Marine Turtle Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

Marine Turtle Newsletter Marine Turtle Newsletter Number 47 October 1989 Editors: Editorial Board.. Karen L. Eckert & Scott A. Eckert Nat B. Frazer Physiological Research Lab (A-004) Nicholas Mrosovsky Scripps Institution of Oceanography David W. Owens University of California-San Diego Peter C. H. Pritchard La Jolla, California 92093 USA James L Richardson TENTH ANNUAL SEA TURTLE WORKSHOP The Tenth Annual Workshop on Sea Turtle Conservation and Biology will be held at Hilton Head Island, South Carolina, 20-24 February 1990. The hosts for this year's meeting will be the Nongame and Heritage Trust Section of the South Carolina Wildlife and Marine Resources Department and the Museum of Hilton Head Island - Project Turtle Watch. Surpassing last year's excellent Workshop in Georgia will be hard to do. It was attended by 450 persons representing 15 countries. However, to celebrate a decade of workshops, we hope to make this year's meeting even better! There will be paper and poster sessions featuring the efforts of federal and state agencies, local municipalities, universities and conservation organizations, as well as private individuals. There will be space and time available if groups such as the IUCN or WIDECAST wish to meet while everyone is in one place. The Workshop's casual and friendly atmosphere is the perfect place for students and others just getting involved with sea turtles to interact with experienced professionals. The Workshop is also a time for fun and relaxation. There will be organized social events and free time to enjoy beautiful Hilton Head Island. Please plan to join us in the South Carolina Lowcountry for this, our special Tenth Annual Workshop. For those wishing to make early travel arrangements, please route yourself through Savannah, Georgia. For further information, contact: SALLY MURPHY, South Carolina Wildlife and Marine Resources Department, P.O. Box 12559,Charleston, South Carolina 29412USA. Part of the tremendous success of last year's workshop was the contributions from our foreign visitors. Jim Richardson has agreed to help coordinate this very worthy endeavor again this year, on behalf of the Steering Committee of the Tenth Annual Workshop. So, if you have the funds to sponsor a deserving student or scientist from abroad, please get in touch (soon!) with: DR. JIM RICHARDSON, Institute of Ecology, University of Georgia, Athens, Georgia 30602 USA. Thank you! See you all in February! 1 SEX IDENTIFICATION IN YOUNG KEMP'S RIDLEY SEA TURTLES Temperature-dependent sex determination, homomorphic sex chromosomes and the absence of sexual dimorphism in young sea turtles limit sexing of individuals to a sacrificial method involving histological examination of gonads. As a result it is not possible to determine the relationship between sex development and environment in the critically endangered Kemp's ridley sea turtle (Lepidochelys kempi). Furthermore, managers cannot determine sex ratios in wild populations of Kemp's ridleys containing high percentages of juveniles, headstart programs have no knowledge of sex ratio of turtles hatched (except those that die) or released, and captive propagation operations must retain individuals for years before selecting for future brood-stock. Previous non-sacrificial attempts to sex immature sea turtles have been based on meristics (A. Landry, personal communication), H-Y antigen (Wellins, 1987), laparoscopy and prepubertal levels of sex steroids. The most useful technique is radioimmunoassay of steroids because testosterone levels are higher in males than in females (Owens et al., 1978). However, sex is identified correctly only 90% of the time and the animals must be at least two years old (D. Owens, personal communication, 1987). In an effort to provide a non-sacrificial means of identifying genotypic sex of hatchling Kemp's ridleys, we are pursuing two avenues of investigation, one molecular and the other immunologic. The first involves determining whether specific deoxyribonucleic acid (DNA) sequences of the sex chromosomes can be detected. A DNA probe (BKm - a laboratory detectable sequence of sex specific minor DNA) was obtained from the W chromosome of a venomous Indian snake (Bungarus fasciatus). This probe detects homologous sequences on the W chromosome of other snakes (even in species that carry homomorphic Z and W chromosomes), on the W chromosome of birds and on the Y chromosome of mammals (Singh et al., 1976, 1980). We are attempting to detect such sequences in Kemp's ridley. Twelve animals of known sex were used. Eight (5 females, 3 males) were 9-yr olds maintained from hatchling stage at an oceanarium. They were sexed by laparoscopy. Four (3 females, 1 male) were head-started yearlings that had to be euthanized because of gross carapace and plastron malformations. These were sexed histologically. A small sample of blood (0.5 nil or less) was obtained from each animal and DNA was extracted from the cells. The DNA was then digested with a restriction endonuclease and the fragments displayed by size using agarose gel electrophoresis. The DNA was transferred and fixed to membrane filters and the filters exposed to biotin-labelled BKm probe DNA. Homologous sequences are manifested as "bands" on the membrane filter. We have identified several bands that are sex-specific or exhibit a dose effect. Because the turtles are not inbred, more individuals will have to be sampled in order to rule out autosomal polymorphism. The second avenue of study is to use an antibody that will signal the presence of H-Y antigen on Kemp's ridley blood cells. H-Y antigen is a cell surface protein expressed sex- specifically in all vertebrates examined (Wachtel, 1983). We have produced several monoclonal H-Y antibodies and currently are devising a technique to determine whether H- Y is present on blood cells of Kemp's ridley, and whether it is expressed sex-specifically. An Elisa will allow either direct detection of H-Y on the cells, or expression of H-Y will be inferred by absorbing H-Y antisera with turtle blood cells and assaying those treated antisera for residual anti-H-Y activity using a known H-Y source as an antigen. The immunologic technique is much more cost-effective than the molecular method and the results would be available in hours rather than in days. 2 Although our results are preliminary, we are encouraged that a non-sacrificial method for determining the genotype sex of young Kemp's ridleys is forthcoming. Development of this non-sacrificial method will make it possible to determine with accuracy the sex ratio of hatchlings produced in conservation programs, facilitate studies on the effects of environment on sex development and increase the efficiency of broodstock selection on turtle farms. These techniques would prove most useful if they can be applied in other marine turtle species in the hatchling and juvenile stages. Finally, these studies will allow us to conduct population studies to determine the size of the gene pool and species relationships. Owens, D. W., J. R. Hendrickson, V. Lance and 1. P. Collard. 1978. A technique for determining sex of immature Chelonia mydas using a radioimmunoassay. Herpetologica 34:270-273. Singh, L., I. F. Purdom and K. W. Jones. 1976. Satellite DNA and evolution of sex chromosomes. Chromosoma 59:43-62. Singh, L., I. F. Purdom and K. W. Jones. 1980. Sex chromosome associated satellite DNA: evolution and conservation. Chromosoma 79:137-157. Wachtel, S. S. 1983. H-Y antigen and the biology of sex determination. Academic Press, London, England. Wellins, D. J. 1987. Use of an H-Y antigen assay for sex determination in sea turtles. Copeia 1:46-52. MARCEL DURONSLET, National Marine Fisheries Service, SEFC Galveston Laboratory, 4700 Avenue U, Galveston, Texas 77551-5997 USA, D. NAKAMURA, George Washington School of Law, 2100 Pennsylvania Ave., Washington D.C. 20037 USA, C. W. CAILLOUET (same as Duronslet), and S. DEMAS, Department of Obstetrics and Gynecology, University of Tennessee, Memphis, Tennessee 38163 USA. SHRIMP TRAWL-INDUCED MORTALITY OF SEA TURTLES DURING SHORT DURATION TRAWLING Recent changes in turtle excluder device (TED) regulations may allow offshore shrimpers to trawl without the use of TEDs if they limit their trawling durations to 105 minutes. This change in regulations greatly increases the need for data regarding sea turtle mortality during short duration trawling. During June of 1983, I was allowed to accompany a shrimp crew while they conducted three days of normal trawling off the east coast of central Florida. The captain of the trawler was concerned about sea turtle mortality and therefore limited trawling to relatively short durations. Trawling took place approximately 1 km offshore in an approximate 14.5 km line from the Cape Canaveral ship channel to Patrick's Air Force Base. The incidental-capture data from all of the trawls during those three days are summarized in Table 1. The high rate of incidental capture (11 captures in 18.7 hrs of trawling) most certainly reflects the relative abundance of loggerhead turtles in the area. Aerial surveys by the National Marine Fisheries Service (Schroeder and Thompson, 1987) indicate that both immature and adult loggerheads are frequently sighted along the Atlantic coast of the 3 TABLE 1. Data from 3 days of trawling off the east coast of central Florida in 1983. "Loggerhead" refers to the loggerhead sea turtle, Caretta caretta. "Dead" refers to turtles that did not regain consciousness during the approximate 1.5 hours they remained on deck. ________________________________________________________________________
Recommended publications
  • Background on Sea Turtles
    Background on Sea Turtles Five of the seven species of sea turtles call Virginia waters home between the months of April and November. All five species are listed on the U.S. List of Endangered and Threatened Wildlife and Plants and classified as either “Threatened” or “Endangered”. It is estimated that anywhere between five and ten thousand sea turtles enter the Chesapeake Bay during the spring and summer months. Of these the most common visitor is the loggerhead followed by the Kemp’s ridley, leatherback and green. The least common of the five species is the hawksbill. The Loggerhead is the largest hard-shelled sea turtle often reaching weights of 1000 lbs. However, the ones typically sighted in Virginia’s waters range in size from 50 to 300 lbs. The diet of the loggerhead is extensive including jellies, sponges, bivalves, gastropods, squid and shrimp. While visiting the Bay waters the loggerhead dines almost exclusively on horseshoe crabs. Virginia is the northern most nesting grounds for the loggerhead. Because the temperature of the nest dictates the sex of the turtle it is often thought that the few nests found in Virginia are producing predominately male offspring. Once the male turtles enter the water they will never return to land in their lifetime. Loggerheads are listed as a “Threatened” species. The Kemp’s ridley sea turtle is the second most frequent visitor in Virginia waters. It is the smallest of the species off Virginia’s coast reaching a maximum weight of just over 100 lbs. The specimens sited in Virginia are often less than 30 lbs.
    [Show full text]
  • Turtles, All Marine Turtles, Have Been Documented Within the State’S Borders
    Turtle Only four species of turtles, all marine turtles, have been documented within the state’s borders. Terrestrial and freshwater aquatic species of turtles do not occur in Alaska. Marine turtles are occasional visitors to Alaska’s Gulf Coast waters and are considered a natural part of the state’s marine ecosystem. Between 1960 and 2007 there were 19 reports of leatherback sea turtles (Dermochelys coriacea), the world’s largest turtle. There have been 15 reports of Green sea turtles (Chelonia mydas). The other two are extremely rare, there have been three reports of Olive ridley sea turtles (Lepidochelys olivacea) and two reports of loggerhead sea turtles (Caretta caretta). Currently, all four species are listed as threatened or endangered under the U.S. Endangered Species Act. Prior to 1993, Alaska marine turtle sightings were mostly of live leatherback sea turtles; since then most observations have been of green sea turtle carcasses. At present, it is not possible to determine if this change is related to changes in oceanographic conditions, perhaps as the result of global warming, or to changes in the overall population size and distribution of these species. General description: Marine turtles are large, tropical/subtropical, thoroughly aquatic reptiles whose forelimbs or flippers are specially modified for swimming and are considerably larger than their hind limbs. Movements on land are awkward. Except for occasional basking by both sexes and egg-laying by females, turtles rarely come ashore. Turtles are among the longest-lived vertebrates. Although their age is often exaggerated, they probably live 50 to 100 years. Of the five recognized species of marine turtles, four (including the green sea turtle) belong to the family Cheloniidae.
    [Show full text]
  • 'Camouflage' Their Nests but Avoid Them and Create a Decoy Trail
    Buried treasure—marine turtles do not ‘disguise’ or royalsocietypublishing.org/journal/rsos ‘camouflage’ their nests but avoid them and create a Research Cite this article: Burns TJ, Thomson RR, McLaren decoy trail RA, Rawlinson J, McMillan E, Davidson H, Kennedy — MW. 2020 Buried treasure marine turtles do not † ‘disguise’ or ‘camouflage’ their nests but avoid Thomas J. Burns , Rory R. Thomson, Rosemary them and create a decoy trail. R. Soc. Open Sci. 7: 200327. A. McLaren, Jack Rawlinson, Euan McMillan, http://dx.doi.org/10.1098/rsos.200327 Hannah Davidson and Malcolm W. Kennedy Institute of Biodiversity, Animal Health and Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, Received: 27 February 2020 University of Glasgow, Glasgow G12 8QQ, UK Accepted: 6 April 2020 TJB, 0000-0003-0408-8014; MWK, 0000-0002-0970-5264 After laying their eggs and refilling the egg chamber, sea Subject Category: turtles scatter sand extensively around the nest site. This is presumed to camouflage the nest, or optimize local conditions Organismal and Evolutionary Biology for egg development, but a consensus on its function is Subject Areas: lacking. We quantified activity and mapped the movements of hawksbill (Eretmochelys imbricata) and leatherback (Dermochelys behaviour coriacea) turtles during sand-scattering. For leatherbacks, we also recorded activity at each sand-scattering position. Keywords: For hawksbills, we recorded breathing rates during nesting as hawksbill turtle, Eretmochelys imbricata, leatherback an indicator of metabolic investment and compared with turtle, Dermochelys coriacea, nesting behaviour published values for leatherbacks. Temporal and inferred metabolic investment in sand-scattering was substantial for both species.
    [Show full text]
  • The Latest Record of the Leatherback Sea Turtle (Dermochelys Coriacea
    16 Coll. and Res. (2003) 16: 13-16 Coll. and Res. (2003) 16: 17-26 17 claw ending as knob; empodium divided, 5 rayed. without a short line on each side, admedian lines The Latest Record of the Leatherback Sea Turtle (Dermochelys with a semicircular line extending to lateral sides, Opisthosoma : dorsum with median ridge shorter and the 5-rayed empodium. coriacea) from Eastern Taiwan than submedian ridges, dorsally with about 51 rings, ventrally with about 53 microtuberculate Chun-Hsiang Chang1,2*, Chern-Mei Jang3, and Yen-Nien Cheng2 REFERENCES rings; 1st 3 dorsal annuli 9 long; lateral setae (c2) 10 long, Lt-Lt 44 apart, Lt\Vt1 38, Lt-Vt1 25; 1st 1Department of Biology, University College London, London WC1E 6BT, UK Keifer, H.H. 1977. Eriophyid studies C-13. ARS- ventral setae (d) 17 long, Vt1-Vt1 19 apart, 2Department of Geology, National Museum of Natural Science, Taichung, Taiwan 404 R.O.C. USDA, Washington, DC. 24pp. Vt1\Vt2 28, Vt1-Vt2 25; 2nd ventral setae (e) 17 3 Keifer, H.H. 1978. Eriophyid studies C-15. ARS- Department of Collection Management, National Museum of Natural Science, Taichung Taiwan 404 long, Vt2-Vt2 10 apart, Vt2\Vt3 40, Vt2-Vt3 38; USDA, Washington, DC. 24pp. R.O.C. 3rd ventral setae (f) 14 long, Vt3-Vt3 16 apart; Huang, K.W. 1999. The species and geographic accessory setae (h1) present. variation of eriophyoid mites on Yushania Coverflap: 19 wide, 12 long, with about 9 niitakayamensis of Taiwan. Proc. Symp. In (Received June 30, 2003; Accepted September 16, 2003) longitudinal ridges, genital setae (3a) 6 long, Gt- Insect Systematics and Evolution.
    [Show full text]
  • Morphological Variation in Leatherback (Dermochelys Coriacea) Hatchlings at Sandy Point National Wildlife Refuge, US Virgin Islands
    Vol. 41: 361–372, 2020 ENDANGERED SPECIES RESEARCH Published April 9 https://doi.org/10.3354/esr01030 Endang Species Res OPENPEN ACCESSCCESS Morphological variation in leatherback (Dermochelys coriacea) hatchlings at Sandy Point National Wildlife Refuge, US Virgin Islands Shreya M. Banerjee1,6,*, Amy Frey2, Carolyn M. Kurle3, Justin R. Perrault4,7, Kelly R. Stewart5 1Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA, ORCID: 0000-0003-1210-2162 2Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA 3Division of Biological Sciences, Ecology, Behavior, and Evolution Section, University of California, San Diego, La Jolla, CA 92093, USA, ORCID: 0000-0003-1121-9924 4Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA 5The Ocean Foundation, Washington, DC 20036, USA, ORCID: 0000-0002-8673-5192 6Present address: Department of Biology, Stanford University, Stanford, CA 94305, USA 7Present address: Loggerhead Marinelife Center, Juno Beach, FL 33408, USA, ORCID: 0000-0002-5046-6701 ABSTRACT: Understanding species’ mating systems provides important information about their ecology, life history, and behavior. Direct observations of mating behaviors can be challenging, but molecular techniques can reveal information about mating systems and paternal identity in difficult-to-observe species such as sea turtles. Genetic markers can be used to assess the pater- nity of a clutch and to assign hatchlings to a father. Leatherback turtles Dermochelys coriacea sometimes mate with multiple individuals, resulting in clutches with mixed paternity; however, the effects of multiple paternity on hatchling quality are unclear.
    [Show full text]
  • Turtle Tracks Miami-Dade County Marine Extension Service
    Turtle Tracks Miami-Dade County Marine Extension Service Florida Sea Grant Program DISTURBING A SEA TURTLE NEST IS A VIOLATION 4 OF STATE AND FEDERAL LAWS. 2 TURTLE TRACKS What To Do If You See A Turtle 1 3 SEA TURTLE CONSERVATION IN MIAMI-DADE COUNTY If you observe an adult sea turtle or hatchling sea turtles on the beach, please adhere to the following rules and guidelines: 1. It is normal for sea turtles to be crawling on the beach on summer nights. DO NOT report normal crawling or nesting (digging or laying eggs) to the Florida Marine Patrol unless the turtle is in a dangerous situation or has wandered off the beach. 1. Leatherback (on a road, in parking lot, etc.) 2. Stay away from crawling or nesting sea turtles. Although the 2. Kemp’s Ridley urge to observe closely will be great, please resist. Nesting is a 3. Green critical stage in the sea turtle’s life cycle. Please leave them 4. Loggerhead undisturbed. U.S. GOVERNMENTPRINTINGOFFICE: 1999-557-736 3. DO REPORT all stranded (dead or injured) turtles to the This information is a cooperative effort on behalf of the following organizations to Florida Marine Patrol. help residents of Miami-Dade County learn about sea turtle conservation efforts in 4. NEVER handle hatchling sea turtles. If you observe hatchlings this coastal region of the state. wandering away from the ocean or on the beach, call: NATIONAL Florida Marine Pat r ol 1-800- DIAL-FMP (3425-367) SAVE THE SEATURTLE FOUNDATION MIAMI-DADE COUNTY SEA TURTLE CONSERVATION PROGRAM 4419 West Tradewinds Avenue "To Protect Endangered or Threatened Marine Turtles for Fort Lauderdale, Floirda 33308 Future Generations" Phone: 954-351-9333 efore 1980, there was no documented sea Fax: 954-351-5530 Toll Free: 877-Turtle3 turtle activity in Mia m i - D ade County, due B mainly to the lack of an adequate beach-nesting Information has been drawn from “Sea Turtle Conservation Program“, a publication of the Broward County Department of Planning and Environmental Protection, habitat.
    [Show full text]
  • The Effect of Invertebrate Infestation and Its Correlation with Loggerhead Sea Turtle (Caretta Caretta) Nest Success in Laganas Bay, Zakynthos, Greece
    The effect of invertebrate infestation and its correlation with loggerhead sea turtle (Caretta caretta) nest success in Laganas Bay, Zakynthos, Greece Adam J. Andrews1, Andrew C. Smith1, ALan F. Rees2 & Dimitris Margaritoulis2 1Anglia Ruskin University, Cambridge, CB1 1PT, UK (E-mail: [email protected], [email protected]); 2ARCHELON, Solomou 57, GR104-32 Athens, Greece (E-mail:[email protected], [email protected]) Loggerhead sea turtle (Caretta caretta) nests are vulnerable to relative threat of this source of predation of sea turtle eggs (Bolton predators and scavengers, including invertebrates (Paris et al. 2002). et al. 2008). Dipteran larvae (Phoridae and Sarcophagidae) have been found to At the rookery level, infestation may be high, with reports of infest loggerhead and green sea turtle (Chelonia mydas) nests both 90% (Lopes 1982) and 84.6% (Hall & Parmenter 2006) of nests in northern Cyprus (Broderick & Hancock 1997; McGowan et al. being infested. However, at nest level, infestation is typically much 2001a), and Australia (Hall & Parmenter 2006), green sea turtle lower, e.g., 10.6% (Broderick & Hancock 1997), 0.8% (McGowan nests in Costa Rica and Mexico (Fowler 1979; Lopes 1982), as well et al. 2001a) and 3.6% (Katılmış et al. 2006) of eggs within a nest as hawksbill (Eretmochelys imbricata) (Bjorndal et al. 1985) and being infested. In terms of nest success, Gautreau (2007) noted that leatherback sea turtle (Dermochelys coriacea) nests in Costa Rica it was not significantly lower for infested leatherback nests in Costa (Gautreau 2007). In the Mediterranean, coleopteran larvae were Rica, as did Bolton et al. (2008) for spiny softshell turtles (Apalone found to infest loggerhead nests in Turkey (Baran & Türkozan 1996) spinifera) in Canada.
    [Show full text]
  • Congenital Malformations in Sea Turtles: Puzzling Interplay Between Genes and Environment
    animals Review Congenital Malformations in Sea Turtles: Puzzling Interplay between Genes and Environment Rodolfo Martín-del-Campo 1, María Fernanda Calderón-Campuzano 2, Isaías Rojas-Lleonart 3, Raquel Briseño-Dueñas 2,4 and Alejandra García-Gasca 5,* 1 Department of Oral Health Sciences, Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; [email protected] 2 Marine Turtle Programme, Instituto de Ciencias del Mar y Limnología-UNAM-FONATUR, Mazatlán, Sinaloa 82040, Mexico; [email protected] (M.F.C.-C.); [email protected] (R.B.-D.) 3 Universidad Central “Martha Abreu” de las Villas (IRL), CUM Remedios, Villa Clara 52700, Cuba; [email protected] 4 Banco de Información sobre Tortugas Marinas (BITMAR), Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología-UNAM, Mazatlán, Sinaloa 82040, Mexico 5 Laboratory of Molecular and Cellular Biology, Centro de Investigación en Alimentación y Desarrollo, Mazatlán, Sinaloa 82112, Mexico * Correspondence: [email protected]; Tel.: +52-669-989-8700 Simple Summary: Congenital malformations can lead to embryonic mortality in many species, and sea turtles are no exception. Genetic and/or environmental alterations occur during early develop- ment in the embryo, and may produce aberrant phenotypes, many of which are incompatible with life. Causes of malformations are multifactorial; genetic factors may include mutations, chromosomal aberrations, and inbreeding effects, whereas non-genetic factors may include nutrition, hyperthermia, low moisture, radiation, and contamination. It is possible to monitor and control some of these Citation: Martín-del-Campo, R.; Calderón-Campuzano, M.F.; factors (such as temperature and humidity) in nesting beaches, and toxic compounds in feeding Rojas-Lleonart, I.; Briseño-Dueñas, R.; areas, which can be transferred to the embryo through their lipophilic properties.
    [Show full text]
  • LEATHERBACK SEA TURTLE (Dermochelys Coriacea) General Characteristics the Leatherback Is the Only Sea Turtle That Lacks a Hard Shell (Carapace)
    LEATHERBACK SEA TURTLE (Dermochelys coriacea) General Characteristics The leatherback is the only sea turtle that lacks a hard shell (carapace). Their name is derived from the fact that their soft shell is composed of a thin layer of tough, rubbery skin, similar to leather which is strengthened by thousands of tiny bony plates. The leatherback lacks scutes and scales that are present only in the first few weeks of life. The skin is typically black with white or pale spots. Their streamlined, flexible carapace has seven longitudinal ridges (keels), while the plastron varies in color and has five ridges. Size The leatherback is the largest of all sea turtles - a female can weigh roughly 500 Kg (1100 lbs.). Their carapace measures between 130 and 175 cm (Aprox. 4-6 ft.), while their large head represents approximately 20% of the entire carapace length. They have powerful front flippers which lack claws. The largest leatherback reported was a male captured more than 15 years ago in Wales (Great Britain), weighing approximately two tons (1,000 kg / 2,200 lbs) and measuring 3.05 meters (slightly more than 10 ft.) from the tip of its beak to the end of the tail. Habitat The leatherback is the deepest diver of all sea turtles and exhibits the most extensive distribution. A typical dive lasts 15 minutes and rarely reaches depths of more than 200 meters (650 ft.), although dives deeper than 1,000 meters (3,300 ft.) have been reported. They are found world wide, primarily in pelagic (open ocean) waters of temperate and tropical oceans as well as in very cold sub-artic waters.
    [Show full text]
  • References for Life History
    Literature Cited Adler, K. 1979. A brief history of herpetology in North America before 1900. Soc. Study Amphib. Rept., Herpetol. Cir. 8:1-40. 1989. Herpetologists of the past. In K. Adler (ed.). Contributions to the History of Herpetology, pp. 5-141. Soc. Study Amphib. Rept., Contrib. Herpetol. no. 5. Agassiz, L. 1857. Contributions to the Natural History of the United States of America. 2 Vols. Little, Brown and Co., Boston. 452 pp. Albers, P. H., L. Sileo, and B. M. Mulhern. 1986. Effects of environmental contaminants on snapping turtles of a tidal wetland. Arch. Environ. Contam. Toxicol, 15:39-49. Aldridge, R. D. 1992. Oviductal anatomy and seasonal sperm storage in the southeastern crowned snake (Tantilla coronata). Copeia 1992:1103-1106. Aldridge, R. D., J. J. Greenshaw, and M. V. Plummer. 1990. The male reproductive cycle of the rough green snake (Opheodrys aestivus). Amphibia-Reptilia 11:165-172. Aldridge, R. D., and R. D. Semlitsch. 1992a. Female reproductive biology of the southeastern crowned snake (Tantilla coronata). Amphibia-Reptilia 13:209-218. 1992b. Male reproductive biology of the southeastern crowned snake (Tantilla coronata). Amphibia-Reptilia 13:219-225. Alexander, M. M. 1943. Food habits of the snapping turtle in Connecticut. J. Wildl. Manag. 7:278-282. Allard, H. A. 1945. A color variant of the eastern worm snake. Copeia 1945:42. 1948. The eastern box turtle and its behavior. J. Tenn. Acad. Sci. 23:307-321. Allen, W. H. 1988. Biocultural restoration of a tropical forest. Bioscience 38:156-161. Anonymous. 1961. Albinism in southeastern snakes. Virginia Herpetol. Soc. Bull.
    [Show full text]
  • Leatherback Sea Turtle
    VOCABULARY Carapace: the dorsal (upper) part of the shell, covered by LEATHERBACK SEA TURTLE bony external plates called scutes (Dermochelys coriacea) Critical habitat: Locations mandated for the conservation Class: Reptilia of endangered species flippers lack Order: Testudines claws and Hatchling: a baby turtle scales Family: Dermochelyidae Pelagic: Living in open Genius: Dermochelys ` ocean as opposed to Species: coriacea coastal waters near land Plastron: the ventral (underside) part of the shell,also covered in Leatherbacks are the only sea scutes turtles that lack hard, bony shells. seven longitudinal ridges long flippers help travel long distances PHYSICAL DESCRIPTION The largest sea turtles in the world, leatherbacks can grow up In a single nesting season, females lay about 100 eggs at as many as to 6.5 feet long and weigh close to 2,000 pounds. Adults nine different locations. are black with pink and white speckled plastrons, with simi- lar coloring on the tops of their heads. Their carapaces are covered by thick, leathery tissue and has seven longitudinal ridges. Flippers lack claws and scales. DIET These foragers migrate long distances to find food. Their mouths have pointed, tooth-like cusps with sharp- edged jaws perfectly designed for eating soft prey. They Hatchlings have distinct white mark- feed mostly on jellyfish, but also eat octopus and tunicates. ings along their carapace ridges. LIFE HISTORY They mate in tropical coastal waters near nesting beaches, where females lay their eggs in the sand. Hatchlings emerge 60-65 days later and make their way to the ocean. GEOGRAPHICAL DISTRIBUTION Leatherbacks are the TO REPORT A STRANDED MARINE world’s most wide-ranging sea turtles.
    [Show full text]
  • Genetics and Molecular Biology, 43, 4, E20200213 (2020) Copyright © Sociedade Brasileira De Genética
    Genetics and Molecular Biology, 43, 4, e20200213 (2020) Copyright © Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2020-0213 Research Article Animal Genetics Heterochromatin and microsatellites detection in karyotypes of four sea turtle species: Interspecific chromosomal differences Caroline Regina Dias Machado1, Camila Domit2, Marcela Baer Pucci3, Camilla Borges Gazolla1, Larissa Glugoski4, Viviane Nogaroto5 and Marcelo Ricardo Vicari1,5 1Universidade Federal do Paraná, Centro Politécnico, Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, Ponta Grossa, PR, Brazil. 2Universidade Federal do Paraná, Laboratório de Ecologia e Conservação, Pontal do Paraná, PR, Brazil. 3Universidade Nove de Julho, Departamento de Saúde II, Bauru, SP, Brazil. 4Universidade Federal de São Carlos, Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, São Carlos, SP, Brazil. 5Universidade Estadual de Ponta Grossa, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil. Abstract The wide variation in size and content of eukaryotic genomes is mainly attributed to the accumulation of repetitive DNA sequences, like microsatellites, which are tandemly repeated DNA sequences. Sea turtles share a diploid number (2n) of 56, however recent molecular cytogenetic data have shown that karyotype conservatism is not a rule in the group. In this study, the heterochromatin distribution and the chromosomal location of microsatellites (CA)n, (GA)n, (CAG)n, (GATA)n, (GAA)n, (CGC)n and (GACA)n in Chelonia mydas, Caretta caretta, Eretmochelys imbricata and Lepidochelys olivacea were comparatively investigated. The obtained data showed that just the (CA)n, (GA)n, (CAG)n and (GATA)n microsatellites were located on sea turtle chromosomes, preferentially in heterochromatic regions of the microchromosomes (mc).
    [Show full text]