Dark Stars: a Review 2
Dark Stars: A Review Katherine Freese1,2,3, Tanja Rindler-Daller3,4, Douglas Spolyar2 and Monica Valluri5 1 Nordita (Nordic Institute for Theoretical Physics), KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden 2The Oskar Klein Center for Cosmoparticle Physics, AlbaNova University Center, University of Stockholm, 10691 Stockholm, Sweden 3 Department of Physics and Michigan Center for Theoretical Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA 4 Institute for Astrophysics, Universit¨atssternwarte Wien, University of Vienna, T¨urkenschanzstr. 17, A-1180 Wien, Austria 5 Department of Astronomy, University of Michigan, 1085 South University Ave., Ann Arbor, MI 48109, USA arXiv:1501.02394v2 [astro-ph.CO] 4 Mar 2016 Dark Stars: A Review 2 Abstract. Dark Stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from Dark Matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly Interacting Massive Particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only <∼ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same.
[Show full text]