Security Policy: Java Crypto Module

Total Page:16

File Type:pdf, Size:1020Kb

Security Policy: Java Crypto Module FIPS 140-2 Non-Proprietary Security Policy: Java Crypto Module FIPS 140-2 Non-Proprietary Security Policy Trend Micro Java Crypto Module Software Version 1.0 Document Version 1.2 August 30, 2018 Prepared For: Prepared By: Trend Micro Inc. SafeLogic Inc. 225 E. John Carpenter Freeway, Suite 1500 530 Lytton Ave, Suite 200 Irving, Texas 75062 Palo Alto, CA 94301 www.trendmicro.com www.safelogic.com Document Version 1.1 © Trend Micro Page 1 of 34 FIPS 140-2 Non-Proprietary Security Policy: Java Crypto Module Abstract This document provides a non-proprietary FIPS 140-2 Security Policy for the Trend Micro Java Crypto Module. Document Version 1.1 © Trend Micro Page 2 of 34 FIPS 140-2 Non-Proprietary Security Policy: Java Crypto Module Table of Contents 1 Introduction .............................................................................................................................................. 5 1.1 About FIPS 140 ............................................................................................................................................. 5 1.2 About this Document .................................................................................................................................... 5 1.3 External Resources ....................................................................................................................................... 5 1.4 Notices .......................................................................................................................................................... 5 2 Trend Micro Java Crypto Module ............................................................................................................... 6 2.1 Cryptographic Module Specification ............................................................................................................ 6 2.1.1 Validation Level Detail ............................................................................................................................. 6 2.1.2 Modes of Operation ................................................................................................................................. 6 2.1.3 Module Configuration .............................................................................................................................. 7 2.1.4 Approved Cryptographic Algorithms ....................................................................................................... 9 2.1.5 Non-Approved Cryptographic Algorithms ............................................................................................. 14 2.1.6 Non-Approved Mode of Operation ....................................................................................................... 14 2.2 Critical Security Parameters and Public Keys ............................................................................................. 16 2.2.1 Critical Security Parameters ................................................................................................................... 16 2.2.2 Public Keys ............................................................................................................................................. 18 2.3 Module Interfaces ...................................................................................................................................... 19 2.4 Roles, Services, and Authentication ........................................................................................................... 20 2.4.1 Assumption of Roles .............................................................................................................................. 20 2.4.2 Services .................................................................................................................................................. 21 2.5 Physical Security ......................................................................................................................................... 25 2.6 Operational Environment ........................................................................................................................... 25 2.6.1 Use of External RNG ............................................................................................................................... 26 2.7 Self-Tests .................................................................................................................................................... 26 2.7.1 Power-Up Self-Tests ............................................................................................................................... 27 2.7.2 Conditional Self-Tests ............................................................................................................................ 28 2.8 Mitigation of Other Attacks ....................................................................................................................... 28 3 Security Rules and Guidance ..................................................................................................................... 30 3.1 Basic Enforcement ...................................................................................................................................... 30 3.1.1 Additional Enforcement with a Java SecurityManager .......................................................................... 30 3.1.2 Basic Guidance ....................................................................................................................................... 30 3.1.3 Enforcement and Guidance for GCM IVs ............................................................................................... 31 3.1.4 Enforcement and Guidance for use of the Approved PBKDF ................................................................ 31 3.1.5 Software Installation .............................................................................................................................. 31 4 References and Acronyms ......................................................................................................................... 32 4.1 References .................................................................................................................................................. 32 4.2 Acronyms .................................................................................................................................................... 33 Document Version 1.1 © Trend Micro Page 3 of 34 FIPS 140-2 Non-Proprietary Security Policy: Java Crypto Module List of Tables Table 1 – Validation Level by FIPS 140-2 Section ........................................................................................................... 6 Table 2 – Available Java Permissions ............................................................................................................................. 8 Table 3 – FIPS-Approved Algorithm Certificates .......................................................................................................... 12 Table 4 – Approved Cryptographic Functions Tested with Vendor Affirmation .......................................................... 13 Table 5 – Non-Approved but Allowed Cryptographic Algorithms ............................................................................... 14 Table 6 – Non-Approved Cryptographic Functions for use in non-FIPS mode only..................................................... 15 Table 7 – Critical Security Parameters ......................................................................................................................... 17 Table 8 – Public Keys ................................................................................................................................................... 18 Table 9 – Logical Interface / Physical Interface Mapping ............................................................................................ 20 Table 10 – Description of Roles ................................................................................................................................... 20 Table 11 – Module Services, Roles, and Descriptions.................................................................................................. 22 Table 12 – CSP Access Rights within Services .............................................................................................................. 25 Table 13 – Power-Up Self-Tests ................................................................................................................................... 28 Table 14 – Conditional Self-Tests ................................................................................................................................. 28 Table 15 – References ................................................................................................................................................. 33 Table 16 – Acronyms and Terms.................................................................................................................................. 34 List of Figures Figure 1 – Module Boundary and Interfaces Diagram ................................................................................................. 19 Document Version 1.1 © Trend Micro Page 4 of 34 FIPS 140-2 Non-Proprietary Security Policy: Java Crypto Module 1 Introduction 1.1 About FIPS 140 Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic Modules specifies requirements for cryptographic
Recommended publications
  • PHC: Status Quo
    PHC: status quo JP Aumasson @veorq / http://aumasson.jp academic background principal cryptographer at Kudelski Security, .ch applied crypto research and outreach BLAKE, BLAKE2, SipHash, NORX Crypto Coding Standard Password Hashing Competition Open Crypto Audit Project board member do you use passwords? this talk might interest you! Oct 2013 "hash" = 3DES-ECB( static key, password ) users' hint made the guess game easy... (credit Jeremi Gosney / Stricture Group) May 2014; "encrypted passwords" (?) last week that's only the reported/published cases Lesson if Adobe, eBay, and Avast fail to protect their users' passwords, what about others? users using "weak passwords"? ITsec people using "weak defenses"? developers using "weak hashes"? cryptographers, who never bothered? agenda 1. how (not) to protect passwords 2. the Password Hashing Competition (PHC) 3. the 24-2 PHC candidates 4. next steps, and how to contribute WARNING this is NOT about bikeshed topics as: password policies password managers password-strength meters will-technology-X-replace-passwords? 1. how (not) to protect passwords solution of the 60's store "password" or the modern alternative: obviously a bad idea (assuming the server and its DB are compromised) solution of the early 70's store hash("password") "one-way": can't be efficiently inverted vulnerable to: ● efficient dictionary attacks and bruteforce ● time-memory tradeoffs (rainbow tables, etc.) solution of the late 70's store hash("password", salt) "one-way": can't be efficiently inverted immune to time-memory tradeoffs vulnerable to: ● dictionary attacks and bruteforce (but has to be repeated for different hashes) solution of the 2000's store hash("password", salt, cost) "one-way": can't be efficiently inverted immune to time-memory tradeoffs inefficient dictionary attacks and bruteforce main ideas: ● be "slow" ● especially on attackers' hardware (GPU, FPGA) => exploit fast CPU memory access/writes PBKDF2 (Kaliski, 2000) NIST and PKCS standard in Truecrypt, iOS, etc.
    [Show full text]
  • Implementation and Performance Analysis of PBKDF2, Bcrypt, Scrypt Algorithms
    Implementation and Performance Analysis of PBKDF2, Bcrypt, Scrypt Algorithms Levent Ertaul, Manpreet Kaur, Venkata Arun Kumar R Gudise CSU East Bay, Hayward, CA, USA. [email protected], [email protected], [email protected] Abstract- With the increase in mobile wireless or data lookup. Whereas, Cryptographic hash functions are technologies, security breaches are also increasing. It has used for building blocks for HMACs which provides become critical to safeguard our sensitive information message authentication. They ensure integrity of the data from the wrongdoers. So, having strong password is that is transmitted. Collision free hash function is the one pivotal. As almost every website needs you to login and which can never have same hashes of different output. If a create a password, it’s tempting to use same password and b are inputs such that H (a) =H (b), and a ≠ b. for numerous websites like banks, shopping and social User chosen passwords shall not be used directly as networking websites. This way we are making our cryptographic keys as they have low entropy and information easily accessible to hackers. Hence, we need randomness properties [2].Password is the secret value from a strong application for password security and which the cryptographic key can be generated. Figure 1 management. In this paper, we are going to compare the shows the statics of increasing cybercrime every year. Hence performance of 3 key derivation algorithms, namely, there is a need for strong key generation algorithms which PBKDF2 (Password Based Key Derivation Function), can generate the keys which are nearly impossible for the Bcrypt and Scrypt.
    [Show full text]
  • Optimizing a Password Hashing Function with Hardware-Accelerated Symmetric Encryption
    S S symmetry Article Optimizing a Password Hashing Function with Hardware-Accelerated Symmetric Encryption Rafael Álvarez 1,* , Alicia Andrade 2 and Antonio Zamora 3 1 Departamento de Ciencia de la Computación e Inteligencia Artificial (DCCIA), Universidad de Alicante, 03690 Alicante, Spain 2 Fac. Ingeniería, Ciencias Físicas y Matemática, Universidad Central, Quito 170129, Ecuador; [email protected] 3 Departamento de Ciencia de la Computación e Inteligencia Artificial (DCCIA), Universidad de Alicante, 03690 Alicante, Spain; [email protected] * Correspondence: [email protected] Received: 2 November 2018; Accepted: 22 November 2018; Published: 3 December 2018 Abstract: Password-based key derivation functions (PBKDFs) are commonly used to transform user passwords into keys for symmetric encryption, as well as for user authentication, password hashing, and preventing attacks based on custom hardware. We propose two optimized alternatives that enhance the performance of a previously published PBKDF. This design is based on (1) employing a symmetric cipher, the Advanced Encryption Standard (AES), as a pseudo-random generator and (2) taking advantage of the support for the hardware acceleration for AES that is available on many common platforms in order to mitigate common attacks to password-based user authentication systems. We also analyze their security characteristics, establishing that they are equivalent to the security of the core primitive (AES), and we compare their performance with well-known PBKDF algorithms, such as Scrypt and Argon2, with favorable results. Keywords: symmetric; encryption; password; hash; cryptography; PBKDF 1. Introduction Key derivation functions are employed to obtain one or more keys from a master secret. This is especially useful in the case of user passwords, which can be of arbitrary length and are unsuitable to be used directly as fixed-size cipher keys, so, there must be a process for converting passwords into secret keys.
    [Show full text]
  • Security Policy: Informacast Java Crypto Library
    FIPS 140-2 Non-Proprietary Security Policy: InformaCast Java Crypto Library FIPS 140-2 Non-Proprietary Security Policy InformaCast Java Crypto Library Software Version 3.0 Document Version 1.2 June 26, 2017 Prepared For: Prepared By: Singlewire Software SafeLogic Inc. 1002 Deming Way 530 Lytton Ave, Suite 200 Madison, WI 53717 Palo Alto, CA 94301 www.singlewire.com www.safelogic.com Document Version 1.2 © Singlewire Software Page 1 of 35 FIPS 140-2 Non-Proprietary Security Policy: InformaCast Java Crypto Library Abstract This document provides a non-proprietary FIPS 140-2 Security Policy for InformaCast Java Crypto Library. Document Version 1.2 © Singlewire Software Page 2 of 35 FIPS 140-2 Non-Proprietary Security Policy: InformaCast Java Crypto Library Table of Contents 1 Introduction .................................................................................................................................................. 5 1.1 About FIPS 140 ............................................................................................................................................. 5 1.2 About this Document.................................................................................................................................... 5 1.3 External Resources ....................................................................................................................................... 5 1.4 Notices .........................................................................................................................................................
    [Show full text]
  • SPHINCS: Practical Stateless Hash-Based Signatures
    SPHINCS: practical stateless hash-based signatures Daniel J. Bernstein1;3, Daira Hopwood2, Andreas Hülsing3, Tanja Lange3, Ruben Niederhagen3, Louiza Papachristodoulou4, Peter Schwabe4, and Zooko Wilcox O'Hearn2 1 Department of Computer Science University of Illinois at Chicago Chicago, IL 606077045, USA [email protected] 2 Least Authority 3450 Emerson Ave. Boulder, CO 803056452 USA [email protected],[email protected] 3 Department of Mathematics and Computer Science Technische Universiteit Eindhoven P.O. Box 513, 5600 MB Eindhoven, The Netherlands [email protected], [email protected], [email protected] 4 Radboud University Nijmegen Digital Security Group P.O. Box 9010, 6500 GL Nijmegen, The Netherlands [email protected], [email protected] Abstract. This paper introduces a high-security post-quantum stateless hash-based sig- nature scheme that signs hundreds of messages per second on a modern 4-core 3.5GHz Intel CPU. Signatures are 41 KB, public keys are 1 KB, and private keys are 1 KB. The signature scheme is designed to provide long-term 2128 security even against attackers equipped with quantum computers. Unlike most hash-based designs, this signature scheme is stateless, allowing it to be a drop-in replacement for current signature schemes. Keywords: post-quantum cryptography, one-time signatures, few-time signatures, hyper- trees, vectorized implementation 1 Introduction It is not at all clear how to securely sign operating-system updates, web-site certicates, etc. once an attacker has constructed a large quantum computer: RSA and ECC are perceived today as being small and fast, but they are broken in polynomial time by Shor's algorithm.
    [Show full text]
  • Forgery and Key Recovery Attacks for Calico
    Forgery and Key Recovery Attacks for Calico Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schl¨affer Institute for Applied Information Processing and Communications Graz University of Technology Inffeldgasse 16a, A-8010 Graz, Austria April 1, 2014 1 Calico v8 Calico [3] is an authenticated encryption design submitted to the CAESAR competition by Christopher Taylor. In Calico v8 in reference mode, ChaCha-14 and SipHash-2-4 work together in an Encrypt-then-MAC scheme. For this purpose, the key is split into a Cipher Key KC and a MAC Key KM . The plaintext is encrypted with ChaCha under the Cipher Key to a ciphertext with the same length as the plaintext. Then, the tag is calculated as the SipHash MAC of the concatenated ciphertext and associated data. The key used for SipHash is generated by xoring the nonce to the (lower, least significant part of the) MAC Key: (C; T ) = EncCalico(KC k KM ; N; A; P ); where k is concatenation, and with ⊕ denoting xor, the ciphertext and tag are calculated vi C = EncChaCha-14(KC ; N; P ) T = MACSipHash-2-4(KM ⊕ N; C k A): Here, A; P; C denote associated data, plaintext and ciphertext, respectively, all of arbitrary length. T is the 64-bit tag, N the 64-bit nonce, and the 384-bit key K is split into a 256-bit encryption and 128-bit authentication part, K = KC k KM . 2 Missing Domain Separation As shown above, the tag is calculated over the concatenation C k A of ciphertext and asso- ciated data. Due to the missing domain separation between ciphertext and associated data in the generation of the tag, the following attack is feasible.
    [Show full text]
  • Differential Cryptanalysis of Siphash
    Differential Cryptanalysis of SipHash Christoph Dobraunig, Florian Mendel, and Martin Schl¨affer IAIK, Graz University of Technology, Austria [email protected] Abstract. SipHash is an ARX based message authentication code de- veloped by Aumasson and Bernstein. SipHash was designed to be fast on short messages. Already, a lot of implementations and applications for SipHash exist, whereas the cryptanalysis of SipHash lacks behind. In this paper, we provide the first published third-party cryptanalysis of SipHash regarding differential cryptanalysis. We use existing auto- matic tools to find differential characteristics for SipHash. To improve the quality of the results, we propose several extensions for these tools to find differential characteristics. For instance, to get a good probabil- ity estimation for differential characteristics in SipHash, we generalize the concepts presented by Mouha et al. and Velichkov et al. to calcu- late the probability of ARX functions. Our results are a characteristic for SipHash-2-4 with a probability of 2−236:3 and a distinguisher for the Finalization of SipHash-2-4 with practical complexity. Even though our results do not pose any threat to the security of SipHash-2-4, they sig- nificantly improve the results of the designers and give new insights in the security of SipHash-2-4. Keywords: message authentication code, MAC, cryptanalysis, differ- ential cryptanalysis, SipHash, S-functions, cyclic S-functions 1 Introduction A message authentication code (MAC) is a cryptographic primitive, which is used to ensure the integrity and the origin of messages. Normally, a MAC takes a secret key K and a message M as input and produces a fixed size tag T .A receiver of such a message-tag-pair verifies the authenticity of the message by simply recalculating the tag T for the message and compare it with the received one.
    [Show full text]
  • Lightweight Macs from Universal Hash Functions
    Lightweight MACs from Universal Hash Functions S´ebastienDuval Ga¨etanLeurent November 13, 2019 REASSURE Introduction Design of MAC611 Benchmarks Conclusion 2 / 21 Authentication I Need for lightweight crypto I Relatively few authentication solutions compared to encryption I Our goal: design a fast MAC, MAC611, for 32-bit micro-controllers Introduction Design of MAC611 Benchmarks Conclusion 3 / 21 MACs Message Authentication Code I Definition: Tag t = Hk (m) I Security: bound on the proba. that an adversary forges a valid tag MAC constructions: I Block-Cipher-based (CBC-MAC, PMAC) I Hash-Function-based (HMAC) I from scratch (Pelican MAC, Chaskey) I from Universal Hash Functions (GMAC, Poly1305-AES) Lightweight MACs Chaskey, SipHash, TuLP, LightMAC, QUARK, SPONGENT Aim for 64-bit security Introduction Design of MAC611 Benchmarks Conclusion 3 / 21 MACs Message Authentication Code I Definition: Tag t = Hk (m) I Security: bound on the proba. that an adversary forges a valid tag MAC constructions: I Block-Cipher-based (CBC-MAC, PMAC) I Hash-Function-based (HMAC) I from scratch (Pelican MAC, Chaskey) I from Universal Hash Functions (GMAC, Poly1305-AES) Lightweight MACs Chaskey, SipHash, TuLP, LightMAC, QUARK, SPONGENT Aim for 64-bit security Introduction Design of MAC611 Benchmarks Conclusion 4 / 21 [Almost] Universal Hash Functions A family H : A B is: ! "-almost universal ("-AU) m = m0 A; h H : h(m) = h(m0) " H 8 6 2 jf 2 gj ≤ j j "-almost XOR universal ("-AXU) m = m0 A; d B; h H : h(m) h(m0) = d " H 8 6 2 8 2 jf 2 ⊕ gj ≤ j j H "-AXU H "-AU,
    [Show full text]
  • Hash Pile Ups: Using Collisions to Identify Unknown Hash Functions
    Hash Pile Ups: Using Collisions to Identify Unknown Hash Functions R. Joshua Tobin David Malone School of Mathematics Hamilton Institute Trinity College Dublin, National University of Ireland, Ireland. Ireland. Email: [email protected] Email: [email protected] Abstract—Hash functions are often used to consistently assign 16 Xor Jenkins objects to particular resources, for example to load balancing Pearson in networks. These functions can be randomly selected from a 14 Universal MD5 family, to prevent attackers generating many colliding objects, SHA which usually results in poor performance. We describe a number 12 SHA256 of attacks allowing us to identify which hash function from a family is being used by observing a relatively small number of 10 collisions. This knowledge can then be used to generate a large number of colliding inputs. In particular we detail attacks against (us) 8 CPU Time small families of hashes, Pearson-like hash functions and linear 6 hashes, such as the Toeplitz hash used in Microsoft’s Receive Side Scaling. 4 I. INTRODUCTION 2 Hash functions are often used to spread load across several 0 resources. For example, in the common case of a hash table, a Geode Core 2 Duo Athlon 64 Xeon Atom 500MHz 2.66GHz 2.6GHz 3GHz 1.6GHz hash function is used to give a consistent assignment of objects to linked lists. In modern networking, similar techniques are used by high-end network cards to assign packets to CPUs [1], Fig. 1. The average cost of hashing an IPv6 flow record with different algorithms on a selection of CPUs.
    [Show full text]
  • Viacoin Whitepaper
    Viacoin Whitepaper Viacoin Dev Team September 12, 2017 Last updated on September 22, 2017 Abstract Viacoin is an open source crypto-currency created in 2014, derived from the [6]Bitcoin protocol that supports embedded consensus with an extended OP_RETURN of 120 byte. Viacoin features Scrypt Merged mining, also called Auxiliary proof of work or AuxPoW, and 25x faster transactions than Bitcoin. Viacoin mining reward halving takes place every 6 months and has a total supply of 23,000,000 coins. The inflation rate of Viacoin is low due to minimal mining reward. As the block reward of Viacoin is low, miners are given incentive to mine Viacoin through Merged mining (AuxPoW). Viacoin is currently mined by one of the biggest mining pools (F2Pool) with a very high hashrate. Other features include a mining difficulty adjustment algorithm to address flaws in Kimoto’s Gravity Well (DarkGravityWave), Versionbits to allow for 29 simultaneous Soft Fork changes to be implemented at a time, Segwit and the Lightning Network Note: The whitepaper, documentation, designs are in research and development phase and subject to change. 1 1 Scrypt In cryptography, [7]Scrypt is a password based key derivation function created by Colin Percival. The al- gorithm was designed to make it costly to perform large-scale custom hardware attacks by requiring large amounts of memory. In 2012, the algorithm was published by the IETF as an internet draft intended to become an informational RFC, but a version of Scrypt is now used as a proof of work scheme by cryptocur- rencies like Viacoin. Scrypt is a memory hard key derivation function, it requires a reasonably large amount of Random Ac- cess Memory to be evaluated.
    [Show full text]
  • Performance Analysis of Cryptographic Hash Functions Suitable for Use in Blockchain
    I. J. Computer Network and Information Security, 2021, 2, 1-15 Published Online April 2021 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijcnis.2021.02.01 Performance Analysis of Cryptographic Hash Functions Suitable for Use in Blockchain Alexandr Kuznetsov1 , Inna Oleshko2, Vladyslav Tymchenko3, Konstantin Lisitsky4, Mariia Rodinko5 and Andrii Kolhatin6 1,3,4,5,6 V. N. Karazin Kharkiv National University, Svobody sq., 4, Kharkiv, 61022, Ukraine E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] 2 Kharkiv National University of Radio Electronics, Nauky Ave. 14, Kharkiv, 61166, Ukraine E-mail: [email protected] Received: 30 June 2020; Accepted: 21 October 2020; Published: 08 April 2021 Abstract: A blockchain, or in other words a chain of transaction blocks, is a distributed database that maintains an ordered chain of blocks that reliably connect the information contained in them. Copies of chain blocks are usually stored on multiple computers and synchronized in accordance with the rules of building a chain of blocks, which provides secure and change-resistant storage of information. To build linked lists of blocks hashing is used. Hashing is a special cryptographic primitive that provides one-way, resistance to collisions and search for prototypes computation of hash value (hash or message digest). In this paper a comparative analysis of the performance of hashing algorithms that can be used in modern decentralized blockchain networks are conducted. Specifically, the hash performance on different desktop systems, the number of cycles per byte (Cycles/byte), the amount of hashed message per second (MB/s) and the hash rate (KHash/s) are investigated.
    [Show full text]
  • Package 'Scrypt'
    Package ‘scrypt’ August 9, 2019 Type Package Title Key Derivation Functions for R Based on Scrypt Version 0.1.3 Copyright RStudio, Inc.; Colin Percival Maintainer Bob Jansen <[email protected]> Description Functions for working with the scrypt key derivation functions originally described by Colin Percival <https://www.tarsnap.com/scrypt/scrypt.pdf> and in Percival and Josefsson (2016) <doi:10.17487/RFC7914>. Scrypt is a password-based key derivation function created by Colin Percival. The algorithm was specifically designed to make it costly to perform large-scale custom hardware attacks by requiring large amounts of memory. License FreeBSD Depends R (>= 3.0.0) URL https://github.com/rstudio/rscrypt Imports Rcpp (>= 0.10.6) LinkingTo Rcpp NeedsCompilation yes Author Bob Jansen [ctb, cre], Andy Kipp [aut], Colin Percival [aut, cph], RStudio [cph] Repository CRAN Date/Publication 2019-08-09 13:30:08 UTC R topics documented: scrypt-package . .2 hashPassword . .2 verifyPassword . .3 Index 5 1 2 hashPassword scrypt-package scrypt key derivation functions for R Description scrypt is an R package for working with scrypt. Scrypt is a password-based key derivation function created by Colin Percival. The algorithm was specifically designed to make it costly to perform large-scale custom hardware attacks by requiring large amounts of memory. Details Package: scrypt Type: Package Version: 0.1 Date: 2014-01-07 License: GPLv3 The scrypt package can be used for hashing and verifying passwords, or encrypting and decrypting data. Additionally, the scrypt
    [Show full text]