The Short-Beaked Common Dolphin (Delphinus Delphis) in the North-East Atlantic: Distribution, Ecology, Management and Conservation Status

Total Page:16

File Type:pdf, Size:1020Kb

The Short-Beaked Common Dolphin (Delphinus Delphis) in the North-East Atlantic: Distribution, Ecology, Management and Conservation Status 22nd ASCOBANS Advisory Committee Meeting AC22/Inf.3.1 The Hague, Netherlands, 29 September - 1 October 2015 Dist. 28 August 2015 Agenda Item 3.1 Special Species Session: Common Dolphin Introduction and Conservation Status Document Inf.3.1 The short-beaked common dolphin (Delphinus delphis) in the north-east Atlantic: distribution, ecology, management and conservation status Action Requested Take note Submitted by Secretariat NOTE: DELEGATES ARE KINDLY REMINDED TO BRING THEIR OWN COPIES OF DOCUMENTS TO THE MEETING Murphy, S., Pinn, E., and Jepson, P. 2013. The short-beaked common dolphin (Delphinus delphis) in the North-eastern Atlantic: distribution, ecology, management and conservation status. In: Hughes RN, Hughes DJ, Smith IP, eds. CRC Press. Oceanography and Marine Biology Vol 51: 193-280. TABLE OF CONTENTS: Introduction Species Identification North-east Atlantic Population structure in the North Atlantic North-east Atlantic population structure Ecological stocks Distribution and abundance Contemporary seasonal movements Long-term distribution patterns North-Atlantic Oscillation Population abundance Continental shelf waters Offshore waters Life history parameters Size and morphology Population biological parameters Age and sex segregation Feeding ecology Temporal, geographic and seasonal variations in diet Offshore waters Inshore waters Age and sex dietary requirements Health status and causes of death Stranding patterns Mass mortality events Infectious diseases Non-infectious diseases Reproductive failure and abnormalities of the reproductive tract Threats and pressures Overview of past and present threats Fisheries interactions Operational effects Fisheries selectivity of age-sex maturity classes Biological effects Climate change Pollutants Persistent organic pollutants Heavy metals Oil spills Noise Pollution Military activity Seismic surveys Aggregate extraction and dredging Renewable energy Other Impacts Collisions with vessels and shipping noise Whale watching and ecotourism Legislation International conventions United Nations Convention on the Law of the Sea Convention on Biological Diversity Convention on International Trade in Endangered Species of Wild Fauna and Flora The Bonn Convention (CMS) and the Agreement on the conservation of small cetaceans of the Baltic, North East Atlantic, Irish and North Seas (ASCOBANS) Convention on the Protection of the Marine Environment of the North-east Atlantic (OSPAR) The Bern Convention International Whaling Commission European Directive of Natural Habitats and Wild Fauna and Flora (92/43/EEC) EC Council Regulation 812/2004 (‘the Fisheries Regulation’) Marine Strategy Framework Directive and Good Environmental Status Management of the North-east Atlantic population Management units Population status Summary of main pressures and threats Management framework Management objectives Estimating bycatch limits Conservation status Indicators in support of conservation status assessments Recommended research Recommended conservation actions Acknowledgements References Oceanography and Marine Biology: An Annual Review, 2013, 51, 193-280 © Roger N. Hughes, David Hughes, and I. Philip Smith, Editors Taylor & Francis The ­short- bEaked commoN Dolphin (Delphinus Delphis) in the ­north-­east Atlantic: distributioN, Ecology, maNagEment and conservatioN staTuS SinéaD murphy1,2, EunicE H. Pinn3 & Paul D. JepsoN1 1institute of Zoology, Zoological society of london, Regent’s park, london, nW1 4RY, united Kingdom 2 C- MRG, institute of natural sciences, Massey university, private Bag 102 904, Auckland 0745, new Zealand E- mail: [email protected] (corresponding author) 3Joint nature Conservation Committee, inverdee house, Baxter street, Aberdeen, AB11 9QA, united Kingdom The common dolphin is the second most abundant cetacean species in the North- east atlantic, with a wide- ranging distribution and is, potentially, impacted by a wide variety of pressures and threats. To assess the conservation status of common dolphins in this region, it is essential to understand population structure, key drivers of population dynamics, key resources and the effects of stressors. In recent years, a number of studies have assessed population structure, distribution and abundance, life- history parameters, dietary requirements and the effect of stressors—especially those caused by anthropogenic interactions, such as incidental capture (i.e., by- catch) and pollutants. a full review of this work is presented, with particular focus on current and potential pressures and threats. Notwithstanding the recent research, due to the lack of baseline data (i.e., prior to human influence) on abundance and pregnancy rate and on historical direct and incidental capture rates, the actual conservation status of the North- east atlantic common dolphin population is unknown. current assessments of conservation status of the species are therefore reliant on recent data. However, these assessments are hindered by the lack of data on contemporary incidental capture rates in some fish- eries and limited sampling in other fisheries, as well as large data gaps for other stressors. In addi- tion, the numerous potential ways in which multiple and diverse stressors can interact remain poorly understood. This chapter provides an outline of a management framework and describes methods for future evaluation of conservation status through development of indicators focusing on not only population size and distribution but also mortality and condition. Recommendations for research and conservation actions are described. Introduction common dolphins (Delphinus delphis) are one of the most abundant cetaceans in the North- east (NE) atlantic and are potentially impacted by a wide variety of threats and pressures. a large number of studies since the year 2000 have focused on their biology, ecology, population struc- ture, abundance, health status, foraging behaviour, interactions with fisheries, and pollutant levels, 193 SINÉAD MURPHy, EuNIcE H. PINN & PAUL D. JEPSoN among other aspects. No baseline data (prior to anthropogenic impacts) are available for this spe- cies in the region, making comparisons to the modern situation impossible. current assessments of conservation status of the species therefore rely on recent data. Such assessments require informa- tion on genetic diversity, evidence of density- dependent compensatory responses in reproductive parameters, and, most importantly, trend analysis of abundance estimates—though for the last only primary (preliminary) survey data are available for most of the NE atlantic. as these parameters respond to a change after it has occurred, most likely years later, monitoring of anthropogenic (and environmental) impacts is extremely important to limit their effects. under European union leg- islation, member States now have a legal obligation to undertake such monitoring in their national waters. The present review encompasses a comprehensive assessment of knowledge on the common dolphin in the NE atlantic, with the aim of providing both a current evaluation of conservation sta- tus and valuable information for the future development of a conservation management plan in these waters. Species identification The common dolphin was first identified bya rtedi in 1738 and later described by linnaeus in 1758. much confusion has arisen about whether the ‘common dolphin’ comprises one or more species due to the cosmopolitan distribution and high variability in morphological characters and pigmenta- tion patterns of otherwise- similar forms. almost two dozen nominal species have been described (Hershkovitz 1966, Heyning & Perrin 1994). During the 1990s, studies focused on clarifying taxonomic status and proposed that only two distinct species of common dolphin existed: the short- beaked common dolphin Delphinus delphis linnaeus, 1758 and the long- beaked common dolphin D. capensis gray, 1828 (Heyning & Perrin 1994, Rosel et al. 1994). contemporary taxonomic classifications further recognize an endemic sub- species of the short- beaked form, D. delphis ponticus (­Barabash- Nikiforov, 1935), which is restricted to the black Sea, and two endemic subspecies of the long- beaked form found in the Indo- Pacific region: D. capensis capensis gray, 1828, and the extremely long- beaked D. c. tropicalis (van bree, 1971) (amaha 1994, Heyning & Perrin 1994, Rosel et al. 1994, Jefferson & van Waerebeek 2002, Natoli et al. 2006, Perrin 2009). Delphinus delphis and D. capensis were differentiated on the basis of an assessment of morpho- logical data (including measurements of skeletal characters, such as overall body size, length of the rostrum, rostrum length/ zygomatic width ratio [Rl/ ZgW], and tooth counts) and colouration pat- terns in two sympatric populations inhabiting coastal waters off california, united States (Heyning & Perrin 1994). an assessment of samples and data from outside this region led the authors to pro- pose that D. delphis and D. capensis existed globally as two separate species. This view was further supported by a parallel genetic analysis of tissue samples from dolphins inhabiting californian waters and from D. delphis in the eastern tropical Pacific (ETP) and black Sea. No shared mito- chondrial DNa (mtDNa) haplotypes or cytochrome b sequences were observed between the two morphotypes, and both gene regions exhibited nucleotide frequency differences and fixed nucleo- tide substitutions between the two morphotypes (Rosel et al. 1994). The estimated genetic diver- gence in the mitochondrial
Recommended publications
  • A Review of Southern Ocean Squids Using Nets and Beaks
    Marine Biodiversity (2020) 50:98 https://doi.org/10.1007/s12526-020-01113-4 REVIEW A review of Southern Ocean squids using nets and beaks Yves Cherel1 Received: 31 May 2020 /Revised: 31 August 2020 /Accepted: 3 September 2020 # Senckenberg Gesellschaft für Naturforschung 2020 Abstract This review presents an innovative approach to investigate the teuthofauna from the Southern Ocean by combining two com- plementary data sets, the literature on cephalopod taxonomy and biogeography, together with predator dietary investigations. Sixty squids were recorded south of the Subtropical Front, including one circumpolar Antarctic (Psychroteuthis glacialis Thiele, 1920), 13 circumpolar Southern Ocean, 20 circumpolar subantarctic, eight regional subantarctic, and 12 occasional subantarctic species. A critical evaluation removed five species from the list, and one species has an unknown taxonomic status. The 42 Southern Ocean squids belong to three large taxonomic units, bathyteuthoids (n = 1 species), myopsids (n =1),andoegopsids (n = 40). A high level of endemism (21 species, 50%, all oegopsids) characterizes the Southern Ocean teuthofauna. Seventeen families of oegopsids are represented, with three dominating families, onychoteuthids (seven species, five endemics), ommastrephids (six species, three endemics), and cranchiids (five species, three endemics). Recent improvements in beak identification and taxonomy allowed making new correspondence between beak and species names, such as Galiteuthis suhmi (Hoyle 1886), Liguriella podophtalma Issel, 1908, and the recently described Taonius notalia Evans, in prep. Gonatus phoebetriae beaks were synonymized with those of Gonatopsis octopedatus Sasaki, 1920, thus increasing significantly the number of records and detailing the circumpolar distribution of this rarely caught Southern Ocean squid. The review extends considerably the number of species, including endemics, recorded from the Southern Ocean, but it also highlights that the corresponding species to two well-described beaks (Moroteuthopsis sp.
    [Show full text]
  • Identifying Sexually Mature, Male Short-Beaked Common Dolphins (Delphinus Delphis) at Sea, Based on the Presence of a Postanal Hump
    Aquatic Mammals 2002, 28.2, 181–187 Identifying sexually mature, male short-beaked common dolphins (Delphinus delphis) at sea, based on the presence of a postanal hump Dirk R. Neumann1, Kirsty Russell2, Mark B. Orams1, C. Scott Baker2, and Padraig Duignan3 1Coastal Marine Research Group, Massey University, Auckland, New Zealand 2Department of Biology, University of Auckland, New Zealand 3Department of Veterinary Science, Massey University, Palmerston North, New Zealand Abstract Introduction For detailed studies on the behaviour and social To fully comprehend the behaviour and social organization of a species, it is important to organization of a species, it is necessary to distinguish males and females. Many delphinid distinguish males and females. Long-term studies species show little sexual dimorphism. However, in of bottlenose dolphins (Tursiops truncatus, T. mature male spinner dolphins, Stenella longirostris aduncus), which tracked focal individuals of known (Perrin & Gilpatrick, 1994) and Fraser’s dolphins, sex, revealed sexual segregation of mature males Lagenodelphis hosei (Jefferson et al., 1997), tissue from females (Wells, 1991), the formation of male between the anus and the flukes forms a so-called coalitions (Wells, 1991; Connor et al., 1992), and peduncle keel, or postanal hump. We discovered an differences in the activity budgets of males and analogous feature in free-ranging short-beaked females (Waples et al., 1998). Many delphinid common dolphins, Delphinus delphis,offthe species show little sexual dimorphism, which makes north-eastern coast of New Zealand’s North Island. it exceedingly difficult to sex individuals at sea. For Genetic analysis of skin samples obtained from many species, the only individuals that can be sexed bow-riding individuals revealed that dolphins without capture are those that are consistently with a postanal hump were indeed always male.
    [Show full text]
  • Anomalously Pigmented Common Dolphins (Delphinus Sp.) Off Northern New Zealand Karen A
    Aquatic Mammals 2005, 31(1), 43-51, DOI 10.1578/AM.31.1.2005.43 Anomalously Pigmented Common Dolphins (Delphinus sp.) off Northern New Zealand Karen A. Stockin1 and Ingrid N. Visser2 1Coastal-Marine Research Group, Institute of Natural Resources, Massey University, Private Bag 102 904, North Shore MSC, Auckland, New Zealand 2Orca Research Trust, P.O. Box 1233, Whangarei, New Zealand Abstract New Zealand waters is provided by Bernal et al. (2003) who suggested that common dolphins exhib- Anomalous pigmentations have been recorded in iting long rostra, as photographed in New Zealand many cetacean species. However, typically only by Doak (1989; Plates 34A, 34B), are long-beaked one variation is reported from a population at common dolphins. However, as Amaha (1994) and a time (e.g., an albino). Here we record a spec- Jefferson & Van Waerebeek (2002) highlighted, trum of pigmentation from common dolphins neither New Zealand nor Australian common dol- (Delphinus sp.) off northern New Zealand. All- phins neatly fit the morphological description of black, dark-morph, pale-morph, and all-white either D. delphis or D. capensis. In the past, New individuals, as well as variations between these Zealand common dolphins have been identified have been recorded. Pale-coloured pectoral flip- from pigmentation patterns in the field and classi- pers are prevalent, and a number of individuals fied as short-beaked common dolphins (Bräger & with white “helmets” have been observed. Schneider, 1998; Gaskin, 1968; Neumann, 2001; Webb, 1973), although pigmentation alone may not Key Words: common dolphin, Delphinus delphis, be sufficient to positively identity these dolphins to Delphinus capensis, anomalous pigmentation, species.
    [Show full text]
  • List of Marine Mammal Species and Subspecies Written by The
    List of Marine Mammal Species and Subspecies Written by the Committee on Taxonomy The Ad-Hoc Committee on Taxonomy , chaired by Bill Perrin, has produced the first official SMM list of marine mammal species and subspecies. Consensus on some issues was not possible; this is reflected in the footnotes. This list will be revisited and possibly revised every few months reflecting the continuing flux in marine mammal taxonomy. This list can be cited as follows: “Committee on Taxonomy. 2009. List of marine mammal species and subspecies. Society for Marine Mammalogy, www.marinemammalscience.org, consulted on [date].” This list includes living and recently extinct species and subspecies. It is meant to reflect prevailing usage and recent revisions published in the peer-reviewed literature. Author(s) and year of description of the species follow the Latin species name; when these are enclosed in parentheses, the species was originally described in a different genus. Classification and scientific names follow Rice (1998), with adjustments reflecting more recent literature. Common names are arbitrary and change with time and place; one or two currently frequently used in English and/or a range language are given here. Additional English common names and common names in French, Spanish, Russian and other languages are available at www.marinespecies.org/cetacea/ . The cetaceans genetically and morphologically fall firmly within the artiodactyl clade (Geisler and Uhen, 2005), and therefore we include them in the order Cetartiodactyla, with Cetacea, Mysticeti and Odontoceti as unranked taxa (recognizing that the classification within Cetartiodactyla remains partially unresolved -- e.g., see Spaulding et al ., 2009) 1.
    [Show full text]
  • Finding of Uncommon Cephalopods
    Cah. Biol. Mar. (1994),35: 339-345 Roscoff Finding of uncommon cephalopods (Ancistroteuthis lichtensteinii, Histioteuthis bonnellii, Histioteuthis reversa) and first record of Chiroteuthis veranyi in the Ionian Sea. A. Tursi, G. D'Onghia, A. Matarrese, P. Panetta, P. Maiorano Institute of Zoology and Comparative Anatomy - University - Via Orabona, 4 - 70125 Bari (ltaly) Abstract : Finding of some uncommon cephalopods. AnCÎslrolelilhis lichtensteinii, Histiotellthis bonne/Iii, H. rCl'ersa and the first record of Chirotellthis Feranyi in the Ionian Sea are reported here. Data were collected during a trawl survey carried out on red shrimp grounds during August 1993. Résumé : Dans ce travail, les auteurs analysent des espèces de Céphalopodes peu communes ou rares en Méditerranée, Ancislrotellthis Iichlensteinii, Histiotellthis bonnellii, H. reversa et ils signalent pour la première t"ois la présence de Chirotellthis l'eranyi en mer Ionienne. Les exemplaires ont été capturés au cours d'une campagne de chalutage expérimentale, sur des fonds ù crevettes rouges, au mois d'Août 1993. INTRODUCTION The SCal"CÎty of ecological knowledge on many species of cephalopods is certainly due to the technical problems of field observation and sampling. Information on distribution and abundance come mainly from CUITent research of biologi­ cal oceanography, fishing activities, analysis on stomach contents of mmine mammals and pelagic fishes. Recently, observations from submersibles have provided very interesting data about several aspects of the biology and ecology of cephalopods (Vecchione & Roper, 1991). Cephalopods are captured commercialy and for research purposes using a valiety of gears, primarily jigging machines, trawls and drift nets (Roper, 1991). While jigging, pela­ gic seining and potting are less destructive techniques that target specific sizes and species, trawling and drift netting are non-selective methods as far as size and specieS' are concer­ ned.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • COMMON DOLPHIN Delphinus Delphis (Short-Beaked) & Delphinus Capensis (Long-Beaked)
    AMERICAN CETACEAN SOCIETY FACT SHEET P.O. Box 1391 - San Pedro, CA 90733-1391 - (310) 548-6279 COMMON DOLPHIN Delphinus delphis (short-beaked) & Delphinus capensis (long-beaked) CLASS: Mammalia ORDER: Cetacea SUBORDER: Odontoceti FAMILY: Delphinidae GENUS: Delphinus SPECIES: delphis (short-beaked) & capensis (long-beaked) The common dolphin throughout history has often been recorded in art and literature. It was recently proposed that two forms of this species, the short- and long-beaked common dolphin, represent two distinct species. PHYSICAL DESCRIPTION Common dolphins are colorful, with a complex crisscross or hourglass color pattern on the side; the long-beaked common dolphin being more muted in color. When looking at the profile of the two common dolphin species, the short-beaked common dolphin has a more rounded melon that meets the beak at a sharp angle, as compared to the long-beaked common dolphin that has a flatter melon that meets the beak at a more gradual angle. COLOR Color patterns on the common dolphin are the most elaborate of any cetacean. The back is dark gray-to-black from the top of the head to the tail dipping to a V on the sides below the dorsal fin. The flanks are light gray behind the dorsal fin and yellowish-tan forward of the dorsal fin, forming an hourglass pattern. Its belly is white. There are large dark circles around the eyes connected by a dark line that runs across the head behind the beak and a black stripe runs from the jaw to the flippers. FINS AND FLUKES The dorsal fin is triangular-to-falcate (curved).
    [Show full text]
  • DIET of FREE-RANGING and STRANDED SPERM WHALES (Physeter
    DIET OF FREE-RANGING AND STRANDED SPERM WHALES (Physeter macrocephalus) FROM THE GULF OF MEXICO NATIONAL MARINE FISHERIES SERVICE CONTRACT REPORT Submitted to: Dr. Keith D. Mullin National Marine Fisheries Service Southeast Fisheries Science Center PO. Drawer 1207 Pascagoula, MS 39568-1207 Submitted by: Dr. Nelio B. Barros Mote Marine Laboratory Center for Marine Mammal and Sea Turtle Research 1600 Ken Thompson Parkway Sarasota, FL 34236-1096 (941) 388-4441 x 443 (941) 388-4317 FAX May 2003 Mote Marine Laboratory Technical Report Number 895 ABSTRACT Sperm whales are common inhabitants of the deep waters of the Gulf of Mexico. To date, no information is available on the diet of sperm whales in the Gulf. This study sheds light into the feeding habits ofthese whales by examining data collected from free-ranging and stranded animals. Prey species included a minimum of 13 species within 10 families of cephalopods, the only prey type observed. The most important prey was Histioteuthis, a midwater squid important in the diet of sperm whales worldwide. Most species of cephalopods consumed by Gulf sperm whales are meso to bathypelagic in distribution, being found in surface to waters 2,500 deep. Some of these prey are also vertical migrators. The diet of Gulf sperm whales does not include species targeted by the commercial fisheries. INTRODUCTION Until fairly recently, little was known about the species of whales and dolphins (cetaceans) inhabiting the deep waters of the Gulf of Mexico. Most of the information available came from opportunistic sightings and occasional strandings. In the early 1990' s large-scale dedicated surveys were initiated to study the distribution and abundance of marine mammals in the deep Gulf.
    [Show full text]
  • <I>Teuthowenia</I> (Oegopsida)
    BULLETIN OF MARINE SCIENCE, 36(1): 1-85, 1985 SYSTEMATICS, BIOLOGY AND BIOGEOGRAPHY OF THE CRANCHIID CEPHALOPOD GENUS TEUTHOWENIA (OEGOPSIDA) Nancy A. Voss ABSTRACT Teuthowenia is comprised of three discrete, closely related, allopatric species. Synonymies, definitions, diagnoses and keys to all developmental stages are presented, along with a review of the complex history of the genus and detailed illustrations. The discrete, ecologically distinct, distributional patterns of the three species reflect the influence ofa number of biological and physical factors. T. megalops (Prosch) is confined to the highly productive Atlantic subarctic and the highly productive areas of the North Atlantic temperate region. T. maculata (Leach) is restricted to the area of year-round, high productivity in the eastern tropical Atlantic. T. pellucida (Chun) is distributed circumglobally in the mixed and fringing waters of the Southern Subtropical Convergence. The species display similar patterns of ontogenetic descent from near-surface waters to midwater depths of about 1,000 m to in excess of 2,500 m where the animals mature, mate and spawn. Teuthowenia species have differentiated physiologically and developmentally as well as morphologically. Variations in the maturity-related morphological features among the species suggest differences in behavioral patterns for courtship and copulation. The genus displays a high rate of evolution in male and female secondary sexual characters. The relationships of Teuthowenia with Egea and Megalocranchia, which together comprise the monophyletic Megalocranchia group, and with the other taoniin genera are discussed. The taxonomic confusion surrounding the cranchiids was resolved in part by the familial revision of N. Voss (1980). The phylogenetic history of the family was reconstructed by N.
    [Show full text]
  • A Link to the Report Hv 2021-22
    HV 2021-22 ISSN 2298-9137 HAF- OG VATNARANNSÓKNIR MARINE AND FRESHWATER RESEARCH IN ICELAND Sampling for the MEESO project during the International Ecosystem Summer Survey in Nordic Seas on the R/V Arni Fridriksson in July 2020 Ástþór Gíslason, Klara Jakobsdóttir, Kristinn Guðmundsson, Svanhildur Egilsdóttir, Teresa Silva HAFNARFJÖRÐUR - MAÍ 2021 Sampling for the MEESO project during the International Ecosystem Summer Survey in Nordic Seas on the R/V Arni Fridriksson in July 2020 Ástþór Gíslason, Klara Jakobsdóttir, Kristinn Guðmundsson, Svanhildur Egilsdóttir, Teresa Silva Haf‐ og vatnarannsóknir Marine and Freshwater Research in Iceland Upplýsingablað Titill: Sampling for the MEESO project during the International Ecosystem Summer Survey in Nordic Seas on the R/V Arni Fridriksson in July 2020 Höfundar: Ástþór Gíslason, Klara Jakobsdóttir, Kristinn Guðmundsson, Svanhildur Egilsdóttir, Teresa Silva Skýrsla nr: Verkefnisstjóri: Verknúmer: HV‐2021‐22 Ástþór Gíslason 12471 ISSN Fjöldi síðna: Útgáfudagur: 2298‐9137 26 7. maí 2021 Unnið fyrir: Dreifing: Yfirfarið af: Hafrannsóknastofnun Opin Anna Heiða Ólafsdóttir Ágrip Gagnasöfnun fyrir alþjóðlegt rannsóknaverkefni um lífríki miðsjávarlaga (MEESO), sem styrkt er af Evrópusambandinu, fór fram í rannsóknaleiðangri Hafrannsóknastofnunar á uppsjávarvistkerfi norðurhafa að sumarlagi sumarið 2020. Tilgangurinn var að rannsaka magn, dreifingu og samsetningu miðsjávarfánu í tengslum við umhverfisþætti og vöxt og viðgang plöntsvifs. Meginsvæði rannsóknarinnar fylgdi sniði sem liggur nokkurn veginn eftir 61°50’N‐breiddarbaug, frá 38°49’V og að 16°05’V, þ.e. frá Grænlandshafi yfir Reykjaneshrygg og inn í Suðurdjúp, sem og á stöð í Grindavíkurdýpi. Eftir endilöngu sniðinu var u.þ.b. 50 m þykkt blöndunarlag sem svifgróður virtist dafna í. Samkvæmt bergmálsmælingum voru tvö meginlög miðsjávarlífvera.
    [Show full text]
  • An Illustrated Key to the Families of the Order
    CLYDE F. E. ROP An Illustrated RICHARD E. YOl and GILBERT L. VC Key to the Families of the Order Teuthoidea Cephalopoda) SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • 1969 NUMBER 13 SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 13 Clyde F. E. Roper, An Illustrated Key 5K?Z" to the Families of the Order Teuthoidea (Cephalopoda) SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1969 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Institution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields.
    [Show full text]
  • Cetin KESKIN 1* and Lütfiye ERYILMAZ 2
    ACTA ICHTHYOLOGICA ET PISCATORIA (2010) 40 (1): 79–81 DOI: 10.3750/AIP2010.40.1.12 EASTERNMOST RECORD OF THE LANCET FISH, NOTOSCOPELUS KROYERI (ACTINOPTERYGII: MYCTOPHIFORMES: MYCTOPHIDAE), IN THE MEDITERRANEAN SEA Cetin KESKIN 1* and Lütfiye ERYILMAZ 2 1 Department of Marine Biology, Fisheries Faculty, Istanbul University, 2 Department of Biology, Science Faculty, Istanbul University Istanbul, Turkey Keskin C., Eryilmaz L. 2010. Easternmost record of the lancet fish, Notoscopelus kroyeri (Actinopterygii: Myctophiformes: Myctophidae) , in the Mediterranean Sea. Acta Ichthyol. Piscat. 40 (1): 79–81. Abstract. One specimen of lancet fish, Notoscopelus kroyeri (Malm, 1861), was collected in March 2007 by commercial bottom trawl in the Aegean Sea. This record consists the easternmost record of lancet fish in the Mediterranean Sea. Morphometric and meristic characteristics of this species are given. Keywords: Notoscopelus kroyeri, lancet fish, Myctophidae, first record, deep-sea fish, easternmost Mediterranean Sea The Lancet fish, Notoscopelus kroyeri (Malm, 1861), is N. elongatus (Costa, 1844); N. kroyeri (Malm, 1861); and a species of the family Myctophidae. This family includes N. resplendens (Richardson, 1845). N. kroyeri is a about 32 genera with at least 240 species (Nelson 2006). Five mesopelagic species found in depths ranging from 325 m species are recognized in the genus Notoscopelus in the North- to deeper than 1000 m. During the day, it is nyc- eastern Atlantic and the Mediterranean (Hulley 1984): N. boli- toepipelagic at surface and down to 125 m (maximum ni Nafpaktitis, 1975; N. caudispinosus (Johnson, 1863); abundance at 0–40 m) (Hulley 1984). Fig. 1. Museum records of Notoscopelus kroyeri in the Mediterranean Sea (■) by Froese and Pauly (2009), and sam- pling location in the present study ( ) * Correspondence: Dr.
    [Show full text]