Article RNA Helicase DDX5 Inhibits Reprogramming to Pluripotency by miRNA-Based Repression of RYBP and its PRC1-Dependent and -Independent Functions Graphical Abstract Authors Huanhuan Li, Ping Lai, Jinping Jia, ..., Duanqing Pei, Andrew P. Hutchins, Hongjie Yao Correspondence
[email protected] In Brief RNA-binding proteins have poorly defined roles in somatic cell reprogramming. Li et al. show that the RNA-binding protein DDX5 erects an epigenetic barrier to reprogramming. DDX5 controls RYBP through microRNA- 125b to suppress specific somatic genes through deposition of H2AK119ub1 while activating an OCT4-KDM2B pluripotent gene program. Highlights d DDX5 acts as a barrier to somatic cell reprogramming d DDX5 loss of function upregulates RYBP through microRNA-125b d Upregulated RYBP enhances H2AK119ub1 deposition at lineage-specific genes via PRC1 d DDX5 silencing activates the OCT4-KDM2B network through RYBP independently of PRC1 Li et al., 2017, Cell Stem Cell 20, 462–477 April 6, 2017 ª 2016 Elsevier Inc. http://dx.doi.org/10.1016/j.stem.2016.12.002 Cell Stem Cell Article RNA Helicase DDX5 Inhibits Reprogramming to Pluripotency by miRNA-Based Repression of RYBP and its PRC1-Dependent and -Independent Functions Huanhuan Li,1,2,7 Ping Lai,1,7 Jinping Jia,3,7 Yawei Song,1 Qing Xia,1 Kaimeng Huang,1 Na He,4 Wangfang Ping,1 Jiayu Chen,5 Zhongzhou Yang,1 Jiao Li,1 Mingze Yao,1 Xiaotao Dong,1 Jicheng Zhao,6 Chunhui Hou,4 Miguel A. Esteban,1 Shaorong Gao,5 Duanqing Pei,1 Andrew P. Hutchins,4 and Hongjie Yao1,8,* 1CAS Key Laboratory of Regenerative