List of Plants Available – Spring 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regional Landscape Surveillance for New Weed Threats Project 2018-2019
State Herbarium of South Australia Botanic Gardens and State Herbarium Economic & Sustainable Development Group Department for Environment and Water Milestone Report Regional Landscape Surveillance for New Weed Threats Project 2018-2019 Milestone: Annual report on new plant naturalisations in South Australia Chris J. Brodie, Peter J. Lang & Michelle Waycott June 2019 Contents Summary............................................................................................................................... 3 1. Activities and outcomes for 2017/2018 financial year........................................................ 3 Funding ............................................................................................................................. 3 Activities ........................................................................................................................... 4 Outcomes and progress of weeds monitoring ..................................................................... 6 2. New naturalised or questionably naturalised records of plants in South Australia. ............. 7 3. Descriptions of newly recognised weeds in South Australia .............................................. 9 4. Updates to weed distributions in South Australia, weed status and name changes ............ 29 References .......................................................................................................................... 33 Appendix 1: Activities of the Weeds Botanist .................................................................... -
Charles Darwin, Kadji Kadji, Karara, Lochada Reserves WA
BUSH BLITZ SPECIES DISCOVERY PROGRAM Charles Darwin Reserve WA 3–9 May · 14–25 September · 7–18 December 2009 Kadji Kadji, Karara, Lochada Reserves WA 14–25 September · 7–18 December 2009 What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz 2 multi-million dollar Summary 3 partnership between the Abbreviations 3 Australian Government, Introduction 4 BHP Billiton, and Earthwatch Reserves Overview 5 Australia to document plants Methods 8 and animals in selected properties across Australia’s Results 10 National Reserve System. Discussion 12 Appendix A: Species Lists 15 Fauna 16 This innovative partnership Vertebrates 16 harnesses the expertise of many Invertebrates 25 of Australia’s top scientists from Flora 48 museums, herbaria, universities, Appendix B: Rare and Threatened Species 79 and other institutions and Fauna 80 organisations across the country. Flora 81 Appendix C: Exotic and Pest Species 83 Fauna 84 Flora 85 2 Bush Blitz survey report Summary Bush Blitz fieldwork was conducted at four National Reserve System properties in the Western Australian Avon Wheatbelt and Yalgoo Bioregions during 2009. This included a pilot study Abbreviations at Charles Darwin Reserve and a longer study of Charles Darwin, Kadji Kadji, Lochada and Karara reserves. Results include 651 species added to those known across the reserves and the discovery of 35 putative species new to science. The majority of ANHAT these new species occur within the heteroptera (plant bugs) and Australian Natural Heritage Assessment lepidoptera (butterflies and moths) taxonomic groups. Tool Malleefowl (Leipoa ocellata), listed as vulnerable under the EPBC Act federal Environmental Protection and Biodiversity Conservation Environment Protection and Biodiversity Act 1999 (EPBC Act), were observed on Charles Darwin Reserve. -
Rangelands, Western Australia
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
For Molecular Phylogenetics and Evolution Manuscript Draft
Elsevier Editorial System(tm) for Molecular Phylogenetics and Evolution Manuscript Draft Manuscript Number: MPE-15-437R1 Title: Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia Article Type: Research Paper Keywords: integrative systematics; whole chloroplast genome; Acacia; ExaBayes; RAxML Corresponding Author: Ms. Anna Williams, Corresponding Author's Institution: Kings Park and Botanic Garden First Author: Anna Williams Order of Authors: Anna Williams; Joseph T Miller; Ian Small; Paul G Nevill; Laura M Boykin Abstract: Combining whole genome data with previously obtained amplicon sequences has the potential to increase the resolution of phylogenetic analyses, particularly at low taxonomic levels or where recent divergence, rapid speciation or slow genome evolution has resulted in limited sequence variation. However, the integration of these types of data for large scale phylogenetic studies has rarely been investigated. Here we conduct a phylogenetic analysis of the whole chloroplast genome and two nuclear ribosomal loci for 65 Acacia species from across the most recent Acacia phylogeny. We then combine this data with previously generated amplicon sequences (four chloroplast loci and two nuclear ribosomal loci) for 508 Acacia species. We use several phylogenetic methods, including maximum likelihood bootstrapping (with and without constraint) and ExaBayes, in order to determine the success of combining a dataset of 4,000 bp with one of 189,000 bp. The results of our study indicate that the inclusion of whole genome data gave a far better resolved and well supported representation of the phylogenetic relationships within Acacia than using only amplicon sequences, with the greatest support observed when using a whole genome phylogeny as a constraint on the amplicon sequences. -
Species List
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Charles Darwin Reserve Project ABRS Final Report Plants
Biodiversity survey pilot project at Charles Darwin Reserve, Western Australia Vascular Plants Report to Australian Biological Resources Study, Department of the Environment, Water, Heritage and the Arts, Canberra Terry D. Macfarlane Western Australian Herbarium, Science Division, Department of Environment and Conservation, Western Australia. 31 August 2009 Cover picture: View of York gum ( Eucalyptus loxophleba ) woodland below a greenstone ridge, with extensive Acacia shrubland in the distance, northern Charles Darwin Reserve, May 2009. (Photo T.D. Macfarlane). 2 Biodiversity survey pilot project at Charles Darwin Reserve, Western Australia Terry D. Macfarlane Western Australian Herbarium, Science Division, Department of Environment and Conservation, Western Australia. Address: DEC, Locked Bag 2, Manjimup WA 6258 Project aim This project was conceived to carry out a biological survey of a reserve forming part of the National Reserve System, to provide biodiversity information for reserve management and to contribute to taxonomic knowledge including description of new species as appropriate. Survey structure A team of scientists specialising in different organism groups each with a team of Earthwatch volunteer assistants, driver and vehicle, carried out the survey following individually devised field programs, over the 1 week period 5-9 May 2009. Science teams Five science teams, each led by one of the scientists, specialised on the following organism groups: Plants, Insects (Lepidoptera), Insects (Heteroptera), Vertebrates , Arachnids. Plants were collected by the Plants team and also by some of the animal scientists, particularly Celia Symonds, in order to accurately document the insect host plants. These additional collections were identified along with the other flora vouchers, and contribute to the flora results reported here. -
Reproductive Potential of Acacia Species in the Central Wheatbelt: Variation Between Years
ReproductiveConservation potentialScience W.of Aust.Acacia 4 species(3) : 147–157 in the (2002)central wheatbelt: variation between years 147 Reproductive potential of Acacia species in the central wheatbelt: variation between years MANGADAS LUMBAN GAOL1, 2 AND J.E.D. FOX1 1Department of Environmental Biology, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845; email: [email protected] 2Department of Biology, Nusa Cendana University, Kampus baru, Penfui Kupang, West Timor, Indonesia; email: [email protected] SUMMARY In a study at Sandford Rocks Nature Reserve aimed at discovering how rainfall variation between years affects reproductive potential in Acacia species, the effect of phyllode number and branch position in the crown and seed quality were investigated. High rainfall in 1999 allowed heavier fruiting. More inflorescences set pods and more pods were produced. In 2000, pod yields were reduced by drought. The extent of flowering depends on good winter rainfall and fruit production depends on moisture availability in spring. Although all species suffered from drought in 2000, there were differences in their degree of susceptibility: A. fauntleroyi, A. neurophylla, A. acuminata and A. steedmanii were the least affected whereas A. stereophylla failed to develop pods; A. hemiteles did not flower, and less than 1% of inflorescences developed a pod in both A. saligna and A. lasiocalyx. Late spring frost in 1998 limited seed development. All species produced few seed; many pods were empty; many immature and infected seed were found; and there was poor germination. Of 13 species, only three had more than 40% germination. In six species there was no germination, while all others had less than 30% germination. -
Yarra Yarra Group Inc (Incorporation No
Australian Plants Society Yarra Yarra Group Inc (Incorporation No. A0039676Y) Newsletter April 2019 General Meeting: April 4th at 8pm Claire Farrell & John Rayner : Melbourne Woody Meadows Project Claire Farrell is a Senior Lecturer in Green Infrastructure, based at the Burnley Campus of The University of Melbourne. Her main research interest involves using plants to make cities more liveable. Claire has a PhD in plant ecology and for the last 9 years her research has focused on developing green roofs for Australian conditions. As green roofs are difficult places for plant to survive, much of her research has focused on the drought tolerance and water use strategies of native Australian plants, including granite outcrop vegetation. This world leading research has been published internationally and key recommendations have also influenced policy and practice. Other research includes plant selection for green façades, rain gardens and low maintenance shrub plantings. John Rayner is an Associate Professor and Director of Urban Horticulture at the University of Melbourne. His research and teaching is focussed around the design and use of plants in the landscape, including green roofs and walls, climbing, shrub and ground cover plants and therapeutic landscapes. Based at the Burnley Campus, John is a passionate educator, has published widely and regularly acts as a landscape and horticultural consultant. He is a keen gardener and in his spare time gains great joy from nurturing and torturing plants on his 1 ha garden in the Dandenong Ranges. VOLUNTEERS PLEASE FOR GARDEN VISIT Saturday April 13th PLANT SALE Sunday 14th April 2 pm We need volunteers for the Plant & Book Sale on Rosanna Parklands with APS Friday afternoon (12th April) from 3pm to 6.30pm to help set up trestles and help growers carry in Maroondah. -
Karara Reserve Supplement Contents Key
BUSH BLITZ SPECIES DISCOVERY PrOGRAM Karara Reserve Supplement Contents Key Appendix A: Species Lists 3 ¤ = Previously recorded on the reserve and Fauna 4 found on this survey Vertebrates 4 * = New record for this reserve Birds 4 ^ = Exotic/Pest Frogs 5 # = EPBC listed Mammals 6 ~ = WCA listed Putative new species Reptiles 6 Previously recorded on the reserve but not found on Invertebrates 7 this survey Bees 7 Moths and Butterflies 7 EPBC = Environment Protection and Biodiversity Flies 7 Conservation Act 1999 (Commonwealth) Beetles 8 WCA = Wildlife Conservation Act 1950 Lacewing 8 (Western Australia) True Bugs — Terrestrial 8 Cockroaches 9 Centipedes 9 Pseudoscorpions 9 Spiders 10 Scorpions 10 Snails 10 Flora 11 Flowering Plants 11 Conifers 18 Ferns 18 Lichens 18 Fungi 18 Appendix B: Rare and Threatened Species 19 Appendix C: Exotic and Pest Species 21 2 Bush Blitz survey report — Avon Wheatbelt & Yalgoo Bioregions 2009 Appendix A: Species Lists Nomenclature and taxonomy used in this appendix are consistent with that from the Australian Faunal Directory (AFD), the Australian Plant Name Index (APNI) and the Australian Plant Census (APC). Current at March 2012 Karara Reserve Supplement 3 Fauna Vertebrates Birds Family Species Common name Acanthizidae Acanthiza apicalis Inland Thornbill Acanthiza chrysorrhoa chrysorrhoa Yellow-rumped Thornbill Acanthiza uropygialis Chestnut-rumped Thornbill Aphelocephala leucopsis castaneiventris Southern Whiteface Gerygone fusca Western Gerygone Pyrrholaemus brunneus Redthroat Smicrornis brevirostris Weebill -
List of Plants Available
LIST OF PLANTS AVAILABLE – AUTUMN 2016 *These are also available as advanced plants **These are available as advanced plants only GENUS x SPECIES SIZE AND GROWING HINTS DESCRIPTION FAMILY/ height code (size given as height x width) COMMON NAME HEIGHT CODE: #=<1m ## =1–5m. ### =5–12m Acacia amoena Medium, spreading, erect, shrub 2-3mx2-3m. Bright or pale yellow globular MIMOSACEAE ## Adaptable to most well-drained soils in full to flowers July to October. Showy, Boomerang Wattle part sun. Frost hardy to –7°C and drought low, windbreak. (NSW, Vic) tolerant. Can be pruned. Acacia chinchillensis Dwarf to small, spreading, shrub 0.5-2mx1-2m. Deep golden, globular, flowers July MIMOSACEAE ## Prefers well-drained soil in sun or semi-shade. to September. Decorative feature Chinchilla Wattle Prune after flowering for a dense bush. Frost plant. (Darling Downs Qld) hardy to –7°C; drought tolerant. Acacia cognata A generally erect shrub, weeping habit Sprays of pale yellow, fluffy ball MIMOSACEAE # 4-8mx4-8m. Full sun to part shade. Most soils flowers in spring. Narrow, lime with reasonable drainage. Drought tolerant and green leaves. Feature plant. hardy to most frosts. Informal hedge. Acacia cultriformis Erect, medium shrub 2-3mx2m. Well-drained Bright yellow globular flower MIMOSACEAE # # soil in sunny position. Frost hardy to –7°C, clusters in spring. Recommended Knife leaf wattle drought tolerant. for its foliage as a feature plant. (Woodland areas of Qld, NSW) Acacia gladiiformis Small to tall erect shrub 1-4mx0.5-1.5m. Sunny Bright yellow globular flowers June MIMOSACEAE ## position but tolerates semi-shade. Well-drained, to October. -
Pages 121–149
Conservation Science W. Aust. 7 (1) : 121–149 (2008) Flora and vegetation of the banded iron formations of the Yilgarn Craton: the central Tallering Land System ADRIENNE S. MARKEY AND STEVEN J. DILLON Science Division, Department of Environment and Conservation, Wildlife Research Centre, PO Box 51, Wanneroo WA 6946 Email: [email protected] ABSTRACT A quadrat-based survey was undertaken on the flora and floristic communities of several ironstone ranges and outcrops in the Yalgoo bioregion, covering the central extent of the Tallering Land System. One hundred and three 20 x 20 m quadrats were established over the extent of this region, and covered the topographic profile of these landforms. A total of 414 taxa (species, subspecies, varieties and forms) and four hybrids were identified from these quadrats. Fifteen taxa of conservation significance were found in this survey, five of which had not been previously recorded from the area. Significant range extensions for 21 species are reported in this study. At least nine new taxa were identified, of which several are of conservation significance. Nine regional endemic and near-endemic taxa were found over the study area, with half restricted to the south-west hills. Eight floristic community types (five main types, two with subtypes) were resolved from classification analysis of floristic data (presence / absence). These community types were strongly associated with topography and soil chemistry. Geographical variation was found among the floristic communities within the region, and some communities were found to be restricted to the south-west of the survey area. These restricted communities were found to occur in the more mesic regions of the survey area, on rocky uplands of BIF, and had notable component of flora from the South West Floristic Region. -
The Role of Biome Shifts in Lineage Diversification
The Role of Biome Shifts in Lineage Diversification Esther Elizabeth Dale Submitted in fulfilment of the requirements for the degree of Doctorate of Philosophy Department of Botany, University of Otago November 2018 II Abstract This thesis examines the role of biomes in lineage diversification. It explores whether biome conservatism, the tendency to remain in ancestral biomes, constrains diversification, and tests whether biome shifts are linked to characteristics of particular biomes, clades or traits. This work focuses on a series of radiations in Australia and New Zealand. Using the hyper-diverse genus Acacia in Australia, Species Distribution Models (SDM) were used to predict distributions and niche traits of 481 species in 19 clades across two biome typologies. Diversification was not constrained to any biomes, with most species (94%) occupying multiple biomes, but diversification was greatest in those biomes currently occupying larger areas. New Zealand groups (Poaceae, Melicytus, Myrsine and Pseudopanax) with small scale radiations (< 25 species) were then investigated in relation to occupancy of the three main biomes (Forest, Open and Alpine). A temporal sequence of biome availability in New Zealand allowed an examination of diversification in the context of the directional transition from forest to more open biomes. A combination of methods including SDM, biogeographical models, and trait measurements of plants grown in a common garden were utilised to explore the importance of biome shifts during diversification, the relationship between trait shifts and biome shifts, and ask if biome conservatism was prevalent in the different clades. Biome conservatism did not constrain diversification in New Zealand lineages. Biome shifts were generally frequent and more closely related to extrinsic biome factors like biome age, biome availability and relative environmental similarity between biomes, rather than to intrinsic features of lineages, such as clade size, diversification rate or age.