled RNA viruses inhabiting 8 species (representing 4 families) 13 of holothurian collected from four geographically distinct locations by viral metagenomics, 14 including a single specimen of Apostichopus californicus affected by a hitherto undocumented 15 wasting disease. The RNA virome comprised genome fragments of both single-stranded positive 16 sense and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales, 17 and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was most 18 similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal totiviruses 19 in both genome architecture and homology, and likely infected mycobiome constituents. 20 Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar to 21 invertebrate transcriptome-derived picorna-like viruses. Sequence reads recruited from the grossly 22 normal A. californicus metavirome to nearly all viral genome fragments recovered from the wasting- 23 affected A. californicus. The greatest number of viral genome fragments was recovered from wasting 24 A.
    [Show full text]
  • Influenza Avirus : Dividido Em Subtipos Baseado Na Variedade Das Glicoproteínas De Superfície: Hemaglutinina (HA) E Neuraminidase (NA)
    INFLUENZA VIRUS INSTITUTO BUTANTAN Dra. Viviane Fongaro Botosso [email protected] Influenza ou Gripe Doença viral aguda do trato respiratório causado pelo Vírus Influenza Distribuição global 600 milhões de infectados no mundo 3 a 5 milhões de casos severos 250 a 690 mil mortes Sintomas Transmissão Agente – vírus Influenza Tratamento Controle e prevenção Influenza ou Gripe Doença viral aguda do trato respiratório causado pelo Vírus Influenza Distribuição global 600 milhões de infectados no mundo 3 a 5 milhões de casos severos 250 a 690 mil mortes Sintomas Transmissão Agente – vírus Influenza Tratamento Controle e prevenção Influenza ou Gripe Doença viral aguda do trato respiratório causado pelo Vírus Influenza Distribuição global Grupos de risco de desenvolver doenças severas e complicações: grávidas, crianças menores de 5 anos, idosos, individuos com doença crônicas como doença cardíaca, pulmonar, renal, metabólica) e indivíduos imunodeprimidos. Influenza ou Gripe Doença viral aguda do trato respiratório causado pelo Vírus Influenza Distribuição global 600 milhões de infectados no mundo 3 a 5 milhões de casos severos 250 a 690 mil mortes Sintomas Transmissão Agente – vírus Influenza Tratamento Controle e prevenção Complicações: pneumonias, infarto e AVcs pós infecção, otites... Mortalidade: em crianças (<10 anos), idosos (>60 anos), imunodeprimidos Influenza ou Gripe Doença viral aguda do trato respiratório causado pelo Vírus Influenza Distribuição global 600 milhões de infectados no mundo 3 a 5 milhões de casos severos 250 a 690 mil mortes Sintomas Transmissão Agente – vírus Influenza Tratamento Controle e prevenção Transmissão Principalmente por gotículas geradas pela fala, tosse, espirro. Um bom espirro chega a 6m !! Contato com mãos e superfícies contaminadas.
    [Show full text]
  • Negri Bodies and Other Virus Membrane-Less Replication Compartments Quentin Nevers, Aurélie A
    Negri bodies and other virus membrane-less replication compartments Quentin Nevers, Aurélie A. Albertini, Cécile Lagaudrière-Gesbert, Yves Gaudin To cite this version: Quentin Nevers, Aurélie A. Albertini, Cécile Lagaudrière-Gesbert, Yves Gaudin. Negri bodies and other virus membrane-less replication compartments. Biochimica et Biophysica Acta - Molecular Cell Research, Elsevier, 2020, pp.118831. 10.1016/j.bbamcr.2020.118831. hal-02928156 HAL Id: hal-02928156 https://hal.archives-ouvertes.fr/hal-02928156 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source.
    [Show full text]
  • Guía Docente
    FACULTAD DE VETERINARIA Curso 2020/21 GUÍA DOCENTE DENOMINACIÓN DE LA ASIGNATURA Denominación: MICROBIOLOGÍA E INMUNOLOGÍA Código: 101463 Plan de estudios: GRADO DE VETERINARIA Curso: 2 Denominación del módulo al que pertenece: FORMACIÓN BÁSICA COMÚN Materia: MICROBIOLOGÍA E INMUNOLOGÍA Carácter: BASICA Duración: ANUAL Créditos ECTS: 12.0 Horas de trabajo presencial: 120 Porcentaje de presencialidad: 40.0% Horas de trabajo no presencial: 180 Plataforma virtual: Uco-Moodle DATOS DEL PROFESORADO Nombre: GARRIDO JIMENEZ, MARIA ROSARIO (Coordinador) Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 Nombre: CANO TERRIZA, DAVID Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 Nombre: GÓMEZ GASCÓN, LIDIA Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 Nombre: CABALLERO GÓMEZ, JAVIER MANUEL Departamento: SANIDAD ANIMAL Área: SANIDAD ANIMAL Ubicación del despacho: Tercera planta del edificio de Sanidad Animal. Campus Rabanales E-Mail: [email protected] Teléfono: 957218718 REQUISITOS Y RECOMENDACIONES Requisitos previos establecidos en el plan de estudios Ninguno Recomendaciones Ninguna especificada COMPETENCIAS CE23 Estudio de los microorganismos que afectan a los animales y de aquellos que tengan una aplicación industrial, biotecnológica o ecológica. CE24 Bases y aplicaciones técnicas de la respuesta inmune. INFORMACIÓN SOBRE TITULACIONES www.uco.es DE LA UNIVERSIDAD DE CORDOBA facebook.com/universidadcordoba @univcordoba uco.es/grados MICROBIOLOGÍA E INMUNOLOGÍA PÁG. 1 / 14 Curso 2020/21 FACULTAD DE VETERINARIA Curso 2020/21 GUÍA DOCENTE OBJETIVOS Los siguientes objetivos recogen las recomendaciones de la OIE para la formación del veterinario: 1.
    [Show full text]
  • Metagenomic Analysis of Non-Apis Wild Insect Pollinators and Predators Shows Virus Threat to Their Survival
    Metagenomic Analysis of Non-Apis Wild Insect Pollinators and Predators Shows Virus Threat to Their Survival Nan Nan Li Chinese Academy of Agricultural Sciences Institute of Apiculture Research Yi Zhao Huang Zaozhuang University Wei Li ( [email protected] ) Zaozhuang University https://orcid.org/0000-0002-3622-5581 Deya Wang Zaozhuang University Research Keywords: Wild insect pollinators, Novel viruses, Viral threat, Pathogenicity Posted Date: July 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-665378/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Insect pollinators provide major pollination services for wild plants and crops, this is necessary for both agriculture and ecology, we should protect their population size and diversity as much as possible. Currently, we have known that the virus disease of honeybee can cause serious damage to bee colony, but we know little about the virus of other wild pollinating insects. Here we investigated the virus host wild insect pollinators as a reminder that they are facing virus threaten too. Methods: Transcriptome sequencing was used to investigate the viruses of Non-Apis insect pollinators and predators. Furthermore, host and replicability of several novel viruses that weakly related to honey bee viruses were determined by using reverse transcription-polymerase chain reaction (RT-PCR). Results: Three honey pathogenic virus, ve viruses host insect and twenty-six novel viruses were detected. Seven novel viruses showed weakly similarity to honeybee pathogenic viruses and ve of them were determined can be replicated their genomes in the corresponding host by detected complementary strands of viral genomes, suggests that they may be pathogenic to the corresponding host.
    [Show full text]
  • 2021 Taxonomic Update of Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-021-05143-6 VIROLOGY DIVISION NEWS 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Bernard R. Agwanda211,212 · Rim Al Kubrusli3 · Sergey V. Alkhovsky (Aльxoвcкий Cepгeй Bлaдимиpoвич)4 · Gaya K. Amarasinghe5 · Tatjana Avšič‑Županc6 · María A. Ayllón7,197 · Justin Bahl8 · Anne Balkema‑Buschmann9 · Matthew J. Ballinger10 · Christopher F. Basler11 · Sina Bavari12 · Martin Beer13 · Nicolas Bejerman14 · Andrew J. Bennett15 · Dennis A. Bente16 · Éric Bergeron17 · Brian H. Bird18 · Carol D. Blair19 · Kim R. Blasdell20 · Dag‑Ragnar Blystad21 · Jamie Bojko22,198 · Wayne B. Borth23 · Steven Bradfute24 · Rachel Breyta25,199 · Thomas Briese26 · Paul A. Brown27 · Judith K. Brown28 · Ursula J. Buchholz29 · Michael J. Buchmeier30 · Alexander Bukreyev31 · Felicity Burt32 · Carmen Büttner3 · Charles H. Calisher33 · Mengji Cao (曹孟籍)34 · Inmaculada Casas35 · Kartik Chandran36 · Rémi N. Charrel37 · Qi Cheng38 · Yuya Chiaki (千秋祐也)39 · Marco Chiapello40 · Il‑Ryong Choi41 · Marina Ciufo40 · J. Christopher S. Clegg42 · Ian Crozier43 · Elena Dal Bó44 · Juan Carlos de la Torre45 · Xavier de Lamballerie37 · Rik L. de Swart46 · Humberto Debat47,200 · Nolwenn M. Dheilly48 · Emiliano Di Cicco49 · Nicholas Di Paola50 · Francesco Di Serio51 · Ralf G. Dietzgen52 · Michele Digiaro53 · Olga Dolnik54 · Michael A. Drebot55 · J. Felix Drexler56 · William G. Dundon57 · W. Paul Duprex58 · Ralf Dürrwald59 · John M. Dye50 · Andrew J. Easton60 · Hideki Ebihara (海老原秀喜)61 · Toufc Elbeaino62 · Koray Ergünay63 · Hugh W. Ferguson213 · Anthony R. Fooks64 · Marco Forgia65 · Pierre B. H. Formenty66 · Jana Fránová67 · Juliana Freitas‑Astúa68 · Jingjing Fu (付晶晶)69 · Stephanie Fürl70 · Selma Gago‑Zachert71 · George Fú Gāo (高福)214 · María Laura García72 · Adolfo García‑Sastre73 · Aura R.
    [Show full text]
  • Download PDF File
    Acta Haematologica Polonica 50(3) • September 2019 • 159–166 • DOI: 10.2478/ahp-2019-0026 REVIEW ARTICLE/PRACA POGLĄDOWA journal homepage: https://content.sciendo.com/ahp Article history: Received: 14.07.2019 ABC of viral infections in hematology: Accepted: 30.07.2019 focus on herpesviruses Jan Styczyński* Abstract Viruses are a form of life that possess genes but do not have a cellular structure. Viruses do not have their own metabolism, and they Department of Pediatric Hematology and require a host cell to make new products; therefore, they cannot naturally reproduce outside a host cell. The objective of this paper is to Oncology, Collegium Medicum, present the basic practical clinical roles of viruses in patients with hematological diseases including malignancies and non-malignan- Nicolaus Copernicus University, cies, as well as those undergoing hematopoietic cell transplantation (HCT), with the focus on herpesviruses causing latent infections in Jurasz University Hospital nr 1, severely immunocompromised patients. From the hematologist point of view, viruses can play a major role in four conditions: causing Bydgoszcz, Poland infections; causing lymphoproliferations and/or malignancies; causing (pan)cytopenia; and used as vectors in treatment (e.g., gene ther- apy, CAR-T cells). Taking into account the role of viruses in hematology, infection is the most frequent condition. Among DNA viruses, the highest morbidity potential for human is expressed by Herpesviridiae (herpesviruses), Adenoviridae (adenovirus; ADV), Polyomavirus (BKV, JCV), and Bocavirus. RNA viruses can play a role in pathogenesis of different clinical conditions and diseases: lymphoproliferative disorders and malignancy, possibly causing NHL, AML, MDS, and others (HCV, HIV, and others); pancytopenia and aplastic anemia (HIV, HCV, Dengue virus); respiratory infections (community-acquired respiratory virus infections; CARV) caused by Orthomyxoviruses (e.g.
    [Show full text]
  • Modern Taxonomy of Viruses of Vertebrates Новітня Таксономія
    Науковий вісник ЛНУВМБ імені С.З. Ґжицького. Серія: Ветеринарні науки, 2020, т 22, № 98 Науковий вісник Львівського національного університету ветеринарної медицини та біотехнологій імені С.З. Ґжицького. Серія: Ветеринарні науки Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies. Series: Veterinary sciences ISSN 2518–7554 print doi: 10.32718/nvlvet9820 ISSN 2518–1327 online https://nvlvet.com.ua/index.php/journal UDC 57.06:578.22:597 Modern taxonomy of viruses of vertebrates O. S. Kalinina Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine Article info Kalinina, O. S. (2020). Modern taxonomy of viruses of vertebrates. Scientific Messenger of Lviv Received 20.04.2020 National University of Veterinary Medicine and Biotechnologies. Series: Veterinary sciences, Received in revised form 22(98), 113–118. doi: 10.32718/nvlvet9820 25.05.2020 Accepted 26.05.2020 The modern taxonomy of viruses of vertebrates is presented according to the information of ICTV issue 07.2019, ratification 03.2020. The leading criteria of taxonomy of viruses are named: type and structure of Stepan Gzhytskyi National University of Veterinary viral genome, mechanism of replication and morphology of virion. The periods of formation of taxonomic Medicine and Biotechnologies, ranks of viruses are characterized: in 1966–1970 genera of viruses were formed, in 1971–1975 – families Pekarska Str., 50, Lviv, and subfamilies, since 1990 – orders, in 2018–2019 – realms, kingdoms, phylums, subphylums, classes, 79010, Ukraine. suborders, subgenеres. The nomenclature of viruses is described. Viruses belong to the Viruses domain. Tel.: +38-096-483-67-86 E-mail: [email protected] Viruses of vertebrates (1878 species) belong to 4 realms, 5 kingdoms, 10 phylums, 2 subphylums, 20 classes, 26 orders, 3 suborders, 45 families (of which 15 – DNA-genomic and 30 – RNA-genomic), 33 subfamilies, 345 genera and 49 subgenera.
    [Show full text]