The Abcs of Fire-Extinguishers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Smoke Alarms in US Home Fires Marty Ahrens February 2021
Smoke Alarms in US Home Fires Marty Ahrens February 2021 Copyright © 2021 National Fire Protection Association® (NFPA®) Key Findings Smoke alarms were present in three-quarters (74 percent) of the injuries from fires in homes with smoke alarms occurred in properties reported homei fires in 2014–2018. Almost three out of five home with battery-powered alarms. When present, hardwired smoke alarms fire deathsii were caused by fires in properties with no smoke alarms operated in 94 percent of the fires considered large enough to trigger a (41 percent) or smoke alarms that failed to operate (16 percent). smoke alarm. Battery-powered alarms operated 82 percent of the time. Missing or non-functional power sources, including missing or The death rate per 1,000 home structure fires is 55 percent lower in disconnected batteries, dead batteries, and disconnected hardwired homes with working smoke alarms than in homes with no alarms or alarms or other AC power issues, were the most common factors alarms that fail to operate. when smoke alarms failed to operate. Of the fire fatalities that occurred in homes with working smoke Compared to reported home fires with no smoke alarms or automatic alarms, 22 percent of those killed were alerted by the device but extinguishing systems (AES) present, the death rate per 1,000 reported failed to respond, while 11 percent were not alerted by the operating fires was as follows: alarm. • 35 percent lower when battery-powered smoke alarms were People who were fatally injured in home fires with working smoke present, but AES was not, alarms were more likely to have been in the area of origin and • 51 percent lower when smoke alarms with any power source involved in the ignition, to have a disability, to be at least 65 years were present but AES was not, old, to have acted irrationally, or to have tried to fight the fire themselves. -
Fire Extinguisher Booklet
NY Fire Consultants, Inc. NY Fire Safety Institute 481 Eighth Avenue, Suite 618 New York, NY 10001 (212) 239 9051 (212) 239 9052 fax Fire Extinguisher Training The Fire Triangle In order to understand how fire extinguishers work, you need to understand some characteristics of fire. Four things must be present at the same time in order to produce fire: 1. Enough oxygen to sustain combustion, 2. Enough heat to raise the material to its ignition temperature, 3. Some sort of fuel or combustible material, and 4. The chemical, exothermic reaction that is fire. Oxygen, heat, and fuel are frequently referred to as the "fire triangle." Add in the fourth element, the chemical reaction, and you actually have a fire "tetrahedron." The important thing to remember is: take any of these four things away, and you will not have a fire or the fire will be extinguished. Essentially, fire extinguishers put out fire by taking away one or more elements of the fire triangle/tetrahedron. Fire safety, at its most basic, is based upon the principle of keeping fuel sources and ignition sources separate Not all fires are the same, and they are classified according to the type of fuel that is burning. If you use the wrong type of fire extinguisher on the wrong class of fire, you can, in fact, make matters worse. It is therefore very important to understand the four different fire classifications. Class A - Wood, paper, cloth, trash, plastics Solid combustible materials that are not metals. (Class A fires generally leave an Ash.) Class B - Flammable liquids: gasoline, oil, grease, acetone Any non-metal in a liquid state, on fire. -
"Using Fire Extinguishers"
PRESENTER'S GUIDE "USING FIRE EXTINGUISHERS" Part of the General Safety Series Quality Safety and Health Products, for Today... and Tomorrow OUTLINE OF MAJOR PROGRAM POINTS OUTLINE OF MAJOR PROGRAM POINTS The following outline summarizes the major points of information presented in the program. The outline can be used to review the program before conducting a classroom session, as well as in preparing to lead a class discussion about the program. You've probably heard the best way to fight a fire is to prevent it, and that's true. — But accidents do happen and fires do start. — When this occurs in a workplace, you or a coworker will often be the first to respond, and fire extinguishers become the first line of defense. Fire extinguishers can enable you to act quickly and effectively to protect people and your facility. — So you need to understand the equipment, as well as how to use it. Fire extinguishers are designed to put out small fires before they grow out of control. — Putting out fires with an extinguisher isn't always easy. — It can be hazardous if you go about it in the wrong way. To use an extinguisher effectively it’s helpful to know what causes things to burn. — Fire always needs three ingredients, fuel, oxygen and heat. The "fuel" is any material that will burn, including: — Combustible solids such as wood, paper, cardboard and some metals. — Flammable and combustible liquids such as gasoline, toluene and some solvents and cleaning solutions. — Ignitable gases such as propane and natural gas. 1 Next, a fire must be in an environment where there is oxygen that it can "breathe". -
Fire Service Features of Buildings and Fire Protection Systems
Fire Service Features of Buildings and Fire Protection Systems OSHA 3256-09R 2015 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards- related topic. This publication does not alter or determine compliance responsibilities which are set forth in OSHA standards and the Occupational Safety and Health Act. Moreover, because interpretations and enforcement policy may change over time, for additional guidance on OSHA compliance requirements the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory-impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877-889-5627. This guidance document is not a standard or regulation, and it creates no new legal obligations. It contains recommendations as well as descriptions of mandatory safety and health standards. The recommendations are advisory in nature, informational in content, and are intended to assist employers in providing a safe and healthful workplace. The Occupational Safety and Health Act requires employers to comply with safety and health standards and regulations promulgated by OSHA or by a state with an OSHA-approved state plan. -
Wildland Fire Incident Management Field Guide
A publication of the National Wildfire Coordinating Group Wildland Fire Incident Management Field Guide PMS 210 April 2013 Wildland Fire Incident Management Field Guide April 2013 PMS 210 Sponsored for NWCG publication by the NWCG Operations and Workforce Development Committee. Comments regarding the content of this product should be directed to the Operations and Workforce Development Committee, contact and other information about this committee is located on the NWCG Web site at http://www.nwcg.gov. Questions and comments may also be emailed to [email protected]. This product is available electronically from the NWCG Web site at http://www.nwcg.gov. Previous editions: this product replaces PMS 410-1, Fireline Handbook, NWCG Handbook 3, March 2004. The National Wildfire Coordinating Group (NWCG) has approved the contents of this product for the guidance of its member agencies and is not responsible for the interpretation or use of this information by anyone else. NWCG’s intent is to specifically identify all copyrighted content used in NWCG products. All other NWCG information is in the public domain. Use of public domain information, including copying, is permitted. Use of NWCG information within another document is permitted, if NWCG information is accurately credited to the NWCG. The NWCG logo may not be used except on NWCG-authorized information. “National Wildfire Coordinating Group,” “NWCG,” and the NWCG logo are trademarks of the National Wildfire Coordinating Group. The use of trade, firm, or corporation names or trademarks in this product is for the information and convenience of the reader and does not constitute an endorsement by the National Wildfire Coordinating Group or its member agencies of any product or service to the exclusion of others that may be suitable. -
Recent Development in Fire Suppression Systems
Proceedings, 5th AOSFST, Newcastle, Australia, 2001 Editors: M.A. Delichatsios, B.Z. Dlugogorski and E.M. Kennedy RECENT DEVELOPMENT IN FIRE SUPPRESSION SYSTEMS A. Kim Institute for Research in Construction National Research Council Canada CANADA ABSTRACT With halon phase-out, there has been a major thrust to find new advanced fire suppression systems in recent years. Some of the newly developed fire suppression systems include halocarbon and inert gaseous agents, water mist systems, compressed-air-foam systems, and aerosol and gas generators. This paper gives a brief description of the newly developed fire suppression systems, and provides technical information on the fire suppression performance of each system as well as the limitations or concerns related to using the new suppression systems. INTRODUCTION The traditional means of providing fire suppression in buildings is a sprinkler system. However, water is not a suitable suppression medium for all types of fires. Water, when sprayed in coarse droplets such as in sprinkler spray, is not effective in suppressing liquid fuel fires. Also, in some cases, water damage is a concern because of the large amount of water used for sprinkler systems. In the 1940’s, an effort was made to develop more effective fire suppression agents. The first systematic search for effective gaseous fire suppressants can be traced to the late 1940s when the Purdue Research Foundation conducted an extensive study of more than 60 chemical compounds for the U.S. army1. This study led to the development of halon chemicals as a superior performing suppression agent. Halon is a chemical agent, which combines hydrogen, carbon, chlorine and bromine atoms. -
Wildfire Prevention Strategies Guide
A Publication of the National Wildfire Coordinating Group Wildfire Prevention Sponsored by United States Department of Agriculture Strategies United States Department of the Interior National Association of State Foresters PMS 455 March 1998 NFES 1572 Wildfire Prevention Strategies i - WILDFIRE PREVENTION STRATEGIES Preface This Wildfire Prevention Guide is a project of the National Wildfire Coordinating Group. This is one in a series designed to provide information and guidance for personnel who have interests and/or responsibilities in fire prevention. Each guide in the series addresses an individual component of a fire prevention program. In addition to providing insight and useful information, each guide suggests implementation strategies and examples for utilizing this information. Each Wildfire Prevention Guide has been developed by Fire Prevention Specialists and subject matter experts in the appropriate area. The goal of this series is to improve and enhance wildfire prevention programs and to facilitate the achievement of NWCG program goals. NWCG Wildfire Prevention Guide development: • Conducting School Programs (1996) • Event Management (1996) • Wildfire Prevention Marketing (1996) • Wildfire Prevention and the Media (1998) • Wildfire Prevention Strategies • Effective Wildfire Prevention Patrol • Recreation Areas • Exhibits and Displays • Equipment, Industrial and Construction Operations • Show Me Trips and Tours WILDFIRE PREVENTION STRATEGIES Preface - ii iii - WILDFIRE PREVENTION STRATEGIES Contents 1.0 Introduction ...........................................................................1 -
Emergency Management: Smoke Detectors & Fire Extinguishers
s SMOKE DETECTORS es dn re and pa re P 7 FIRE EXTINGUISHERS Taking it one step Ever Vigilant Sentries That May at a time. SAVE YOUR LIFE Half of the home fires and three-fifths of fire deaths occur in homes without smoke detectors. Hundreds of people die each year in homes with smoke detectors that don’t work. It’s important that you not only have a smoke detector, but that you check and maintain it frequently. You Need To Know What Kind Important Information Of Smoke Detector You Have & About Smoke Detectors How To Maintain It •Battery-Powered Make Placement a Priority Battery-powered smoke detectors operate on •At a minimum, there should be a smoke alkaline batteries. Unlike the bunny, they won’t detector in the hallways and corridors keep going forever. The battery should be checked between the sleeping areas and the rest of weekly and replaced twice a year. A good time to the house, and/or a smoke detector in the do this is when you change your clock in the fall and center of the ceiling directly above each spring. stairway. •Hard-Wired without Battery Back-up • Additional measures include installing smoke This type of smoke detector operates on household detectors on a wall or the ceiling in each current. As long as you have electricity, it will sleeping room. function; but if your house loses power, it will no • Because smoke rises, smoke detectors longer function. If you have this type, you should should be mounted high on the wall or also install battery-operated models for back-up. -
Fire Safety Can Make Their Own Property — and Their Neighborhood — Much Safer from Wildfire
Every year, wildfires burn across the U.S., and more and more people are living where wildfires are a real Wildland risk. But by working together, residents Fire Safety can make their own property — and their neighborhood — much safer from wildfire. Action steps for around your home: AND • CLEAR leaves and other vegetative debris from roofs, gutters, porches and decks. This helps prevent embers DON’T from igniting your home. FOrGET... • REMOVE dead vegetation and other items from under your deck or porch, and within 10 feet of the house. The more actions a • SCREEN in areas below patios and decks with wire community takes, the mesh to prevent debris and combustible materials from more fire adapted it accumulating. becomes. Learn how you • REMOVE flammable materials (wood piles, propane can make a difference in tanks) within 30 feet of your home’s foundation and your community. Visit outbuildings, including garages and sheds. If it can www.fireadapted.org catch fire, don’t let it touch your house, deck or porch. and www.firewise.org for • Wildfire can spread to tree tops. PRUNE trees so the more information. lowest branches are 6 to 10 feet from the ground. • KEEP your lawn hydrated and maintained. If it is brown, cut it down to reduce fire intensity. Dry grass and shrubs are fuel for wildfire. • Don’t let debris and lawn cuttings linger. DISPOSE of these items quickly to reduce fuel for fire. • INSPECT shingles or roof tiles. Replace or repair the FACT shingles that are loose or missing to prevent ember penetration. -
Fire Prevention & Safety Checklist
FireSafety ENG.qxd:Layout 1 5/29/09 1:35 PM Page 1 Be Red Cross Ready Fire Prevention & Safety Checklist The most effective way to protect yourself and your home from fire • If a fire occurs in your home, GET OUT, STAY OUT and CALL for help. is to identify and remove fire hazards. Sixty-five percent of • Install smoke alarms on every level of your home, inside bedrooms and home fire deaths occur in homes outside sleeping areas. Test them every month and replace the batteries with no working smoke alarms. at least once a year. During a home fire, working smoke alarms and a fire escape • Talk with all household members about a fire escape plan and practice the plan twice a year. plan that has been practiced regularly can save lives. Prevent home fires Practice fire safety at home In case of fire … Steps You Can Take Now Smoke Alarms Follow Your Escape Plan! ❏ Keep items that can catch on fire at least ❏ Install smoke alarms on every level of Remember to GET OUT, STAY OUT and three feet away from anything that gets your home, inside bedrooms and outside CALL 9-1-1 or your local emergency phone hot, such as space heaters. sleeping areas. number. ❏ Never smoke in bed. ❏ Teach children what smoke alarms sound ❏ If closed doors or handles are warm, use like and what to do when they hear one. your second way out. Never open doors ❏ Talk to children regularly about the that are warm to the touch. dangers of fire, matches and lighters and ❏ Once a month check whether each alarm keep them out of reach. -
Types of Fire Extinguisher in Australia – All You Need to Know (February 02
Types of fire extinguisher in Australia – all you need to know (February 02, 2018) There are 5 main fire extinguisher types in Australia – Water, Foam, Dry Powder, CO2 and Wet Chemical. You should have the right types of fire extinguisher for your house or business premises, or you may not meet current regulations. The various types of fire extinguisher put out fires started with different types of fuel – these are called ‘classes’ of fire. The fire risk from the different classes of fire in your home or your business premises will determine which fire extinguisher types you need. You will also need to make sure that you have the right size and weight of fire extinguisher as well as the right kind. Whilst there are 5 main types of fire extinguisher, there are different versions of Dry Powder extinguishers, meaning there are a total of 8 fire extinguisher types to choose from. The 6 types of fire extinguisher are: – Water – Foam – Dry Powder – Standard – Dry Powder – High performance – Carbon Dioxide (‘CO2’) – Wet Chemical There is no one extinguisher type which works on all classes of fire. Below is a summary of the classes of fire, and a quick reference chart showing which types of extinguisher should be used on each. We then provide a detailed explanation of each type of fire extinguisher below. The classes of fire There are six classes of fire: Class A, Class B, Class C, Class D, ‘Electrical’, and Class F. – Class A fires – combustible materials: caused by flammable solids, such as wood, paper, and fabric – Class B fires – flammable liquids: such as petrol, turpentine or paint – Class C fires – flammable gases: like hydrogen, butane or methane – Class D fires – combustible metals: chemicals such as magnesium, aluminium or potassium – Electrical fires – electrical equipment: once the electrical item is removed, the fire changes class – Class F fires – cooking oils: typically a chip-pan fire Water and Foam Water and Foam fire extinguishers extinguish the fire by taking away the heat element of the fire triangle. -
The Use of Fire Classification in the Nordic Countries – Proposals
The use of fi re classifi cation in the Nordic countries – Proposals for harmonisation Per Thureson, Björn Sundström, Esko Mikkola, Dan Bluhme, Anne Steen Hansen and Björn Karlsson SP Technical Research Institute of Sweden SP Technical SP Fire Technology SP REPORT 2008:29 The use of fire classification in the Nordic countries - Proposals for harmonisation Per Thureson, Björn Sundström, Esko Mikkola, Dan Bluhme, Anne Steen Hansen and Björn Karlsson 2 Key words: harmonisation, fire classification, construction products, building regulations, reaction to fire, fire resistance SP Sveriges Tekniska SP Technical Research Institute of Forskningsinstitut Sweden SP Rapport 2008:29 SP Report 2008:29 ISBN 978-91-85829-46-0 ISSN 0284-5172 Borås 2008 Postal address: Box 857, SE-501 15 BORÅS, Sweden Telephone: +46 33 16 50 00 Telefax: +46 33 13 55 02 E-mail: [email protected] 3 Contents Contents 3 Preface 5 Summary 6 1 Nordic harmonisation of building regulations – earlier work 9 1.1 NKB 9 2 Building regulations in the Nordic countries 10 2.1 Levels of regulatory tools 10 2.2 Performance-based design and Fire Safety Engineering (FSE) 12 2.2.1 Fire safety and performance-based building codes 12 2.2.2 Verification 13 2.2.3 Fundamental principles of deterministic Fire Safety Engineering 15 2.3 The Construction Products Directive – CPD 16 3 Implementation of the CPD in the Nordic countries – present situation and proposals 18 3.1 Materials 18 3.2 Internal surfaces 22 3.3 External surfaces 24 3.4 Facades 26 3.5 Floorings 28 3.6 Insulation products 30 3.7 Linear