Lico 5.2.1 Installation Guide (For SLES) Second Edition (January 2019)

Total Page:16

File Type:pdf, Size:1020Kb

Lico 5.2.1 Installation Guide (For SLES) Second Edition (January 2019) LiCO 5.2.1 Installation Guide (for SLES) Second Edition (January 2019) © Copyright Lenovo 2018, 2019. LIMITED AND RESTRICTED RIGHTS NOTICE: If data or software is delivered pursuant to a General Services Administration (GSA) contract, use, reproduction, or disclosure is subject to restrictions set forth in Contract No. GS-35F- 05925. Reading instructions • To ensure that you get correct command lines using the copy/paste function, open this Guide with Adobe Acrobat Reader, a free PDF viewer. You can download it from the official Web site https://get.adobe.com/ reader/. • Replace values in angle brackets with the actual values. For example, when you see <*_USERNAME> and <*_PASSWORD>, enter your actual username and password. • Between the command lines and in the configuration files, ignore all annotations starting with #. © Copyright Lenovo 2018, 2019 ii iii LiCO 5.2.1 Installation Guide (for SLES) Contents Reading instructions. ii Check the OS installation . 23 Check NFS . 23 Chapter 1. Overview. 1 Check Slurm . 24 Introduction to LiCO . 1 Check Ganglia . 24 Typical cluster deployment . 1 Check MPI . 25 Operating environment . 2 Check Singularity . 25 Supported servers and chassis models . 3 Check OpenHPC installation . 25 Prerequisites . 3 List of LiCO dependencies to be installed. 25 Install RabbitMQ . 26 Chapter 2. Deploy the cluster Install PostgreSQL. 26 environment . 5 Install InfluxDB . 26 Install an OS on the management node . 5 Install Confluent. 27 Deploy the OS on other nodes in the cluster. 5 Configure user authentication . 28 Configure environment variables . 5 Install OpenLDAP-server . 28 Create a local repository . 8 Install libuser . 29 Install Lenovo xCAT . 8 Install OpenLDAP-client . 29 Prepare OS mirrors for other nodes . 9 Install nss-pam-Idapd . 29 Set xCAT node information . 9 Install Gmond GPU plug-in . 31 Add host resolution . 10 Configure DHCP and DNS services . 10 Chapter 4. Install LiCO . 33 Install a node OS through the network . 10 List of LiCO components to be installed . 33 Create local repository for other nodes . 10 Obtain the LiCO installation package . 34 Configure the memory for other nodes . 11 Configure the local Zypper repository for LiCO. 34 Checkpoint A . 11 Install LiCO on the management node . 34 Install infrastructure software for nodes . 12 Install LiCO on the login node . 35 List of infrastructure software to be installed . 12 Install LiCO on the compute nodes . 36 Configure a local Zypper repository for the management node . 12 Chapter 5. Configure LiCO . 37 Configure a local Zypper repository for login Configure the service account . 37 and compute nodes . 12 Configure cluster nodes . 37 Configure LiCO dependencies repositories . 13 Room information . 37 Install Slurm . 13 Logic group information . 37 Configure NFS . 14 Room row information . 38 Configure NTP . 14 Rack information . 38 GPU driver installation . 15 Chassis information . 38 CUDA installation . 16 Node information . 39 Configure Slurm . 17 List of cluster services . 41 Install Ganglia. 19 Infrastructure configuration . 42 Install MPI . 19 Database configuration . 42 Install Singularity . 20 Login configuration . 42 Checkpoint B . 21 Storage configuration . 42 Chapter 3. Install LiCO Scheduler configuration . 43 dependencies . 23 Alert configuration . 43 Cluster check. 23 Cluster configuration . 43 Check environment variables. 23 Functional configuration . 43 Check the LiCO dependencies repository . 23 User configuration . 44 Configure LiCO components. 45 © Copyright Lenovo 2018, 2019 i lico-vnc-mond . 45 Change a user’s role . 54 lico-portal . 45 Resume a user . 54 lico-ganglia-mond . 46 Import a user . 54 lico-icinga-mond . 46 Import AI images . 54 lico-icinga-plugin . 47 Security improvement . 54 lico-confluent-proxy . 47 Binding settings . 54 lico-confluent-mond . 48 Firewall settings . 58 lico-wechat-agent . 48 SSHD settings . 59 lico-tensorboard-proxy . 48 Import system images . 59 Initialize the system . 49 Image bootstrap files . 60 Initialize users . 49 Create images . 60 Import images into LiCO as system-level Chapter 6. Start and log in to LiCO . 51 images . 61 Start LiCO . 51 Slurm issues troubleshooting . 61 Log in to LiCO . 52 Node status check . 61 Configure LiCO services . 52 Memory allocation error . 61 Status setting error. 62 Chapter 7. Appendix: Important InfiniBand issues troubleshooting . 62 information. 53 Installation issues troubleshooting . 62 Configure VNC . 53 XCAT issues troubleshooting . 63 Standalone VNC installation . 53 Update OS packages . 63 VNC batch installation . 53 Edit nodes.csv from xCAT dumping data . 63 Configure the Confluent Web console . 53 Notices and trademarks . 64 LiCO commands . 54 Set the LDAP administrator password . 54 ii LiCO 5.2.1 Installation Guide (for SLES) Chapter 1. Overview Introduction to LiCO Lenovo Intelligent Computing Orchestration (LiCO) is an infrastructure management software for high- performance computing (HPC) and artificial intelligence (AI). It provides features like cluster management and monitoring, job scheduling and management, cluster user management, account management, and file system management. With LiCO, users can centralize resource allocation in one supercomputing cluster and carry out HPC and AI jobs simultaneously. Users can perform operations by logging in to the management system interface with a browser, or by using command lines after logging in to a cluster login node with another Linux shell. Typical cluster deployment This Guide is based on the typical cluster deployment that contains management, login, and compute nodes. Nodes BMC interface Nodes eth interface Parallel file system High speed network interface Public network Login node High speed network Management node TCP networking Compute node Figure 1. Typical cluster deployment © Copyright Lenovo 2018, 2019 1 Elements in the cluster are described in the table below. Table 1. Description of elements in the typical cluster Element Description Core of the HPC/AI cluster, undertaking primary functions such as cluster management, Management node monitoring, scheduling, strategy management, and user & account management. Compute node Completes computing tasks. Connects the cluster to the external network or cluster. Users must use the login node to log Login node in and upload application data, develop compilers, and submit scheduled tasks. Provides a shared storage function. It is connected to the cluster nodes through a high- Parallel file system speed network. Parallel file system setup is beyond the scope of this Guide. A simple NFS setup is used instead. Nodes BMC interface Used to access the node’s BMC system. Nodes eth interface Used to manage nodes in cluster. It can also be used to transfer computing data. High speed network Optional. Used to support the parallel file system. It can also be used to transfer computing interface data. Note: LiCO also supports the cluster deployment that only contains the management and compute nodes. In this case, all LiCO modules installed on the login node need to be installed on the management node. Operating environment Cluster server: Lenovo ThinkSystem servers Operating system: SUSE Linux Enterprise server (SLES) 12 SP3 Client requirements: • Hardware: CPU of 2.0 GHz or above, memory of 8 GB or above • Browser: Chrome (V 62.0 or higher) or Firefox (V 56.0 or higher) recommended • Display resolution: 1280 x 800 or above 2 LiCO 5.2.1 Installation Guide (for SLES) Supported servers and chassis models LiCO can be installed on certain servers, as listed in the table below. Table 2. Supported servers Product code Machine type Product name Appearance Lenovo ThinkSystem sd530 7X21 SD530 (0.5U) Lenovo ThinkSystem sr630 7X01, 7X02 SR630 (1U) Lenovo ThinkSystem sr650 7X05, 7X06 SR650 (2U) Lenovo ThinkSystem sd650 7X58 SD650 (2 nodes per 1U tray) 7Y36, 7Y37, Lenovo ThinkSystem sr670 7Y38 SR670 (2U) LiCO can be installed on certain chassis models, as listed in the table below. Table 3. Supported chassis models Product code Machine type Model name Appearance d2 7X20 D2 Enclosure (2U) NeXtScale n1200 n1200 5456, 5468, 5469 (6U) Prerequisites • Refer to LiCO best recipe to ensure that the cluster hardware uses proper firmware levels, drivers, and settings: https://support.lenovo.com/us/en/solutions/ht507011. • Refer to the OS part of LeSI 18C_SI best recipe to install the OS security patch: https:// support.lenovo.com/us/en/solutions/ht507611. • The installation described in this Guide is based on SLES 12 SP3. • A SLES-12-SP3-Server or SLES-12-SP3-SDK local repository should be added on management node. • Unless otherwise stated in this Guide, all commands are executed on the management node. Chapter 1. Overview 3 • To enable the firewall, modify the firewall rules according to “Firewall settings” on page 58. • It is important to regularly patch and update components and the OS to prevent security vulnerabilities. For details about how to update OS packages, see “Update OS packages” on page 63. Additionally it is recommended that known updates at the time of installation be applied during or immediately after the OS deployment to the managed nodes and prior to the rest of the LiCO setup steps 4 LiCO 5.2.1 Installation Guide (for SLES) Chapter 2. Deploy the cluster environment If the cluster environment already exists, you can skip this chapter. Install an OS on the management node Install an official version of SLES 12 SP3 on the management node. You can select the minimum installation. Run the following commands to configure the memory
Recommended publications
  • Reverse Engineering Power Management on NVIDIA Gpus - Anatomy of an Autonomic-Ready System Martin Peres
    Reverse Engineering Power Management on NVIDIA GPUs - Anatomy of an Autonomic-ready System Martin Peres To cite this version: Martin Peres. Reverse Engineering Power Management on NVIDIA GPUs - Anatomy of an Autonomic-ready System. ECRTS, Operating Systems Platforms for Embedded Real-Time appli- cations 2013, Jul 2013, Paris, France. hal-00853849 HAL Id: hal-00853849 https://hal.archives-ouvertes.fr/hal-00853849 Submitted on 23 Aug 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reverse engineering power management on NVIDIA GPUs - Anatomy of an autonomic-ready system Martin Peres Ph.D. student at LaBRI University of Bordeaux Hobbyist Linux/Nouveau Developer Email: [email protected] Abstract—Research in power management is currently limited supported nor documented by NVIDIA. As GPUs are leading by the fact that companies do not release enough documentation the market in terms of performance-per-Watt [3], they are or interfaces to fully exploit the potential found in modern a good candidate for a reverse engineering effort of their processors. This problem is even more present in GPUs despite power management features. The choice of reverse engineering having the highest performance-per-Watt ratio found in today’s NVIDIA’s power management features makes sense as they processors.
    [Show full text]
  • High Speed Visualization in the Jetos Aviation Operating System Using Hardware Acceleration*
    High Speed Visualization in the JetOS Aviation Operating System Using Hardware Acceleration* Boris Barladian[0000-0002-2391-2067], Nikolay Deryabin[0000-0003-1248-6047], Alexey Voloboy[0000-0003-1252-8294], Vladimir Galaktionov[0000-0001-6460-7539], and Lev Shapiro[0000-0002-6350-851X] The Keldysh Institute of the Applied Mathematics of RAS, Moscow, Russia [email protected],{voloboy, vlgal, pls}@gin.keldysh.ru Abstract. The paper discusses details of the pilot display visualization that uses the hardware acceleration capabilities of the Vivante graphics processor in the JetOS aviation operating system. Previously the OpenGL Safety Critical library was implemented without hardware acceleration. This was done in such a way because software library is easier to certify in accordance with the avionics re- quirements. But usage of the software OpenGL does not provide acceptable visualization speed for modern Flight Display and 3D relief applications. So more complex visualization approach utilized the GPU acceleration capabilities was elaborated. Although the OpenGL library was implemented for a specific GPU and took into account its specificity, the described approach to adapt the MESA open source library can be used for other GPUs. An effective algorithm for multi-window visualization using the implemented library with hardware acceleration is present. The described approach allows you to achieve the visu- alization speed acceptable for the pilot display of the aircraft. Keywords: Pilot Display, Embedded Systems, Real-time Operating System, OpenGL Safety Critical, Multi-windowing. 1 Introduction In [1] requirements were formulated for a real-time operating system (RTOS) de- signed to work with integrated modular avionics. In particular, the RTOS should comply with the ARINC 653 standard [2].
    [Show full text]
  • The Linux Graphics Stack Attributions
    I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions Introduction to GPUs and to the Linux Graphics Stack Martin Peres CC By-SA 3.0 Nouveau developer Ph.D. student at LaBRI November 26, 2012 1 / 36 I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions General overview Outline 1 I - Hardware : Anatomy of a GPU General overview Driving screens Host < − > GPU communication 2 II - Host : The Linux graphics stack General overview DRM and libdrm Mesa X11 Wayland X11 vs Wayland 3 Attributions Attributions 2 / 36 I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions General overview General overview of a modern GPU's functions Display content on a screen Accelerate 2D operations Accelerate 3D operations Decode videos Accelerate scientific calculations 3 / 36 I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions General overview CPU Clock Front-side Graphics Generator bus card slot Chipset Memory Slots High-speed graphics bus (AGP or PCI Northbridge Memory Express) bus (memory controller hub) Internal Bus PCI Bus Onboard Southbridge graphics PCI (I/O controller controller Bus hub) IDE SATA USB Cables and Ethernet ports leading Audio Codec CMOS Memory off-board PCI Slots LPC Bus Super I/O Serial Port Parallel Port Flash ROM Floppy Disk Keyboard (BIOS) Mouse 4 / 36 I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions General overview Hardware architecture GPU: Where all the calculations are made VRAM: Stores
    [Show full text]
  • Mechdyne-TGX-2.1-Installation-Guide
    TGX Install Guide Version 2.1.3 Mechdyne Corporation March 2021 TGX INSTALL GUIDE VERSION 2.1.3 Copyright© 2021 Mechdyne Corporation All Rights Reserved. Purchasers of TGX licenses are given limited permission to reproduce this manual, provided the copies are for their use only and are not sold or distributed to third parties. All such copies must contain the title page and this notice page in their entirety. The TGX software program and accompanying documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the restrictions stated in the license agreement. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license. This publication is provided “as is” without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non- infringement. Any Mechdyne Corporation publication may include inaccuracies or typographical errors. Changes are periodically made to these publications, and changes may be incorporated in new editions. Mechdyne may improve or change its products described in any publication at any time without notice. Mechdyne assumes no responsibility for and disclaims all liability for any errors or omissions in this publication. Some jurisdictions do not allow the exclusion of implied warranties, so the above exclusion may not apply. TGX is a trademark of Mechdyne Corporation. Windows® is registered trademarks of Microsoft Corporation. Linux® is registered trademark of Linus Torvalds.
    [Show full text]
  • Linux, Yocto and Fpgas
    Embedded Open Source Experts Linux, Yocto and FPGAs Integrating Linux and Yocto builds into different SoCs From a Linux software perspective: ➤ Increased demand for Linux on FPGAs ➤ Many things to mange, both technical and practical ➤ FPGAs with integrated CPU cores – very similar many other SoCs Here are some experiences and observations... © Codiax 2019 ● Page 2 Why use Linux? ➤ De-facto standard ➤ Huge HW support ➤ FOSS ➤ Flexible ➤ Adaptable ➤ Stable ➤ Scalable ➤ Royalty free ➤ Vendor independent ➤ Large community ➤ Long lifetime Why not Linux? ➤ Too big ➤ Real-time requirements ➤ Certification ➤ Boot time ➤ Licensing ➤ Too open? Desktop Shells: Desktop Display server: Display BrailleDisplay Touch-Screen Mouse & Keyboard Wayland Compositor Wayland + development tools = a lot code!of source Linux system example weston, clayton,mutter,KWin evdev libinput GNOME Shell D radeon nouveau lima etna_viv freedreno tegra-re lima nouveau radeon freedreno etna_viv e libwayland-server libwayland-server s Cinnamon k t o kms p Linux kernel, Linux kernel, Plasma 2 w i (Kernel Mode Setting) Mode (Kernel d g Cairo-Dock e t s drm (Direct Rendering Manager) Rendering (Direct drm cache coherent L2-Caches L2-Caches cache coherent CPU &GPU Enlight. DR19 System libraries: System oflibraries): form (in the Toolkits Interface User µClibc Pango glibc glibc main memory possibly adaptations to Wayland/Mir libwayland / COGL libwayland Cairo Cairo (Xr) GTK+ Clutter 2D Application 2D GModule GThread GThread GLib GObject Glib GIO ATK devicedrivers other& modules System
    [Show full text]
  • Valorisation Du Logiciel Open Source Via HAL Et Software Heritage
    Valorisation du logiciel open source via HAL et Software Heritage Morane Gruenpeter Estelle Nivault Jozefina Sadowska Software Heritage, Inria Inria Inria Journées CasuHAL 07-11 juin 2021 Agenda ★ Contexte ★ Qu’est-ce qu’un logiciel ? ★ Pourquoi partager les codes sources de recherche ? ★ Comment déposer le logiciel dans Hal ? ★ Comment modérer ? ★ Comment citer ? Speaker’s name Journées CasuHAL 07-11 juin 2021 Presentation – city – date 2/10 Contexte - un nouveau type de dépôt HAL Les dates clés Les acteurs ★ 2017 - Collaboration débute ★ mars 2018 - Phase de test sur HAL-Inria ★ septembre 2018 - Ouverture sur HAL ★ avril 2020 - BibLaTeX @software Prochainement: ★ été 2021 - Dépôt avec SWHID Speaker’sMorane name GruenpeterJournées -Journées Journée CasuHAL CasuHAL de la reproducibilité 07-11 juin juin 2021 2021 - 10-05-2021Presentation – city – date 3/10 Qu’est-ce qu’un logiciel ? https://www.reddit.com/r/ProgrammerHumor/comments/70fump/prog ramming_is_magic/ Speaker’sMorane name GruenpeterJournées -Journées Journée CasuHAL CasuHAL de la 07-11 reproducibilité 07-11 juin juin 2021 2021 - 10-05-2021Presentation – city – date 4/10 Le logiciel - un objet digital multiforme “Ensemble des programmes, procédés et règles, et éventuellement de la documentation, relatifs au fonctionnement d'un ensemble de traitement de données.” Le Larousse (date d'accès: 21.5.2021) Le concept logiciel L’objet logiciel ● projet ou entité ● chaque version du code source ● la communauté autour du projet (fichiers textes) ● l’idée / algorithmes / solutions ● les
    [Show full text]
  • Tizen* IVI 3.0 M2 Kernel 3.10 LTSI Linux* Support Package for the Intel® Atom™ Processor E3800 Series
    Tizen* IVI 3.0 M2 Kernel 3.10 LTSI Linux* Support Package for the Intel® Atom™ Processor E3800 Series Getting Started Guide January 2015 Document Number: 546069 Introduction INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined".
    [Show full text]
  • Fun with the Linux Desktop
    Fun with the Linux Desktop 3D-Desktop with XGL/AIGLX and compiz come2linux, Essen, 9. + 10.9.2006 Hanno Böck, http://www.hboeck.de/ Why we want fancy desktops? ● Can improve usability (virtual desktop -> side of a cube) ● A nicer system »feels« more usable ● People like MacOS X, there must be a reason Linux-Desktop in the past ● Xfree86 - very slow develop-ment, rarely new features ● »Nice« stuff only with strange workarounds (kompose, 3ddesk) ● E17 - the default desktop for GNU Hurd? Xorg ● Spring 2004 - license change at xfree86 ● Xorg-project forks last version ● Lot's of new development: composite, modularization, xgl, aiglx Composite Extension ● Renders window-content offscreen ● xcompmgr lets you have shadows and transparent windows ● Not very spectacular, but base for future stuff First look on XGL and friends ● Summer 2005, first impressions of XGL, rotating cube ● Around the same time, Luminocity presents wobbly windows XGL ● David Reveman (Novell) ● Xserver based on OpenGL ● (currently) Xserver on another Xserver ● All cards with DRI EGL/XEGL ● Problem: XGL needs already running Xserver ● EGL: direct interface to GL, no Xserver needed ● XEGL: XGL running on EGL ● Not working yet Compiz ● Composite and Windowmanager ● Very modular ● Lot's of plugins - rotating cube, wobbly windows AIGLX ● Kristian Høgsberg, Fedora ● Extension to already existing Xserver ● Same functionality as XGL ● All cards with free drivers We need better drivers ● Fast ● Stable ● Full-Featured ● Free! Binary drivers suck ● Security, Bugs ● Functionality (Composite,
    [Show full text]
  • GPU Scheduling for Real-Time Multi-Tasking Environments
    TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments Shinpei Kato† ‡, Karthik Lakshmanan†, and Ragunathan (Raj) Rajkumar†, Yutaka Ishikawa‡ † Department of Electrical and Computer Engineering, Carnegie Mellon University ‡ Department of Computer Science, The University of Tokyo Abstract transition. Especially recent trends on 3-D browser and desktop applications, such as SpaceTime, Web3D, 3D- The Graphics Processing Unit (GPU) is now commonly Desktop, Compiz Fusion, BumpTop, Cooliris, and Win- used for graphics and data-parallel computing. As more dows Aero, are all intriguing possibilities for future user and more applications tend to accelerate on the GPU in interfaces. GPUs are also leveraged in various domains multi-tasking environments where multiple tasks access of general-purpose GPU (GPGPU) processing to facili- the GPU concurrently, operating systems must provide tate data-parallel compute-intensive applications. prioritization and isolation capabilities in GPU resource Real-time multi-tasking support is a key requirement management, particularly in real-time setups. for such emerging GPU applications. For example, users We present TimeGraph, a real-time GPU scheduler could launch multiple GPU applications concurrently in at the device-driver level for protecting important GPU their desktop computers, including games, video play- workloads from performance interference. TimeGraph ers, web browsers, and live messengers, sharing the same adopts a new event-driven model that synchronizes the GPU. In such a case, quality-aware soft real-time ap- GPU with the CPU to monitor GPU commands issued plications like games and video players should be pri- from the user space and control GPU resource usage in oritized over live messengers and any other applications a responsive manner.
    [Show full text]
  • NVIDIA CUDA Installation Guide for Linux
    NVIDIA CUDA Installation Guide for Linux Installation and Verification on Linux Systems DU-05347-001_v11.1 | September 2020 Table of Contents Chapter 1. Introduction........................................................................................................ 1 1.1. System Requirements...............................................................................................................1 1.2. About This Document............................................................................................................... 3 Chapter 2. Pre-installation Actions..................................................................................... 4 2.1. Verify You Have a CUDA-Capable GPU....................................................................................4 2.2. Verify You Have a Supported Version of Linux........................................................................ 4 2.3. Verify the System Has gcc Installed........................................................................................5 2.4. Verify the System has the Correct Kernel Headers and Development Packages Installed........................................................................................................................................5 2.5. Choose an Installation Method................................................................................................ 6 2.6. Download the NVIDIA CUDA Toolkit........................................................................................ 7 2.7. Handle Conflicting Installation
    [Show full text]
  • Linux Install Guide SOFTWARE VERSION 1.10 March 2019
    Linux Install Guide SOFTWARE VERSION 1.10 March 2019 TABLE OF CONTENTS Welcome to TGX ........................................................................................................................................... 1 License Management ................................................................................................................................... 1 System Requirements .................................................................................................................................. 2 Operating System ................................................................................................................................. 2 Hardware/Drivers ................................................................................................................................. 2 TGX Version Compatibility .................................................................................................................... 3 Sender Installation Options .......................................................................................................................... 3 Do you want TGX to configure X? ......................................................................................................... 3 Allow TGX to overwrite the existing display configuration? ................................................................ 3 Should TGX start a new X session? ....................................................................................................... 3 Generate Self-signed Certificates
    [Show full text]
  • Mesa 3D in an Embedded Context Mark Janes, Feb 21, 2017 [email protected] About Me
    Mesa 3D in an Embedded Context Mark Janes, Feb 21, 2017 [email protected] About me: ● Working on Linux platforms since 2004, with a background on embedded devices. ● Joined Mesa in 2015, working on performance tools and automation. 2 About Mesa: ● Community developed, commercially supported implementation of OpenGL and Vulkan APIs ● Multi-platform collaboration by several graphics silicon vendors ● Development model similar to the Linux Kernel 3 Project links https://cgit.freedesktop.org/mesa/mesa/ https://lists.freedesktop.org/mailman/listinfo/mesa-dev https://lists.freedesktop.org/mailman/listinfo/piglit Channels #intel-gfx and #dri-devel on irc://chat.freenode.net https://bugs.freedesktop.org/describecomponents.cgi?product=Mesa 4 Hardware supported by Mesa Intel: https://01.org/linuxgraphics/community/mesa AMD: https://www.x.org/wiki/RadeonFeature Broadcom: https://github.com/anholt/mesa/wiki/VC4 VMWare: https://mesa3d.org/vmware-guest.html Qualcomm Adreno*: https://github.com/freedreno Vivante*: https://github.com/etnaviv Nvidia*: https://nouveau.freedesktop.org/wiki/ * not vendor supported 5 Advantages of a source distribution ● Easy update of kernel and graphics driver ● Valgrind support ● GDB ● Git blame/rebase ● Custom extensions ● Enables you to solve your own integration problems 6 Intel’s Mesa support is greatly improved in 2017! ● OpenGL 4.5 ● GLES3.2 ● Vulkan 1.0 https://mesamatrix.net/ “Mesa Saw The Most Commits Last Year Since 2010” – Phoronix, Jan 1, 2016 “Mesa Development Has Gone Wild This Year” – Phoronix, Oct 14,
    [Show full text]